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On integro-differential equations of parabolic type

by H. Ucowsxr (Gdansk)

Mlak [4] has shown that the first Fourier problem in a bounded
domain for a semilinear equation of parabolic type has a maximum solu-
tion and a minimum solution. As & consequence he obtained a theorem
on a weak differential inequalities.

In this paper we extend Mlak’s results to the following system of
parabolic integro-differential equations:

n

n
(01) Iku* = Z’ ay (=, t)'u,’;i,j—l- Z bf (m, t)uf, + ¢ (@, t)u"—uf

‘il:’"l =1

fk(wv by uty .o, u?, %:];1’ RS u’.'f:n’ f’“l('y: tu'(z, t; dy), ...
]

fu (¥, 1) w,tdm/)) (k=1,..,N).

At first we prove a theorem on the existence of the maximum and
minimum solutions for a more general system than (0.1) containing
certain operators B¥u on the right-hand side. The proof is based on
a theorem (following from [7]) on the existence of a solution for the
problem considered and on the assumption that operators LFu*— B*y
fulfil certain strong inequalities. A theorem on weak inequalities
follows from this proof.

The results mentioned above involve the system (0.1) as a pa.rticu—
lar case. Mmeover,' lf functions f" do mnot conta.m the derwa.tlves 'u,

general caxe (() 1) can be proved.
The anthor expresses his sincere gratitude to Professor 7. Besala
for suggesting the problem and for valuable advice.

1. Preliminaries. We ghall use the notations of paper [7]. Here
we recall only the definition of the domain G. Namely, by @ we denote
a bounded open domain of the Euclidean space of the variables (z,?)
= (1, +..y ,, ) whose boundary consists of the domains B, and Ry
of hyperplanes { =0, ¢ = T = const >0, and of a surface § situated
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in the strip 0 < ¢ < T. The set X' = K, u 8 is called the parabolic boundary
of the domain @.

The parabolic distance from P to Z'= X N {(z, 1): 0 <7<},
where P = (2, 1) is any point in G, we denote by d,, i.e.,

dp = inf d(P, ¢)).
QeEt
For any points P, P'eG we pub dpp = min(dp, dp.).
Let us introduce the following norin:

T n

G 3 2 Y . .

[lfye = S+ D) I li - T g I+ 2 (0 < a < 1),
Tl 1,7=1

where

am G _ 10" o (P ' . oy YT LA
el = sup ) o (P) 1+ pup { e rte 2L =2

The set of all functions « for which [u|f., < co will be denoted
by Wit (@)
Now we ghall formulate two lemmas concerning the problem

i) —o(P)] } ,

(1°1) LIN’ = 2 a’ij($’ t)ua;tmf"' 2 b‘l(w’ t) u;n.,;"l‘ C(w, t)u_ U, = f(m’ t)’

=1 1=1
(m, 1) G\ X,
(1.2) u(m, 1) =@z, t), (v,t)eX,
which follow from [1]. The following assumnptions will be made:
(1.I)  For any (#,%)cG and éeE, we have ay(w, 1) = ay(«, 1),
2, Gl EE = IGIEE (K >0).

(LII)  Theyre is such a constant I(; >0 that

|a'127‘|€7 51, 101, |a'if|ig-o < If).
(LIII) The surface § belongs both to 82_“, and to 0, ,.
(1.IV)  The function f(z, 1) is of the class C.(G).

I.JEMMA 1 ([1], p. 69). Let assumptions (1.I)-(L.IV) hold and let the
Junotion ¢(@,1) be continuous on X, Then there ewisits a unique solutton
u of problem (1.1), (1.2) and Jurthermore weW,, ,(G) ().

() We have formulated Lemma 1 under stronge b i
which follow from 11} onger assuinptions than those
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LemMyMA 2. Let assumptions (1.1)-(1.IV) be satisfied and suppose that
u{w,t) 18 a solution of the problem
Lu = f(w, 1) in G\NZ, w =0 on X

Then for any f (0 < f < 1) there exists a constant K(f) depending
only on B, K,, I{; and G such thai

T
lull-i PES E(p) ﬁ)l2|f|G -

where G =G N {(z1): 0 <t <7}, 0 <L,
Thig lemma fo]lows from the proof of Theorem 4 of [1] (p. 191),

2. Differential cquations containing operators. For every 7ve¢(0,T)
let B* (k=1,...,,N) be an operator defined on the set CN (G") of
all vector-functions u(®,1) = (ul(x, ), ..., uN(x, t)) continuous in &
and possessing in, G*\Z" continuous derivatives Ug, = (u ,'umi)
(¢ =1,...,n) with values belonging to the set of all functlons defmed
in @'\ )3’.

