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On some class of midconvex functions

by Kazimierz Nikobem (Bielsko-Biatla)

Abstract. The class of functions having the representation f = F+ A, where F is convex
and 4 is additive. is considered. Numerous properties and conditions characterizing such
functions are given.

I. Let R denote the real line and assume that D is a convex subset
of the space R". A function f: D — R is said to be convex iff f(tx+(1—1)y)
tf(x)+(1—1)f(y) for all x, yeD and r€[0. 1]; it is said to be midconvex
(or convex in the sense of Jensen) iff f(3(x+1)) < 3(f(x)+f(y) for all
x, yeD. We say that a function A: R" = R is additive iff it satisfies the
Cauchy functional equation A(x+y) = A(x)+ A(y) for all x, y eR™

Assume that D is a fixed open convex subset of R" and consider the
following class of functions:

# := \f: D > R: f has the representation /' = F+ A4,
where F: D =R is convex and A: R" = R is additive].

In this paper, we give many properties and conditions characterizing [unc-
tions belonging to this class.

First’ notice that all convex functions defined on D belong to .# and all
functions belonging to .# are midconvex. Moreover, f+g€.# and ¢f €%
whenever f, g€e.# and ¢ > 0. So we have the following.

PrOPOSITION 1. The cluss .# is a cone in the space of all functions from D
into R. It contains the class of all convex functions defined on D and is
contained in the class of all midconvex functions defined on D.

ProposiTiON 2. If a function f: D — R belongs to the class #. then it is
either continuous on D or its graph is dense in D xR.

Proof. This follows immediately from the fact that discontinuous
additive functions A4: R" — R have their graphs dense in R"*! (cf. [4]. p. 277).
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Exampre 1. Assume that «: R" = R is a discontinuous additive [unction
and ¢: R — R is a convex. non-constant, bounded below function. Then the
function f:= g o« is midconvex, discontinuous and bounded below. So, in
vicw of Proposition 2, it does not belong to the class .#.

The next example shows that there exist midconvex functions f: D — R,
with graphs dense in D xR, which do not belong to .#.

Examrre 2. Assume that a: R — R is a discontinuous additive function
and put f(x):=a(x)+exp(a(x)). xeR. Of course, f is midconvex and f¢ .7
(cf. Example 1 and Proposition 1). Fix a point (x,, ¥o) €R? and a number
¢ > 0. Since the function 1 —=t+expr maps R onto R, there exists a point
1o € R such that 1, +expt, = vy. By continuity of the function exp there exists
a 0 €(0, 3¢) such that lexpr—expfty| < %e flor all 1 €(tqg—d, 1,+3). Since the
graph of « is dense in R* we infer that a(x)e (t,—9, t,+9) for some
XE(N,—&. Xg+&). Then

lvo—a(x)—expla(x) < [yo—to—expiol+to—a(x)]+|expro —exp(a(x))
<0+d0+4e <.

Thus, (x, f(x) €(xy—£, Xg+£) X(yo—¢£, Vo+2), which proves that the graph of
/is dense in R

2. In the next theorem we shall give a few conditions characterizing
midconvex [unctions belonging to the class .#. Let us begin with some
definitions. A function A: R" =R is affine iff it is the sum of an additive
function and a constant. A function f: D — R is said to be concave (midcon-
cave) iff the function —f is convex (midconvex). It is said to be locally
approximately midconcave iff for every xo €D and for every ¢ > 0 there exists
an r > 0 such that the open ball B(x,, r) is included in D and f(3(x+))
= 3(f(x)+ f(y))—e for all x.yeB(x,, r). We say that the Jensen difference of
a function f: D =R is bounded on a ball B < D iff there exists a constant
M > 0 such that |f(3(x+y))—3(/(x)+ [/ (3)] < M for all x, y €B. Finally, let
us recall the following definition of the class ./ of sets introduced by Ger
and Kuczma [1]: a set T< R" belongs to ./ iff every midconvex function
defined on a convex open set D containing T and bounded above on T is
continuous in D. It 1s worth to remind that sets having positive inner
Lebesgue measure as well as second category sets with the Baire property
belong to the class /. However, there exist nowhere dense sets of the
Lebesgue measure zero which also belong to 7 (cf. [4], p. 210).

Tieorem 1. Let f: D =R be a midconvex function. Then the following
conditions are equivalent:

(1) f is locally upper bounded at each point x €D by an affine function,

(2) [ is locally upper bounded at each point x€D\ 0! by an additive
function:
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(3) f is upper bounded on « set T< D belonging to the class / by
a midconvex function g: D - R,

(4) [ is the sum of a continuous function and a midconcave function:

(5) f is locally approximately midconcave on D:

(6) the Jensen difference of [ is bounded on an open bull B < D:

(7) feF.

