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Duality, imprimitivity, reciprocity

by Krz2Ys8ZTOF MAURIN and LipiA MAURIN (Warsaw)

Abstract. Let G be a locally compact group, I" a subgroup of G, U an irreducible
projective representation (p.r.) of @; j a p.r. of I'; UJ.representation of G induced
by j. Let A(U, j) be the space of (U, j)-automorphic forms. Then there exists a Hil-
bert space isomorphism Lg(U, U;) ~ A(U, j). Several reciprocity theorem of Fro-
benius type are corollaries. Any system of imprimitivity (B, U) based on G/I" definés
a (U, j)-automorphic form.

Introduction. The chief problem in the theory of group represen-
tations is to determine the space Lg(U, U,) of operators intertwining
unitary representations (U, H) and (U,, H,) of a locally compact group &

Ly(U, Uy) = {T<L(H, H,): TU(g) = U.(9) T, g<G}.

The problem is most interesting when U, — (U7, HY) is the represen-
tation induced by a unitary representation (j, V) of a subgroup I' = G.
In the case of a finite group @ this problem was considered already by
the founder of the theory of group representations — Ferdinand Georg
Frobenius and was investigated by such masters of the theory as G. W.
Mackey, F. Bruhat, I. M. Gelfand (and his school), R. I. Blattner (Lie-
groups), Oldanski and many others.

K. Maurin and L. Maurin [6], [7] have given a complete characteri-
zation of the space Ly(U, U7) by means of s. ¢. (U, j)-automorphic forms.

As was recently remarked by Mackey [5], several problems in the
theory of theta-functions and automorphic forms could be considered
as a describing of the space Lyz(U, U7), where U and U’ are projective
representations and (U, H) is irreducible. Our chief result is the following:

DuArLitY THEOREM (Theorem 3.1). Let (U, H) be an trreducible o,-
representation and (§, V) a o-representation of I' = G. Then the Hilbert
space Lg(U, T?) is unilarily isomorphic to the space A (U, j) of (U, j)-auto-
morphic forms.

If we do not assume the irreducibility of (U, H), we obtain the follow-
ing result, which can be considered as a generalisation (and even a shar-
pened form) of an important theorem of Blattner [1].
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THEOREM 1.1. Let (U, H) bean arbitrary o,-representation and (3, V)
a o-representation of I' = G. Then there exwists an injection k: Ly(U, UY)
—-A (U, j).

We obtain the Blattner Theorem (which was inspired by F. Bruhat
[2]) if we take U = UM, where (M, H) is the representation induced by
a unitary (or o-) representation M of another subgroup I, of G.

Since our notion of (U, j)-automorphic form is valid for arbitrary
locally compact groups, it has been interesting to compare it with the
famous notion of a “System of imprimitivity” introduced and investigated
by G. W. Mackey. We prove in Section 3 (by a method which we owe to
N. Skovhus-Poulsen) Theorem 3.1, which asserts that any system of im-
primitivity defines a (U, j)-automorphic form.

In Section 4 we show that several reciprocity theorems proved in {7}
are valid also for o-representations. '

We are happy to express here our gratitude to Dr Nils Skovhus-
Poulsen for the manuscript of his very interesting talk on Mackey’s Im pri-
mitivity Theorem and to Dr A. Wawrzynezyk for many invaluable con-
versations on induced representations.

1. PRELIMINARIES

A. Rho-functions. Let G be a locally compact group with the lefi
invariant measure dg. Let I’ = G be a subgroup of G provided with the
left-invariant measure dy. The modular functions are denoted by 44
and 4. As is well known, on @ there exists a strictly positive continuous
function ¢ such that

Ar(y)

(1.1) elgy) = e

o(9), 9geG, yel'.