In this section we shall prove the existence of the maximum and
minimum solutions of the problem

(2.1) LFw* = Btw, (2,1)e@\I",
(2.2) wh(w, 1) = (@, 1), (8,8)eZ" (k=1,...,N) (Y.

The method employed in the proof requires the existence of a solu-
tion of this problem without assuming a certain consistency condition
for the functions ¢* appearing in the theorems obtained in paper [7].
Therefore at first we state a suitable existence theorem for the‘above
problem which will be applied in our proof.

The following agsumptions are introduced for bk =1, ..., N; 0 < T
comp. section 2 of [7]):

(
(2.I) The coefficients of IL* satisfy assumptions (1.I) and (1.II).
(2.JI) The functions ¢" are of class €, 4(G) (a <f <1).

(2.1I1) Operators B* map the spacé Oy, ,(G°) into the seb

U G, (67)

0<e<l]
and there are congtants A4,,4d,, 4;32:0, 0<iA<1 (inde-
pendent of 7) such that for any wueCY ,(G°) the following
inequality holds:

A 4T 9T T
|B*ulf” < A+ Ag(|ulf Y+ Aal""l?

(2)_ '-I"he golution w(x,!) of (2.1), (2.2) is called a mamimum (minimum) solution
if for every solution w (=, t) of (2.1), (2.2) the inequalities wk (x, ) < W (=, 1) (w* (2, 1)
> w(z, 1) hold in @* (k= 1,..., N).
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(2IV) Operators B*u are continuous in the space Gﬁa(G’) rin the
following sense: if w, %, ¢0r (@) and lim |u,—uf,, =0,

then Ilim IBkum_Bkulgﬂ = 0. NM-r00
M—>c0
TurorEM 1. If assumpiions (LIIL), (2.I)-(2.IV) are satisfied and
(2.3) K(a)NA, -9 <1 (3),

then there ewists a solution w(z, 1) = {w*(w, 1)} of the problem (2.1), (2.2);
furthermore weCy. 4(GF) N WE.(G) (1), where 0 <e <1 i8 a oortain
constant.

This theorem can be proved by the sanie considerations as those
for Theorem 1 of [7], making use of Lemmas 1 and 2. As a consequence
we -obtain the following remark:

Remark. Under the assumptions of Theorem 1. there exists a solu-
tion w of problem (2.1), (2.2) which belongs to C7,4(&) N WP, (G)
and fulfils the inequality

N
24) 0if < (VA + NAM+ NAM,+ 3 (L) 1 (5) 02 4 ([0,
h=1
where M, is the greater number of the following ones:
2K(a)NA21,(1—ﬂ)I2 1/(1-2)
[1—K(a)NAa-;(1-ﬂ)lz:| )

N
2[K (a)7t=2" (NA1+EZ: (L @)+ |01,
1— K (a) NA,ei-0R '

Before stating a theorem on the existence of the maximwum and
minimum solutions we make the following assumption:

(2.V) I functions » = («',...,%") and o = (v!,..., "), regular in
@, satisfy the inequalities L*u*— B*w > L*o*— BFv, (w,t)e G\ X"
(% =1, .., N)u(m 1) <o(z, 1) (%), (v,1)eX", then u(2,t) < v(w,1)

in G
TomorREM 2. If the assumptions of Theorem 1 and (2.V) are fulfilled,
then there ewist a mawvimum solution v = {v*} and a minimum solution

u = {u*} of problem (2.1), (2.2); moreover, v, ueCY 5(@) N W, (G°) for
some 0 <& <1.

