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Abstract. In this paper we present some results on the Cauchy problem for the differential
equation with lagged argument x’(r) =f(r. x(g({))) in Banach spaces. We assume that the
function f satisfies some regularity conditions expressed in terms of the measure of non-
compactness. We prove a theorem on the existence of a solution, a theorem on the existence of
an extremal integral and a theorem on the continuous dependence of the extremal integral on
initial data. The results extend those of the previous work [11].

In this paper we study the Cauchy problem for the differential equation
with lagged argument x'(t) = f (t, X (g(r))fin an infinitely dimensional Banach
space. We deal with the problem using a method developed by Ambrosetti
[1]. This method is based on the properties of the function .#°(-) introduced
by Kuratowski, which is a kind of “measure of non-compactness”. The
results of this paper extend the results of [11] and [12].

It is well known that neither the continuity, nor even the uniform
continuity of the function f, does imply the existence of a solution of the
Cauchy problem for the equation x’ =f(t, x) in a Banach space. In papers
[1], [3], [4], [8] and [14] several existence theorems are proved in the cases
where the bounded continuous function f satisfies some regularity conditions
expressed in terms of the measure of non-compactness. In particular, an
Ambrosetti type condition (termed here assumption (A)) will be used in this

paper.

0. Let E be a Banach space and let X be a bounded subset of E. We
define .#(X) as the infimum of all ¢ > 0 such that there exists a finite
covering of X by sets of diameter < ¢ ([9], [10], p. 318). (The number £ (X)
is called the measure of non-compactness of the set X.) For properties of .Z(")
see [1], [6], [7] and [8]. In particular, we have:

1° if A B, then Z(4)< £(B);

22 (A+B) < Z(A)+ £ (B);

3° P(conv A) = L (A) = L(A);
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© L(U qgA)=h24);
0<sg<h
$ 2(4) < sup {Ixll: xed);
6° &(A) =0 if and only if 4 is conditionally compact;
7° (theorem of Kuratowski) if 4,,, =« A, forn=1,2,...and £ (4,) >0

aO
as n— oo, then () A4, is a non-empty conditionally compact subset of E.

n=1
Denote by C(J, E) the space of all continuous functions from a com-
pact interval J to a Banach space E, with the usual supremum norm

IIll. For X< C(J,E) we writt X(f)={x(): xeX} and [X(s)ds

= { jx(s)ds: xeX}.

%f a subset X of C(J, E) is bounded and all the functions belonging to X
are equicontinuous, then:

8° (Ambrosetti [1]) Z(X) =2(U {X(): teJ})=sup {L(X(1): teJ}.

1. Let (E,|I')) be a Banach space, and let I,=[tq, to+al,
I = [tq, to+h], where 0 < h < a. Assume that g: I, —» (— o0, 00) is a contin-
uous function such that g(¢) <t for every tel,. Let m =min {g(1): tely}
and let ¢: [m, t,]— E be a continupus functions. Write

J=[m, to+h], B={xeE: |x—p(t) < K+b},

where b> 0 and K =sup {||¢(t)—@(to)ll: m <t <to}.
Let us consider the Cauchy problem

(PC) XM =1, x@0). x®=e¢@® for m<t<t,,

where f: [, xB—E is a given bounded continuous function, and
M = sup {[|f (¢, X)|I: (¢, x)elox B}.
The above assumptions concerning the sets Iy, I, J, E, B and the func-

tions g, ¢, f are valid throughout this paper and will not be repeated in
formulations of particular theorems.

We introduce the following definitions:

DerINITION 1. Let & be a positive number. A continuous function
v: J— B is said to be an e-approximate solution of the (PC) problem on
the interval J, if it satisfies the following conditions:

(1) v(t) = () for m<E< ty;
(ii) ('} has the right-hand derivative D*v(t) for t, < t < to+h, and v(f)

=p(tg)+ | D*v(s)ds for tel;

(i) ‘||1;+u(r)-f(r, v(gm))]| <& for to <t <to+h.
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Dermrtion 2. We call an Euler polygonal line for (PC) on J any function
v: J— B of the form

" ={ o) for m<r<t,,
@ (to)+(t—1)) 'f(tja D(g(tj)))+

j-1
+ kzo(fj—k—fj—k—i) 'f(fj-k—i: v(g(tj—k-l)))
fOI’ tj <t srj_'.l, j=0, 1, ey m'—l,

where to <ty <...<t, =tg+h is an arbitrary partition of the interval I.