Such a function is called a rho-function.
We now fix a rho-function ¢ and let x be a (positive) quasi-invariant
measure on G/I" agsociated with ¢ and defined by

(1.2) [v(@elg)dg = [du(g) [v(gr)dy, veCy(@).
a r

Gir

B. Induced representations. (For the following cf. Mackey [5], Blattner
[1], Bruhat [2], Bourbaki, and the excellent monograph of G. Warner [8].)
Let (j, V) be a continuous unitary representation of I' in the Hilbert
space (V, {-|->). Denote by H’ the Hilbert space of (equivalence classes
of) functions f: G—V which are
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1° dg-measurable.

A 1/2
2 fien = (522 i), v, 9@,

3° [If(-)I? is locally integrable on G,

£ [ o) If(g)Rdp(g) =: Iflf; < oo,
Gir
5° U(g)f(z) :=flg~'a), g,aq.
Blattner [1] avoids the use of the quasi-invariant measure in the
following way : Write

(1.3) V(@) :i= [yl@y)dy, peCy(@).
r

Then y°¢C,(G/T"), and as was proved by Bruhat [2], 0o(@)>y—>v" Co(G/I)
is a continuous surjection. For any f,, f, satisfying 1°-~3° we have on G/I"
a complex Radon measure u, , defined by

(1.4) [ <Fgfelgdvigydg = [ *(@)dus, 1, (9)-
G Gir
Hence we have the important equations
(1.5) (filfe) gy = #5,5,(G[T),
(1.6) IfilE; = sup [ v(9)Ifulg)liydg.
o<vb<1 @

C. Intertwining operators. Let (U;, H,;), ¢ = 1,2, be unitary repre-
sentations of the group G. A map TeL(H,, H,) interwines (by definition)
U, and U, if

(1.7) TU,(9) = Uy(g)T, geG.

The space of intertwining operators is denoted by Ly(U,, U,). If

(U,, H,) is irreducible, then (as was remarked by Mackey) Lg(U,, U,}
has the natural Hilbert space structure

(1.8) (1317 : = (T} Ta9 ), llgll 2.

Since T T, commutes with (U(9)), 9@, by the Schur Lemma T; T,
= a-idy , where ae C. Plainly (T|T,) = a. Plainly

IT1l* = (T11T).

2. DUALITY THEOREM (D.T.) FOR AUTOMORPEIC FORMS

This section is the core of the paper. We give here a much strongér
version of our D.T. from K. Maurin-L. Maurin {6] and [7].
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The space ®. Let (U, H) be a unitary representation of G. Let &
be the linear spas of U(y)h:= [y(g9) U(g)h, where ypeCy(G), heH.
¢

We equip @ with the (natural) bornological topology in the following
way : for each compact K = @, denote by Cy(G, K) = {peCy(G): spt y = K}.
0o(G, K) is a Banach space with norm |[jy| = [yl = sup|p(@)|. Co(G)
= li_1>nC.,(G, K) is the inductive limit of Banach spaces C,(G, K). Denote
by @z = spas of {U(y)h, yeCy(G, K)heH} = Q£ (Cy(G, K)® H), where ®
denotes the projective tensor product and Qz(y®5) = Q(yRh) : = U(yp)h.

DEFINITION. The space @ is the inductive limit of Og:

® = imQg(Cy(G, K)® H) = lim &g,
— —_

where K runs through all compact subsets of G.

It is a bornological space as an inductive limit of normed spaces P
(the topology of @ is of course the inductive topology with respect to
(Qx, Co(G, K)®H)).

- LEMMA 2.1. @ c H i8 dense in H and the imbedding is continuous.

LEMMA 2.2, The restriction (U |D, D) of U to D i8 a continuous repre-
sentation of G in P.

LemMMA 2.3. For each sequence h, — h, in H

Up)h,—>U(p)k  in S.

LEMMA 2.4. Let (W, ||-||) be a normed space. Then the linear map L : &
—>W 18 continuous if and only if for any compact set K < @ there is a posi-
tive constant c(K) such that

ILU ()2l < e(K) Il bl for any yeCo(@, K), heH.

These Lemmas were (more or less) proved in [1].