() K(a) is the constant appearing in Lemma 2.
N(‘) Wﬁa (@) denotes the set of all functions w(x, t) with a finite norm ||w||?+a
= 3 1wy
k=1

¢) Le wk < o* (& =1,..,, N).
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Proof. We apply a method similar to that of Mlak [4]. Namely,
in order to obtain the maximum solution », let us consider for m = 1, 2,
the problem

1 _
(2.5) Lk = B*v, — - (v, 1) eG*\X7,

(2.6) ok (@, 1) = ¢* (=, t)-l-%, (0, )el™ (B =1, ..., N)

This problem possesses, by the remark to Theorem 1, a solution
= {v¥} such that

(2'7) I”mlﬁp \<~ Ml’

where M, denotes the expression on the right-hand side of (2.4) with
Asy (DM, 10 (91T

replaced by

Ar+1, [TFONT 1M, 05+ N, DT+ N
respectively.
It follows from (2.7) and Theorem 4 of [1] (p. 188) that there exist

a subsequence {v,} of the sequence {v,} and a function veC},,(G) such
that

(2.8) T |9, — 0[5, = 0.

m’-rno

We will show (in a similar way to that followed by Kusano [2])
that v is a solution of problem (2.1), (2.2). According to Lemma 1 the
problem

(2.9) Lo = B*n, (o,1)e F\I",
(2.10) (1) = o (@, 1), (9,8)eZ" (k=1,...,N)

has a unique solution 7 which belongs to W3, ,(G7) for some 0 <& < 1.
Using relations (2.6), (2.6), (2.9), (2.10), wo obtain

. 1 —
I* (ru’,;,— 7~ 71—) = B*v,—Blo— —; Mz, 1), (m,1)e@E\Z",

()= (0, 1) — — =0, (2,82 (k=1,...,N)

1
m’

and hence, by Lemma 2,

1 v 1
(211)  |op— T, < K () [lBk’l’m'—Bk'Ulf + o7 615 ] t



14 H. Ugowski

By virtue of (2.8), (2.11) and (2.IV)
lim |1’m’—"7|(1;:-ﬁ =0
m'—o0
and thus 7 = ». Thizg means, by (2.9), (2.10), that the vector funetion »
is a solution of the problem in question (¢).
It remains to prove that » ig the maximum solution. Indeed, assuming
that a function w = {w*} is a solution of the problem (2.1), (2.2) and taking
into considerations relations (2.5), (2.6) and assumption (2.V), we have

w(z, 1) <v,(z1), (2 t)e(?’ (m=1,2,...).

Thus w(», ) < v(, ?) in G_’, which completes the proof in the case
of the maximum solution.

To receive the minimum solution we consider, for m =1,2,..,,
the problem

1 —
Lyt = Broy,+ o (m, 1) e F*\2",

(o, = @ )=y @)X (=1, ..., V).

The further proceeding is the same as in the proof of the existence
of the maximum solution.

From the proof of Theorem 2 the following theoren. on wealk
inequalities easily results.

TeEOREM 3. Let all the assumptions of Theorem 2 hold true. Suppose
that a vector-function w(w, 1) = {w* (s, 1)}, reqular in E’, Julfils the following
inequalities :

I*w* > B'w, (0,1)e@\Z" (k =1,..., N),
w (@, zf‘é vz t)  (w(e, )= ulx, b)), (,1)eZ".

Then w(w, 1) < v (@,1) (w(w, 1) > u(w, 1)) in G, where v = {v*} (4 = {u*})
18 the maximum (minimum) solution of problem (2.1), (2.2).

3. Differential cquanns containjng functionals. For every 7e(0, 7]
let (w8 u(y 1) (0, )e G\I", u = (2, ..., uM)eOY,(G)) be a systen
of functionals

P (@, 150 (1), .y PV (0, 85wV 1.

(*) It is ensy to observe, in view of the obvious inequalitics (sca (2.5), (2.0))
I*ok = Bhoy, > TRoE — By (z, 1) (N,
hi @ O<vb@1), (@,0)eX (k=1,...,N)

and a,surnpt'ion (2.V), that the sequonce {v,} is decreasing. Therefore, it follows
from tl}e uniform convergence of the subsequence {vsm} that the sequence {v,,)} is
also uniformly convergent to the solution v.
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We shall derive corollaries from Theoreniws 2 and 3 for the operators B*
given. by the formulas

(3.1) Bty =f"(a",t w, ul, oyt u( t))),

where uf = (ug,, ..., u; ) and functions f*(z,1,p, ¢, r) are defined on

GX Byinin
We make the following assumptions (X =1,..., N):