DEFINITION 3. A continuous function x: J — B is said to be a solution of
the (PC) problem on the interval J, if it is a differentiable function on I such
that x(f) = ¢(t) for m<t <ty and x'(1) =f(t, x(g(t))) for tel.

DEerINITION 4. By an E-solution of the (PC) problem on the interval J we
mean a solution of (PC) which is the limit of a uniformly convergent (on J)
sequence of Euler polygonal lines which are approximate solutions of this
problem on J.

Mbreover, we introduce the following assumption (cf. [1], [14]):

(A) There exists a constant k > 0 such that £ (f [I,x X)) < k- Z(X) for
every subset X of B.

2. It is known ([2], [3]) that for every &> 0 there exists an
g-approximate solution of the Cauchy problem for the equation x' = f(t, x).
In [11] we proved the following theorem:

2.1. THEOREM. Let h < min (a, (b+ K)/M) and let the following condition
be satisfied:

(*) - there exists a compact subset H of B such that @(t)e H for m <t < t,,
and @(to)+(t—tg):conv(f[IxH]) = H for tel.

Then for any ¢ > 0 there exists an g-approximate solution u,(*) of (PC) on J
such that u,(t)e H for every teJ. Moreover, this solution is an Euler polygonal
line of the (PC) problem on J.

For every positive integer n let us denote:

by S, — the set of all (1/n)-approximate solutions of (PC) on the
interval J; .

by E, — the set of all Euler polygonal lines veS, such that v(t)e H for
every teJ, where H is the set from Theorem 2.1.

It is easy to verify that all the functions belonging to S, are uniformly
bounded and equicontinuous. First, we prove '

2.2, Let condition (¥) of Theorem 2.1 be satisfied. Then:
(@ If w)<S, wIlcH (k=1,2,..) and ||ju,—ulll >0 as k— oo;
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then u()=o() for m<t<ty, and ”u(t)—qo(to)— ff(s: “(g(S)))ds”

=n"t|t—ty for tel.

b) If ue ﬂ E,,, then u(:) is an E-solution of (PC) on J.
n=1

(c) If E,# @ for each n>1 and lim Z(E,) =0, then the set of all

E-solutions of (PC) defined on J and taking values in the set H is a non-empty
compact subset of C(J, E).

Proof. Obviously, u(t) = ¢(t) for m<r <ty and u(t)eH for tel. For
each r in I we have «

[« ~o(t0)— [ £ (s, u(g(s))as]
< [l —ulll + .f‘ ”D+ “k(s)—f(S, uk(g(s)))” ds+
+ | ”f(s, U, (g(s)))—f (s, u(g(s)))“ds

<M=l +n~ e =tol + [ [|1 (s, wlg(9))=7 (s, u(9 )| ds.

)
Since f|;xx i§ a uniformly continuous function, we have

lim ”f(t, uk(g(t)))—f(t, u(g(t)))” ~ 0 for tel. Consequently,
k= x

“u(t)——qp(to)— jf(s, u(g(s)))ds“ <nt—to for tel.

The proof of (c) is similar to the proof given in [3] (cf. also [4], [15]), by
the Kuratowski theorem, and 2.2 (b) can be easily obtained. This completes
the proof of our theorem, since (a) implies (b).