ProPOSITION 2.1. Let TeLg(U, UF); then for each ¢ = U(yp)hed
the clement Ty cH’ has a continuous representative

(2.1) G>a— [p(t)(Th) (s 2)dteV .

Proof in the Appendix!
THEOREM 2.1. Let TeLg(U, U’). Define = np by

22 () :=(Tp)(e) = [Y TN, ¢ =TU(p)he®

{where the right-hand side is understood as the value of the continuous repre-
sentative of Te at e, and p*(1): = p(t ") Ag(t)™"). Then DPrp—7(p)eV
has the following properties:
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2(a) neL(D, V), i.e. 5 is continuous,
2(b) (U o) = e») ™ 2i(y)n(p), yel,

2(0) fq.w(')EHj’ where fq.w(g):=7](U(g)¢)‘
Proof. Since

(To)(g) = U (g7")(To)(e) = TU(g "Yple) = n(U(97 ")),
points (b) and (¢) follow from the definition of induced representation.

Tt suffices to prove (a). Let aeCy(@), 0 < a<1 and a =1 on spty*®
— support of ¢*

In(@lly < [lv*@IITh@Irdg = [lv*(@)la(g) ITh(g)l; dg
< 19"z fo ()2 1TH (91 dg)
< 18lalip ™l 21 ThlL gy < e(E)Wlallbllz by (1.6)

(0 := a?) and Lemma 2.4. OJ
COROLLARY 2.1. For @G unimodular

I (@)l < Ipll2 16l 1T 5

COROLLARY 2.2. For G unimodular, I' compact, 7 is continuous even
in the relative L2(Q)-topology on Cy(@).
Proof. Since 0<<6°<1

In(@)My < lIplee 1 Thl g < IT) vl Ikl

DerFinrrioNn 2.3. If (U, H) is irreducible, then the map #: P>V
which satisfies 2(a)-2(e) is called a (U, j)-automorphic form.

COROLLARY 2.4. If G/I' admits a finite invariant measure u and
dim H < oo, then 2(a) and 2(b) imply 2(e).

Proof. Since dimH < oo, & = H, we have

I (T o)l = [IIn(T @)l dn < cef 1T (9) i
G/r | '
< ep (@) |lpl2 < oo.

Since in the theory of automorphic functions the space G/I" is com-
pact (Gelfand—Piateckij, Sapiro, Olkanskij) or G/I" admits a finite invar-
iant measure (“modular funections”), the following two Corollaries are
of some interest:

CoRrROLLARY 2.3. If G/I' is compact, then from 2(b) follows 2(e).

Proof. We have to prove that, for each pe®, 4(U~'(-)¢p)eH'. But
it is obvious since

e() (T (gl eC(@/D).
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ProrosITION 2.2, If G/I" is compact or G/I' possesses a finite invar-
iant measure and dim H < oo, then each neL(®D, V) which is o~ j-covar-

iant (i.e. satisfies 2(b)) satisfies 2(c). Hence in these cases an automorphic
form is characterised by 2(a) and 2(b) only.

We have proved that any TeLg(U, U?) defines an automorphlc

form (Theorem 2.1). The duality theorem asserts that a (U, J )-auto-
morphic from defines an intertwining operator T,eL(U, U’); more pre-
cisely:

THEOREM 2.2. Let n be a (U, j)-automorphic form; then the map
[] 0
T,: O—H’, where T,p: = fpol*)
can be extended (uniquely) to T,eL(U, U%).

Theorems 2.1 and 2.2 give:

DuarLiTY THEOREM FOR AUTOMORPHIC FORMS (D.T.). If we provide

the space A(U,j) — of (U, j)-automorphic forms with the natural Hilbert
structure '

(119} 1= (ma(U C)) 192 (T () s 19172 = (Frpo | Frge) i 02,
then the Lg(U, U?) and A (U, j) are isomorphic as Hilbert spaces:
(Ty,| Top) = (n1lns)  for amy n;eA(T, j), i=1,2,
(nr,|m7,) = (T11Ty)  for any T;eLg(T, v?).
Remark. In the next section we shall extend these results to projec-

tive a-representations.