(3.1) The functions f*(», t, p, ¢, r) satisfy a uniform Hélder condition
in every bounded set GxH (H < Ey,,,y). Moreover, there
exist constants A4,, 4;, 4,>0, 0<1 <1 such that for any
@40, ¢, 7)eG X By iy

|f* (@, b, By @ )| < Ayt Asl(py 0 V)P Ael(D, ¢, 1),

N [ N
where |(p, ¢, 1) = 121‘ FAES 12,: qul+1§1’ Iyl

(3.1I) The functions f*(w,t p,q,7) are non-increasing with respect
to the variables Dy, ...y PDp—1s Prrrs s Py Tiy ooy e

(8.III) Tor any 2,Ze¢C,..(G°) we have
1P* (my 15 2 8) — PH(my 3 20, ) 1§ < Agle—2S,
A, >0 being a constant independent of 7.

(38.IV) If z¢0,,.(6%), then the functions ¥*(s,1;2(-,1)) are uniformly
Holder continuous in @

(8.V) The functionals ¥*(z,¢;z2(-,?)) are non-decreasing with respect
to the functions z(z, ), regular in & (M.

THEOREM 4. Let assumptions (1.II1), (2.I), (2.II), (3.1)-(3.V) be
satisfied and let

(3.2) K(a)NAg(4,+1)r 9" < 1.

Then Theorem 2 holds true in oase (3.1).

For the proof we need the following

LummA 3. Let assumptions (LIIT), (3.1I), (3.V) and (LI) (with ay
replaced by af-ff,) (*) be satisfied. Suppose that vector-functions u = (u, ..., ul)
and v = (v, ..., vV) are regular in G and fulfil the inegualities
LFy*— f"(w,t wy ul, Ww, 15 u( )>L"’f0’“—f”(m,t v, 5, W2, 1; 0(, t)))

(, t)eG’\Z’ k=1, ...,N), w(o, 1) <oz t), (o,1)eX".

(") Le. if the functions z(z,?),z(x,?) are regular in &7 and 2z, 1) > 2(w, 1),
then ¥r(x,t;2(, ) > Pr(2,t;2(, 1) (k= 1,..., )

(8) Assumptions (1.I), (1.III) can be replaced by weaker ones (see, for instance,
(6], p. 1081).
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Under these assumptions u(w,1) < v(w, t) in G

The method of proving this lemma is the same as that used to prove
the theorem on strong differential inequalities (see [3] or [6], p. 191).

Now, by the above lemma, Theorem 4 results from Theorem 2.

As a consequence of Theorem 3 and Lemma 3 we obtain the following

TamorEM 5. Let all the assumptions of Theorem 4 be fulfilled.
Suppose that for a fumdtion w(x, t) = {w*(w, 1)}, regular in G, we have
the inequalities

L"w"(?)f"(w, tw, wk, Plo,t;w(-, 1),  (@,0)e@\NE (k=1,...,N),
wot)<v(t) (wdl)=unt) on X7

Under these assumptions w(x, 1) < v(@,t) (w(w,t) = u(@, 1) in G_",
v = {0*} (u = {u*}) being the mamimum (minimum) solution of problem
(2.1), (2.2) in case (3.1).

Now let ¥*(»,1;2(-,1) ((w,1)e@\Z, 1< k< N) be a functional
defined on the set of all functions #(«, t), continuous in & and let f*(w, 1, p, )
(1< k< XN) be a function defined on @x Hy, y-.

At present, applying Chaplygin’s method, we shall prove the existence
of the maximum and minimum solutions of the problem

(3.3) Lk = f*a, 8,0, Plo, t;w(-, 1)), (@ 1)eGNE,
(3.4) w(@,1) = ", 1), (x,1)eZ (k = 1,.., N)

under wealker assumptions than those of Theorem 4.
The following assumptions are introduced (k =1,..., N):

(3.VI) The functions f*(o,t,p,r) ave non-increasing with respect
to ’ the vaf.rla.bles D1y ooy Pr1y i1y ooy DNy 1y ooy Ty and
satisfy & uniform Hélder conditions in every bouded set G x H
(H < By, n)

(3.VII) If a function #(z, t) is uniformly Hélder continuous in @, then
also functions ¥*(, ¢; 2(-, 7)) have this property (with expo-
nents of Holder continuity which may be different from that
of the function z(z, t)).