Now we prove the following result:

23. Ler assumption (A) be satisfied, h-k <1, and let S, # O for each
n=1. Then £(S,) -0 as n— oo.

Proof. Using the Ambrosetti result we obtain

ZL(S,) =sup {ZL(S,(1): teJ} = L(U{v[J]: veS,}).
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Let us fix t in I. Obviously,
S, ()<= (p(to)+{ f [D*v(s)—f(s, v(g(s)))] ds: veS,,}+

+ {fff(s, v(g (s)))ds: veS,,};

‘o

hence

2L(S,@0) < g({‘j' [D+ v(s)—f(s, v(g(s)))] ds: veS,,})+

+7 ({ _[f(s, u(g(s)))ds: veS,,}).

t
ta

We have

K4 ({;[' [D*b(s)—f(s, v(g(s)))] ds: veS,,})

< sup {H j! [D* o) =1 (s, v(g(5))] ds”: veS,} <n'h

and, by the integral mean-value theorem and condition (A),

L4 ({j_f(s, v(g(s))ds: veS,})

< £ ((t—to)-conv (f[Io x U {v[J]: veS,}])
<lt—tol: L (f[ToxU {v[J]: veS,}])
<hk-2 (U{olJ]: ves,)) = h-k-L(5,).
Finally, we conclude that
L (S =sup {Z(S,()): tel} <n ' h+h-k-£(S,),
which completes the proof.

3. Let ro =0, 0<¢go <b. Let us denote:
by Y — a conditionally compact set consisting of some ye E such that

Iyl <ro;
by I' — a conditionally compact set consisting of some e C([m, t,], E)

such that sup {|[y()—@@): m<t <t} <eéo.
By (PC,,) we shall denote the problem of finding the solution of the
equation

x'(1) =y+f(t, x(g(®))
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satisfying the initial condition
x(f) =y () for m<r<ity,

where yeY and Y el

Let us denote by 4 the set of all solutions of the problem (PC, ;) on J
with y ranging over Y and y ranging over I'. We prove

| K+b—gy

i)
and 0 < h-k < 1. Then there exists an E-solution of problem (PC, ) on the
interval J. Moreover, ¥ is a compact subset of C(J, E).

Proof. First, we prove our theorem for the case ¢, =r, = 0. By a slight
modification of the argument used in [5] (see [14]) we prove that there exists
a compact set H satisfying condition (x) of Theorem 2.1: Indeed, let us put

3.1. THEOREM. Let assumption (A) be satisfied, let h < min (a,

R(X) =[P+ U A-conv(f[IxX)) for X =B, where P =[m, to),

0<Ash

Q=[XcB: R(X)«cX} and H={X: XeQ}.

As @[P] is a compact set, R(X) is closed. We can verify that R(B) = B,
¢@[P] < H and R(H) = H. Hence, by the properties of the measure of non-
compactness, we conclude that H is compact. The set H satisfies the
assumptions of Theorem 2.1 and therefore E, # @ for n> 1. By 2.3 ¥ (E,)
— 0 as n — co. Consequently, the existence of an E-solution for (PC)-follows
from 2.2 (c). ‘ _

Since the function F,(f, x) = y+f (t, x) satisfies on I, x B condition (A),
it follows by the above reasoning that the E-solution for (PC, ) exists on J. .

Obviously, 4 is closed, bounded and all the functions belonging to '
are equicontinuous. We have

IO <UWlP): yer'l for teP
and
M) < Y(to): el +

+ U AY+
0

0<As<h

) -conv (F[Ix U {x[JT: xe2}])

PR

for tel. From this and from the assumptions it follows (cf. the proof of 2.3)
that .#(2) =0, and therefore ' is compact.

4. Let S be a cone in E. Denote by < the partial order in E generated
by S. Assume, moreover, that § is a cone with a non-void interior and
f:IxB~E is a function such that x, < x, implies f(t, x,) < f(¢t, x,).