Such extension is necessary — as was remarked by Mackey [6] — to
embrace the classical automorphic forms and 6-functions.

We precede the proof of the Theorem 2.2 by several lemmas

0
LEMMA 2.5. Let 7 satisfy 2(a)-2(c); then T, = T,: —>H’ is sequential-
ly closed.

Proof. Let ¢,—~>0 in @ and T,p,—h in H’, n—>oco. Since (T,p,) is
a QOauchy sequence in H’, there exists a subsequence n,—>oco such that

(Toq),,k)(g) is convergent for almost all ge@ (it is the Riesz—Fischer theorem
for H proved e.g. in Blattner [1]). But

Topn,(9) = n(U(y)qo,,,,)—m for all g for n;—o0

(by the continuity of ). Hence k(g) = 0 for almost all geG: thus h = 0. O

LEMMA 2.6. Let weC,(G, K); then for any compact M < G the map
Ms3t—>UR)U(p)heDyr 18 continuous.

Proof. UR)U(yp)h = U(Lyp)h= Q@ (Lyy Qh)e Py . Since G2t+—Lyy
€Cy(@) is continuous, G>t—Q(L,y@h)ed is continuous.
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‘We recall a classical result as

LeMMA 2.7. Let B,, B, be Banach spaces and let T: B,—~ B, be closed
and defined on a dense linear subsel of B,. If f: G— B, i8 B,;-(Bochner)
u-integrable in B, and Tf is B,-Bochner u-integrable, then

T(ffau) = [ @Hau.

LEMMA 2.8. Let Top:=n(U(:)"¢). Then T,U(y)p = U (p)Typ
for any pe®, peCy(G).

Proof. Let ¢e®@r and yp<C, (G, ).

Since T,: ®— H’ is sequentially closed, T|®5: ®p—H’ is sequentially
closed for any compact B =« G. By Lemma 2.6, we can consider M >{

= U(t)peDyx (Banach space: completion of the normed space Pyg).
Denote by T, the closure of T,|® . Since y(-) U(-)p is continuous, it
is Bochner integrable and (-)T,U(:)p = 9(-) /()T is a Bochner-
integrable H’-valued function. Thus in virtue of Lemma 2.7 we have

T, U(y)p =T, [p(@®) UWgdt = [Ty(y() Ut)g)ds

= [v(OT Ut = [ (1) U ()T pdt
= U(y)Top. O
LeMmA 2.9. T, considered as a map from a dense subset  of the Hil-
bert space H into H’ is closable.

Proof. Let ¢,—0 in H and T, in H'.
By Lemma 2.3, U(y)eL(H, ?): U(yp)p,—0 in . But by Lemma 2.8

T, U(p)g, = U(9)Top,~>UV(p)v in B, n—>oo.

Hence, by the sequential closedness of T, : ®— H’ (Lemma 2.5), U’ (y)v = 0
for each peCy(G). Thus v = 0 (for p— &, U’ (p)v—>v).

LEMMA 2.10. Let T = T, be the H-space closure of T,. Then
(* TU(g)= U (9)T, g<G.
Thus by the theorem of v. Neumann and Najmark 1 is bounded and

defined on the whole H. Hence TeLg(U, U7).

Proof of (). Let heD(T), D(T) domain of 7.

Thus there exists a sequence ¢,¢® such that ¢,—h and Te, = T,¢,
—Th, n—oc.

Since U(g9)g,~U(g)k and TU(9)e, = ToU(9)p, = U (9) Topn—>
— U’ (g)Th, by the closedness of T' (the closure of T)) TU(¢)p,—~TU(g)h
we have

U'(g)Th = lim U7 (g)Tep, = VmT,U(g)g, = UmTU(g)p, = TU(g)h. O
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Proof of D. T. It suffices to check that thellinea,r maps ! : Lg(U, UY)
—~A(U, j), where IT : = 57, 57(p):=(Tp)(e) and k:A(T,j)~>Le(T, U,
kn = T,, where T,¢:=7n(U"*(-)¢) (given in the preceding Theorems),
satisty (lok)n =1, n€A(U, ), and (kol) T =T, TeLg(U, U7).