(3.VIII) For any functions z(w, t) and Z(o, t), nniformly Hoélder contin-
uous in @, we have

|!pk(w: t;2(, t))"‘ !Pk(mi 5 z(, t))|g; < 4, |z—‘§|(o?y
A3 >0 being a constant.

(3.I1X) The functionals ¥*(w,t; 2(-, t)) are non-decreasing in the set
of all functions 2(w, t), regular in @.
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(3.X) There exist functions wuy (@, 1) = {uk(e, t)} and 'v., (=, 1) = {v¥(2, 1)},
regular and uniformly Holder continuous in @, such that

(3.8) LFug >fk(w5 1y Uy, !P(w, b5 up (e, t)))) (@, t) G\ Z,
(3.8) Lo} <fH(w, 1,0, Plw, 15000, 1)))y (@)@ T (k=1,..., N)
(3.7) uo(w, ) <‘7’ (2,2) <'v’;(m, 1), (@1)ek.

THEOREM 6. If assumptions (1.III), ( 21), (2.1I), (3.VI)-(3.X) are
satisfied, then problem (3.3), (3.4) has a mimimum solution u = {u"} and
a mapimum solution v = {v*}. Moreover, u, <u<v< v, and 4, veOl, (@) N
N Wy, (@) for some ¢, 0 <& <1,

Proof. In view of assumptions (3.VII), (3.VIII) there is a constant
N, >0 such that if a function 2(w,1) is uniformly Holder continuous
in @ and
izlo <NV, = luol + l’”o|€:
then
lgﬂc(w’ ¢ 2(y t)) Ifg llpk(‘”’ 15 ug(", t))l?"l'Anlz‘?'l"Aa lugl§ < N,.

Let us put
Hy ={(p"): 12l SNy I <N, (B=1,...,N)}.

By hypothesis, the functions f*(z, ¢, p, r) are uniformly Holder con-
tinuous (with some exponent a’) in. @x H,. Denote their Hélder coeffi-
cients by N,,. Hence, and from the monotonicity of f* it easily follows
that for any

(2, t)‘g: (py ), (P, T)eH,, (pyr) > (P, 7)
we have the inequalities
(3-8) fk(wy t) v, 'r)—fk(a” t: —p-’ F) < Ck(.'py ?) = Na |pk—ﬁklu’

(k =1,...,N),
where N, is a constant greater than max Ny,
k

Now, using Theorem 1, we construct a sequence of vector-functions
U (@) 1) = {1 (, 1)} O, 5( G) (k=1,...,N; m=1,2,...) by solving
successively the problems

(3.9) LFulb, = @, 1) g, (@, 15 Upyer (- 1))+ Gty Ums), (@, 1) GNZ,
(3.10) ul (@, 1) = ¢*(z, t)—y/m, (2,1)eX,

where # > 0 is such a constant (existing by (3.7)) that

(3.11)  uf(w, t)+9 < ¢*(®,1) (@,8)eX (k=1,.,., N).

2 — Annales Polonlci Mathematicl XXV
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Applying the method of induction, one can show that fork =1, ..., N;
m=1,2,... the following inequalities hold:

(3.12) uﬁt—l('”} 1) < '”'1’:1(”’ 1), (@ t)ea,
(3.13) ub (1,8) < vi(2, 1), (@,1)e@,

(3.14) Ltk > f* (m, by Uy (B, 15 1 (- t))), (@, 8) G\ 2.

Tndeed, let us take m = 1. Relation (3.12) follows, by Lemma 3,
from (3.9)-(3.11) and from the obvious inequality

Lruf >fk(m; 1y Uy, Yf(w, b3 (" t)))+ i (toy Up)y (0, e@\X

(resulting from (3.5)). Similarly, combining relations (3.7), (3.9)-(3.11)
with the inequality

Lk <fk(w: by Uy, Yj(w’“’“‘n(.';t)))‘l‘ Ce(Doy Up)y (a0, t)ea\z

(which is a congequence of (3.6) and (3.8)) we get (3.13). Finally, taking
advantage of (3.9), (3.12), (3.13) (for m = 1) and (3.8), we obtain (3.14).
The reasoning in the second step of induction is the same as thati for
m = 1.