Proof. (1)=(2). Fix a point y =(y, ..., y,) €D 0!. By the assumption
there exist a neighbourhood U < D of y, an additive function a¢: R" = R and
a constant ¢ €R such that f(x) <a(x)+c¢ [or all xeU. Since v # 0. we have
y; # 0 for some iell, ..., n}. Assume, for example, that y; > 0 and take an
¢ €(0, y;) such that the ball B(y, ¢) < U. Consider the [unction 4: R" =R
defined by

. |C| —_ n
Ax)i=——Xx;, x=(xq,....X,)ER".
Yi—¢
This function is additive and A (x) > |c| for all x€B(y, ¢) because [or such
x we have x; > y;—e¢. Hence f(x) < a(x)+ A(x), x€B(y, ¢), and the function
u+ A is additive. In the case where y;, <0 the proof is analogous.

The implication (2) =(3) is trivial.

(3)=(4). Put @(x):= f(x)—g(x), xeD. Clearly, ¢ 1s midconvex and
non-negative on T. Since T €.</, we infer that ¢ is continuous. So f = ¢ +g¢
1s of the claimed form.

In order to prove that (4) implies (5) fix a point x,€D and a positive
number ¢. By the continuity of ¢ there exists a ball B(x,, d) = D such that
| (x)— @ (xo)l <5e for each x €B(xq, 4). Then for all x, y €B(x,, ) we have

‘ ()+ f(y xX)+ oy X)+g(y
/ (.5(\(_*_\,))_&)?,0_) = q)(%(xﬁ-y))— if’"‘)z_‘w +g (_é.(x+}~)) - ‘L(Y_, ,?EQ
X)+ ()
> ¢(5(x+\))__"3(l2i[L

> @(xg)—3e—3(@(xo)+ 36+ @(xp)+5e) = —e,

which was to be proved.

The implication (5)=(6) is obvious.

(6) = (7). Assume that |f(3(x+»)—=3(/(x)+ /()| <M for all x, yeB
and some M > 0. By a theorem of Z. Kominek on the local stability of the
Jensen functional equation (cl. {3]) there exist a function g: B — R salisfying
the Jensen equation and a constant M, > 0 such that | f(x)—-g(x)| < M, for
all x eB. It is well known that g must be of the form g = A+ ¢, where 4: R"
— R is an additive function and ¢ is a real constant. Let F(x):= f(X)
—A(x), xeD. Then F i1s midconvex and F(x)= f(x)—g(x)+c< M,
+c¢, x€B, ie., F is upper bounded on B. Hence, in view of a theorem of
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Bernstein—Doetsch (cf. [4], [9]), F 1s continuous and so it is convex. Thus f
= F+ A belongs to the class #.

The implication (7)=(1) 1s evident. In such a way the proof 1s
finished.

Remark. The implication (3)=(7) of Theorem 1 is connected with
some problem posed by the author and has been proved independently by
C. T. Ng [6]. Kominek [3] and the author [8]. The proof presented here
bases on the method used in [3].

3o Let x=(xy,.... %), Y=01s..., V) ER™ (m = 2). We say that x is
majorized by y, and write x <y, if (x;, ..., X =15 ..., V) P for some
double stochastic m x m matric P. A function ¢: S — R defined on a subset S
of R™ is said to be Schur-convex on S iff ¢(x) < @(y) for all x, yeS, x<y
(cf. [5], p. 62). It is known that if f: D - R is a convex function, then for
every kK > 2 the function ¢: D¥ » R defined by

(X1 .o X)i=f(x)+ ...+ fx)

is Schur-convex: however, the sum may be Schur-convex also for non-convex
functions. Recently C. T. Ng [7] has proved that a flunction f generates
Schur-convex sums if and only if it belongs to the class .#. The main part
of the proof of this theorem consisted in showing (by use of a theorem of
De Bruijn and Kemperman [2]) that functions satisfying the functional
inequality

Jlx+(I=0y)+ f((1=0x+10) < f(X)+ f (V)

belong to the class .#. In the next theorem we shall give another proofl
of this fact basing on the implication (3) = (7) of Theorem 1. We shall also
give some connection with quasi-convex [unctions. Recall that a function
f: D —R. where D is a convex subset of R", is said to be quasi-convex iflf

S(tx+(1—0)y) < max | f(x). f ()}

for all x, yeD and t €[0, 1] (cl. [9]. p. 228). Of course every convex function
IS quasi-convex but quasi-convex [unctions need not be even midconvex.
However, we have the flollowing

ProprosiTION 3. 4 function f: D — R defined on a convex open subset D of
R" is convex if and only if it is midconvex and quasi-convex.