This assumption remains valid throughout all this section and will not
be repeated in formulations of particular theorems.
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Modifying the proof from [13], Theorem 70.1, we obtain the following
result on “strong™ differential inequalities:

4.1. Let the functions x, y from [m, to+h) into B be continuous. More-
over, let

x@) <y (or, x(t) <y((") for m<t <o,
D*x(t) < f(t, x{g(0))  for to <t <to+h,
e y@n) <Dy (on £ y(g@) S D*y()  for o<t <to+h.
Under our assumptions the inequality x(t) < y(t) holds for every

to <t <to+h

We introduce the definition: A solution x°(-) of the problem (PC, ) on
the interval J is called the maximal integral of (PC,,) on J, if for every
solution x(-) of (PC,,) on J we have the inequality x(f) <x°(t) for
to <t <ty+h

In a similar way one can introduce the notion of the minimal integral of
(PC,y) on J.

4.2. THeorReM.  Let assumption (A) be satisfied, ro >0, and let

h<min{a K+b
TS ’r0+M

(minimal) integral of (PC) on J, and this integral is the limit of a sequence of
E-solutions of (PC) on J. '

Proof. Let (y,) be a sequence in E converging to zero and such that
Ve >0, Iyl €ro (k=1, 2,..). By Theorem 3.1, the problem

X0 =y+f(t, x(@®), x()=9@) for m<t<t,

possesses an E-solution x,(-) in the interval J and (x,(-): k>1]} is
a compact subset of C(J, E).
. Denote by x(-) a solution of (PC) on J, and let (x,‘"(-)) be a subsequence

of (x4(*)) such that X, (-) = x°(*) as n— oo. We have
x()=x(t) (k=1,2,..) for m<t<ty+h,

D¥x(t) =f(t, x(g(0)) for to <t <to+h

), O0< h'k<1. Then there exists a unique maximal

and it is easy to check that
St x(@®) <D x(t) (k=1,2,..) for to<t<to+h.

Therefore, by Theorem 4.1, x(t) < x,(t) for every k=21 and t, <t <ty+h.
Consequently, x°(-) is a solution of (PC) on J such that x(f) < x°(z) for
to <t <to+h. By an analogous argument we obtain the assertion concern-
ing the minimal integral of (PC) on J.

(') x <y means y—xelnt (S); the interior of S is denoted by Int (S).

3 — Aaunnales Plonici Mathematici LXI. 1.
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The proof is finished.

For E-solutions the theorem on the continuous dependence of the
maximal (minimal) integral of (PC) on the initial data is true. More precisely,
we have the following theorem:

Let us put

¥ = (YyeC([m, to], E): @) <y () and |yr(t)— ()l <& for m <t <to},
and for any ¥ €¥" denote the maximal integral of the problem
(+) XM =f(tx@®), x@ =y for m<t<t

on the interval J by xJ().

4.3. THEOREM. Let assumption (A) be satisfied, ro > 0, 0 < gy < b, and let

h< mi K+b—¢g

s mmia, —m—
tinuously v~ into C(J, E).

Proof. Let (,(-)) be a sequence in ¥ converging to ¢(:). By Theorem
3.1, the set of all solutions of (+) on J with () ranging over {,(*): k = 1},
is compact in C(J, E).

On account of Theorem 4.2, there exists a maximal integral x°(-) of (PC)
on J and a maximal integral x) (‘) of (+) on Jif y =y, (k=1, 2, ...). Let
(y2()) be a subsequence of (x () and let (), (-)) be a subsequence of (y(*))
such that y,?,‘(-) — yo() as k — 0. To prove our theorem it is sufficient to
show that yo(t) = x°(t) for m<t <to+h.

Obviously, yo(*) is a solution of (PC) on J. Hence, x°(t) = yo(t) for
m<t<ty, and yo(t) < x°(¢) for to <t < to+h. Since

), 0< h-k < 1. Then the function ¥ — x{ maps con-

x0(t) < ya (1) for m<t<t,,
D*x°(1) =f(t, x°(g(t))) for to <t <ty+h,
D*yn @ =1(t, o (@) for to<t<to+h,

we infer from Theorem 4.1 that x°(r) < y§ (1) for to <t <to+h. Hence it
follows that x°(z) < yo(r) for tqy <t < to+h, and thus the proof is completed.
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