It follows from inequalities (3.12), (3.13) that |u,,|5 < N,. Hence,
recalling the definition of the constant &, and the uniform continuity
of f¥ in Gx H,, we obtain

lfk(w) t’ UYm—-19 E‘-U(m) t; “m—l(') t)))l(g'i'lck(um? um—l)l(? S -N4
(k=1,...,N; m =1,2,...).

These inequalities and Lemma 2 applied to (3.9), (3.10) imply the
estimate

|“m|?+p<N5 (m=1,2,...).

By the above estimate and by (3.12), (3.13) the wequence {u,,} is
uniformly convergent to a function ueOf (@)

We shall show, a8 in the proof of Theorem 2, that the function u is
& golution of problem (3.3), (3.4). Indeed, the problem

(3.15) IFw* = f¥o, b, u, Wlay by (-, 1), (0, 0)e@N 2,
(3.16) wh(@, 1) = ¢" (2, 1), (2,1)eX (k =1, ..., N)

possesses, in virtue of Lemma 1, a unique solution weWY (@), 0 <& <1

being a constant. Subtracting (3.15), (3.16) from (3.9), (3.10) respectively,
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we receive
n
L* ('“’fn m —'wk) = fk(wi by U1, ![l(w’ b5 U1 (s t)))"' Co(my 1)+

+ %Ok(m; t)“fk(wr 1y Uy Yj(wa tu(, t)))) (z, 1)@\ Z,

ul (@, t)-[—%—w"(m, ) =0, (0)el (h=1,..,N;m=1,2,..).

Applying Lemma 2 to these relations and taking into congiderations
assumptions (3.VI), (3.VIII), we conclude, by a limit passage, that w = .

It is easy to check that the function % is a minimum solution of the
problem in question. Indeed, suppose a function % is a solution of this
problem. Hence, and by (3.14), we get @ > u,, in virtue of Lemma 3.
Thus w = u.

The maximum solution » of problem (3.3), (3.4) can be obtained
as a limit of the sequence {v,,}, where

Lk”’;z =fk(m3 b V1 T(‘”’ I t)))—'Ck('vmﬁ Up—)y (@ 1) e@NZ,
ok (2, 1) = ¢*(a, t)—|—%, (@,8)eX (h=1, .. N;m=1,2,..).

The further proceeding is the same as that for the minimum solution.

The inequality u,<u<v< v, I8 an immediate consequence of
the above considerations. This completes the proof of our theorem.

From the proof of Theorem 6 one can derive the following theorem
on weak inequalities.

THEOREM 7. Let the asswmptions of Theorem 6 be fulfilled and suppose
that a function w(m, 1) = {w*(x, 1)}, regular in G, satisfies the inequalities

LFw" ?'fk(m’ 1, w, '_-[f(m, tw(, t)))5 (@) eG\NZ (k =1,..,N),
<)
( w(z, ) <vot) (wxt)=ul>t), (@ t)el

Then w(z, 1) < v(z, 1) (w (@, 1) = u(s, 1)) in G, where v = {v*} (u = {u*})
s the maximum (minimum) solution of problem (3.3), (3.4).

Note, that Theorems ¢ and 7 constitute a generalization of Mlak’s
results [4].

4. Integro-differential equations. In this section we shall formnulate
corollaries to the theorems of the previous section for integro-differential
equations.

Denote by u*(w,t; D) (k =1,...,N) a non-negative measure (de-
pending on (z, t)e@d) defined on the o-field M of all Lebgsgue measurable
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subsets of the domain
Dy= UG, where @ = {x: (v,1)eG\8}.

i T
We make the following assumptions (¥ =1, ..., N):
(4I)  For any (z,1)<G the measures u*(s, t; Dy} are finite.

(4.I1) There exists a finite non-negative measure u (defined on M)
such that for any D eI and for any points P = (», t), P’ = (2, 1)
of the domain G we have

|u*(w, t; D)— u* (@', ¥'; D)| < (D) [d(P, P')]",
0 <y <1 being a constant.
(4.III) There is & positive constant A4, such that for any D eIt
" (@, t; D) < A;m(D),
where m(D) is the Lebesgue measure of D (®).
From assumptions (4.I), (4.II) it follows that for any (m,1)eF

pF (3, t; Dy) < Ay = R p(Dy)+ max inf u* (2,15 Dy),
1INV (2°,1)eld

where B denotes the diametr in the parabolic distance of the domain G.