But this i3 immediate:

Uen(p) = niq(p) = knp(e) = (T,p)(e) = n(p) for every pe®,
(KT9)(9) = Tur(p)(9) =1T(U(g7")¢) = T(U(g~")g)(e)
= (T¢)(g) for all geG@ and @eP.

The isometry of k is almost obvious:

I@li2(Ty | T,) = a(@le) = (T5, T, 919) = (T @IT,,e)
=7 (T7' )10 (T (o) gy = (nal7ma) llpll?
= (f'u.w }fnz.w)Hj' 0

Remark. Our definition of (%,|7,) is a far-reaching generalization
of the scalar product introduced by Petersson in the early thirties.

3. EXTENSION OF D.T. FOR PROJECTIVE REPRESENTATIONS

Now we shall extend the results of Section 2 to projective o-repre-

sentations. Such a generalization is necessary for several applications
(cf. Mackey [5])

DEFINITION 3.1. A continuous mapping G3g+—> U(g)eL(H), where
U(g) are unitary U(e) = idg is a projective representation with multi-
plier ¢, or a o-representation if

(3.1) - U(91) U(gs) = (91, 92) U(92°92),
where ¢:@xG—>8 (8 = {2¢C:|2| = 1}) such that
(3.2) 0(g1y 92) 0(g192y 9s) = (g1, §292) 0(g2y 93),
(3.3) a(g,e) =o(e,g) =1.

. Induced o-representations. Let (j, V) be a o-representation of the
subgroup I' ¢ @, where ¢ satisfies (3.1)—(3.3). The space H’ of Section 1
is modified as follows:

DEeFINITION 3.2.

1° f: G~V are dg-measurable,

2° f(gy) = ()™ (¥) a(g, )f(9), geG, yeT,
3° If(*)I? is locally integrable on @,

4° [ o) If (9B du(g) =: IfIiy < oo,
aQ

5° Uif(a) = olg, g~ 2)f (g™ ).
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DErFinITION 3.3. Let (U, H) be a o,-irreducible representation of G
and let (j, V) be a o-represefitation of I. A mapping 7 : &V is called
a (U, j; g, o,)-automorphic form if

3(a) neL(P, V),

3(b) n(T(®)e) = e i) n(e),

3(c) (n(U(g™")o))e .

THEOREM 3.1. The Duality Theorem extends without any changes to
projective representations:

The spaces Lgy(U, U?) and A(U,j; 0, 0,) are isomorphio as Hilbert
spaces.

In order to see this we shall make some simple

Remarks. Let G°1 be a ¢,-extension of G: i.e. @°t = § X G and the
group operation is defined as follows:

(3.4) (215 91) (22, g2) : = (z1z2¢71(91’ gs)) 9192)-
Plainly
_ -1 _ 1 -1
(3.5) (Le) =1, (297" = (z—o_l(g, g“)’ g )

Following Mackey [5] we define (U° H) as a unita,ry,representé,tion
of G in H by

(3.6) U’(z, g) : = 2U (g).

The subsequent lemma shows that our space 95 is good for o,-repre-
sentations:

LeMMA 3.1. Let v,(2, g) := y(g), where peCy(G) (thus p.€ Co(GM)).
Put ¢ —fzdz, then

(3.7) U%(y,)h = cU(p)h,

(3.8) U(t)U(y) = U(Ly),

(3.9) G3t—>U(t)ped is continuous for ped.
(3.10) For each weCy(@), U(y)eL(H, D).

Proof in Appendix.
LEMMA 3.2. (o-representation (U, H) 1is drreducible) <((U° H) is
1rreducible).

Levma 3.3. If (U, H) is an irreducible projective representation of G
and (Uy, H,) any a-representation, then every closed densely defined inter-
twining map T : H—H, such that TU(g) = U,(g)T is bounded.
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Proof. Since 7T intertwines the irreducible unitary representation
U° of G°1 with U?, then by the v. Neumann—lfa,]ma,rk Theorem 7' is bounded.

Since all lemmas and propositions are valid for projective repre-
sentations (cf. Appendix), the Duality Theorem for (U, j; o, o,)-forms
is proved. [

4. AUTOMORPHIC FORMS AND SYSTEMS OF IMPRIMITIVITY (S.1.)

We recall

DeFINITION 4.1. Let P : Cy(G/I')—>L(H) be such a *-homomorphism
that

U(9)P(y°) U(g)™! = P(L,y").

Then the pair {P, U} is called a system of imprimitivity with base G/I".
In this section we prove the following

THEOREM 4.1. 1° Fach system of imprimitivity defmes an automorphic
form u by the formula

n(p) := [¢l, where [p]:= ¢+ Kerp,

B +) being a semi-scalar product on P given by

Blp, ) := lh:l(P(w”)qu), Kerf = {pe®: f(p, ) = 0}.

Proof 1°. (This construction we owe to Niels Skovhus-Poulsen; he
used it in his elegant proof of the imprimitivity theorem communicated
on the conference in Aarhus, May 1972: “Open House for Functional
Analysis”.)

Let (g, @) : = lim (P(y")p|@)x-

v
Plainly B(g, ¢) = 0 and g is hermitian on @ X @. Let P2 ¢p—~[¢p] = ¢+
+KerfeV,:= ®/Kerp be the natural projection and [¢,]|[@,])> :=
:= f(@;, p2). Then (V,, {-|->) is a pre-Hilbert space.
Plainly @sp—>7n(p):= [pleV, is linear and continuous. Since
e (7)B(p1y @2) = B(U(¥)91, Uy)ea),

Joeli=[e(y) U (y)p]

is a well-defined isometry on V,. But jo(y172) = jo(¥1) Jo(¥a)y Y1, Vael's

hence by closure we obtain a unitary representation 'y—->j°('y_) =:3(y)
(7, V) of the subgroup I’ in the Hilbert space (V, {-|->).
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Thus j(7)n(p) = e(») n(U(») 9
o> (P(¥")pig) = [B(U(g™ e, Ulg™)e)v(9)dy
(o]

= [la(U (g7 9)|v(g)dg,
G

and
Ifaollys := sup (P(¥")plg) = lgl.
<y <1

Thus ¢—[¢] is a (U, j)-automorphic form. [

5. RECIPROCITY THEOREMS

In this section wé formulate several reciprocity theorem of the Fro-
benius-Bruhat type. They are immediate generalizations of the theorems
proved in Part IT of G.D.T., for unitary representations (U, H) and (j, V).
Since these proofs use only the Duality Theorem, its corollaries from
Section 3 and Proposition 2.2, they go over without any change to pro-
jective o-representations and we formulate the results only.

THEOREM 5.1. If G/I" is compact or if G/I" has a finite invariant mea-
sure and dimH < oo and (U, H) and (j, V) are projective representations,
then there holds the Frobenius reciprocity

(F.R) Lg(U, U') = Ly (j,, UIT),

where j,(y) : = o(¥)""j(y).

THEOREM 5.2. Let G be unimodular and o-compact and let the projec-
tive representation U be irreducible and square-integrable, i.e. (U(v)hlk)
e L2(@) for any h, k. Then if I is compact we have the isometric isomorphism

(5.1) Lg(U, U7) = (H—8)r(j, U,
where the right-hand side of (5.1) denotes the space of Hilbert—Schmidt maps:

H—V interwining for U|I' and j. This space is provided with the Hilbert—
Schmidt scalar product.