THEOREM 8. If assumpiions (1.III), (2.I), (2.IT), (3.1), 3(.1T), (4.I)-
(4.I01) are satisfied and

K (a)NAg(A,+1)7 92 <1,

them Theorem 2 remains true for the problem
(41) TPt = f* (0,1, w, 0k, [w(y, Hult;dy)), (0 1)E\T,
Gy

(4.2) wh (2, 1) = ¢*(x, 1), (w,8)eZ” (B =1,..., ),
where df w(y, tyu(®, t; dy) is the system of integrals
)

f’wl(% )t (w, 15 dy), f’w (y, ) u™ (@, 25 dy).

The p‘roof. congists in applying Lemma 4 of paper [7] and Theoren 4.

Next, by Lemma 4 and by Theorem 0, we obtain

THEOREM 9. Let assumptions (1.11T), (2.1), (2.11), (3.VI), (L.1)- (4. TTT)
and (3.X) (with functionals replaced by integrals) be satisfied. Then Theorem 6

(°) If § is a cylindrical surface, then condition (4.III) is superfluous in all the
theorems of this section.
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remains valid for the problem
(4.3) LFw* = f* (m: 1, w, f’w(?/’ t)u(w, t; d?/))’ (v, 1) e@N\Z,
&7}
(4.4) wh(z, 1) = ¢ (2, 1), (2,0)eX (k=1,...,N).
Using Lemma 4 of [7] and Theorems B and 7 one can easily obtain
the following theorems:
TrrorEM 10. Under the assumptions of Theorem 8, if a function
w(w, 1) = {w(w, 1)}, regular in G~, satisfies the insqualities
Lk’wk(;/').f/‘ (ma ) w, wh, f'MJ(;lj, o) (0, t; dy))a (@, t)ﬁa&\zt (k=1,...,N),
< Gy
wi@, ) <ol 1) (W, )= u@, 1), (@ 1),
then w(w,t) <v(w, ) (w(o,t) = u(t)) tn G, where v(v,t) (u(x,t) s
the maximum (minimum) solution of problem (4.1), (4.2).

THROREM 11. We preserve tho assumptions of Theorem 9. Suppose
that o funotion w(w, 1) = {w" (m, 1)}, regular in G, fulfils the inequalities
L"fw"(>)f"(w, tow, [w(y, Dpm, dy), (@ 10@\E (k=1,..., ),

< &
w(m, 1) <oz, t) (w(wt) = u(@t), (@)X,

Then w(w,t) < v, 1) (Wl t)>u(, 1) in G v(v,1) (u(z,?) beitng
the maximum (minimum) solution of problem (4.3), (4.4).

We conclude this section by giving an example showing that the
agsumptions of Theorem 9 do not imply the uniqueness of problem (4.3),
(4.4). Moreover, the example shows that it can really happen that w(w, ?)
% v(m, 1)

BExAMriE. Let us write

™ T K1
G={(w,t): —g <P<5 0<t <T=—4—}.

Following Mlak [5] (comp. [6], p. 215) we congider the problem

/2

2 1 .
45) et — o~ (sin0),— w0, = g0, w)— — o e | wly, Ny,
—1/2
(2, 1) e G\X,
(4.6) w(m, 1) = cosw, (@,1)eX,

where

Veoste—2t —z if |2| < cosa,

Dy, 2) =
gme) =1 _, it |2| > cosa.
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Observe that all the assumptions of Theorem 9 are satisfied (in par-
ticular, we can pub 1o (@, 1) = — 6141 and vy(z, 1) = ¢t'—1), but there

are two different solutions w,(x,?) = cosz and w,(®, t) = coszcost of
problem (4.5), (4.6). Hence and by Theorem 9, this problem has a maxi-
mum solution #(z, {) and a minimum solution u(x, {) which are different
and, moreover,

(1]
(2]

(3]
(4]
(6]

(6]
[7]

— e 4L < u(w, 1) < coszeost < cosz < v(w, ) < 61— 1.,
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