APPENDIX

Proofs of lemmas. We shall now give the proof of a generalized
version of Proposition 2.1 (for o-representations). Let (U, H) be a pro-
jective representation of @, and (U’, H’) — a representation induced
by the o-representation (j, V) of the subgroup I' = G. If intertwines U
and U7, then the continuous function

(A.1) fl@):= [p@)o(t, 17 a) Th(t @) ds
G

is a representative of T U (y) h, where p e Cy(G), he H.
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The proof consists of two points:
1° f(-) — defined by (A.l) is an element of HY,

2° f = U/ (y)Th.
Ad 1°: Plainly f is locally integrable. Take 0 < 0¢Co(@), 0 < 0° < 1,

I:=|[6(9)<f(9)I £(g)>v g
=[fo@{fv@ ot 1) Th(t™ g) dtif(g) dg|

< [le@)1[f6(g)(t, 17 9) Th (1™ 9)1f(9) g dt.

(We can interchange the integrations (Tonelli!) since the integrand
has a compact support.) But

|[0(g)a(t, 17 g Th (17 ) 1F(9)> v ]
=|[6(9)fo(t, T < Th(7 9) 19 (s) o (s, s 9) Th(s ™ g)> ds dy|
< [lv ()1 f6(9)|a(t 17 g)lla(s, s 9)I<Th(2 )| Th(s™ g))|dg ds
= [19 ()1 6(9)|<T? (2) Th(9)] U (s) Th(g))| dg ds
< [lp@)f 0@ T () Th(g)liy T (5) Th(g)lly dg ds
< [lw@1([6(@ 177 () Th (9 dg)"* ([ 6(9)1T (s) T ()1 dg) ™ ds
< [ 19N 10°0 I T7 (4) Thil,5 07 (8) Thil gy ds < [plly 16°0o 1 TRIE.
Hence finally

I< [1y(0)1 @9l 16%1 I TRIE; = IpIE1ThIE; 6]
But

2 2
Il = sup Gf 0(9)11f(9)y dg

2 2 b _ 2 2
<o :gzl(llwlh ITRI;116°lee) = llwily ITRIE; < oco.

Hence feH'.
Ad 2°. It suffices to prove the identity
(Fl) g = (07 (v)Th|Y),; for 1 from a total set in HY.

But we have a classical
SUBLEMMA (Mackey, cf. Bruhat [2] or G. Warner [8]).
{t:U@) = [ o) 6(ay)a(@,7)i(y)ody, 00(@), e V],
r

is total in H’ and each | has a compact support modulo I' (i.e. if § = sptl,
then n(8) < K is a compact subset of G[I', where n(zx):= aI).
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Proof of 2°. Write F(z(z) = (@) (U (t)Th(2)|l(x))>y. But
spt F, c K since sptF; < sptl. Thus

(t, &) > p(t) o (@) T (1) Th(w) | 1(2))y

is a measurable function with support spty x K (a compact subset in
G x (@/I")). Hence we can apply the Tonelli Theorem:

= [ e(@ (@) 1Ua)) du(@)

Gjr

= [e@)™ [w(®)<o(t, 17 2) Th(t7 a)|L(®)) didp ()
@r G

= [y [e@) ot 1 a)<Th(1 2) | Ua)) du (4)) dt
q G/Ir

= v (T () Th1Y, 8 = (T (v)Th1Y) . O
(2

Lemma A.1 (Skovhus—Poulsen). Let {P, U} be an S.I. based on G/I'
and let for h, keH, v, ; be Radon masure on G such that

(P(v*) k1K) = [ p(9)dvsnlg)-
:
If h, ke D, then there exisis a continuous function my, ,(+) on G such thai

(A.2) dvy 1 (g9) = My, (g)dg.

If h = U(p)a, k = U(8)y, v, 0¢Cy(@), @, y<H, then there exists a mea-
sure u (depending on x,y) on G X G such that

my(9) = [ v(l9)8(cg)du(b, o).
Gx@G

Remark. The sesquilinear form B(-, -) in Theorem 4.1 is given by:
B(hy k) : = my 1 (€), by keD.
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