Proof. Assume that fis midconvex and quasi-convex and consider the

level sets L,:= \xeD: f{x)<n], neN. Since |J L,= D, there exists an
neN
meN such that L, is of the second category. By the quasi-convexity the set

L,, is convex and so it has the Baire property. Hence L, belongs to the class
«/. Thus f being midconvex and upper bounded on L, is convex. The
converse implication is trivial. p



Class of midconvex functions 149

If a function f: D — R is midconvex and instead of the quasi-convexity
it satisfies a somewhat weaker condition, then it belongs to the class .#.
Namely, we have the following

TueoreM 2. Let f: D =R be a function defined on a non-empty open
convex subset of R". Then the following statements are equivalent:
(1) f satisfies the functional inequality

flex+(1=0))+ (1= x+1y) < S+ (V)

for all x, yeD and t €[00, 1];
(2) 1 is midconvex and satisfies the functional inequality

Sex+(=0)y)+ (1= x+1y) < 2max | f(x), f (1)}

for all x, yeD and t €[0, 1];
(3) feF.

Proof. The implication (1)=(2) is obvious.

(2)=>(3). Fix a point peD and take an & > 0 such that the closed ball
B(p. ¢) is included in D. Assume that {e,, ..., e,! is the standard ortonormal
base in R". Denote by L; the line segment joining the points a; := p+¢e; and
b;:=p—ee, i=1,...,n For every xelL; there exists a t €[0, 1] such that
x =tag;+(1=1)b;. Then 2p—x =(1—t)a;+tb;. Hence, using the assumed
inequality, we obtain

X))+ f(2p—x) < 2max | f(a), [ (b)) for all xeL;.

Put M := max {f(ay), ..., [f(a,). f(by), ..., f(b,)} and consider the function
g: B(p,&) @R defined by g(x):= —f(2p—x), xeB(p,¢). In view of the
midconvexity of /' 'we infer that g is midconcave. Moreover, on account of the
above inequality, we have

fx)<gx)+2M for all xe&) L.

i=1

Since f is midconvex and g is midconcave, we have the same estimation on
the set

X{+...+x "
n i=1 '

This set belongs to the class ./ because its interior is non-empty. Therefore,
by Theorem 1, there exist an additive function A: R" - R and a convex
function F;: B(p, ¢) = R such that f = A+ F, on B(p, ¢). Put F(x):= f(x)
—A(x), xeD. Then F is midconvex and F = F, on B(p,¢), so by the
theorem of Bernstein-Doetsch F is convex. Thus f = F+ A€ #.

The implication (3) =(1) is evident. This completes. the proof. o
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4. In this section we shall give another application of Theorem 1. Let us
begin with some preliminaries. For a given set B< R""' (= R"xR) we
denote by n(B) its projection on the space R" and by B,, x eR", its x-section
(ie., B,:= {yeR: (x, y)eB!). Assume that B is a convex subset of R"*! and
A: R" =R is an additive function and consider the set

C:= U (Ix} x(B.+A(x)).
xéu(B)
One can easily check that C is midconvex (i.e., 3(c;+c;)€C whenever
¢y, ¢, €C), n(C) 1s convex and C, is convex for each xen(C). It seems
interesting to ask if for every set C < R**! having the above properties there
exists an additive function 4: R" — R such that the corresponding set
B:= {J (ix) x(Cy—A4(x))
xen(C)
is convex. Without any further assumptions such a question has negative
answer (see Example 3). However, if n(C) is open and all the sections

C,, xen(C), are compact, the answer is positive (the convexity of C, need
not be assumed then). Namely, we have the following

THEOREM 3. Assume that C is a midconvex subset of R"*' (n > 1). If its
projection n(C) on the space R" is convex and open and for every x €emn(C) the
section C, is compact, then there exists an additive function A: R" = R such
that the set B= | (i{x)x(Cy—A(x))) is convex.

xen(C)

Proof. Let us notice first that sections C, are convex because they are
closed and, in view of the midconvexity of C, 3(C,+ C,) = C,. Put D:= n(C)
and consider the functions f, g: D = R defined by

f(x):=infC, and g(x):=supC,

for all xeD. By the midconvexity of C it follows that f is midconvex and g is
midconcave. Moreover, [ < g on D. Therefore, in virtue of Theorem 1, there
exist an additive function A: R* —» R and a convex function F: D — R such
that f = A+ F on D. The function G := g— A defined on D is then concave
because it is midconcave and locally lower bounded (G > F on D). Now,
using the fact that C, = [f(x), g(x)], x€eD, we obtain

B={J (Ix} x(C,—A)) = U (Ix} x[F(x), G(x)]).

xeD xeD

This shows that the set B is convex. o

ExampLe 3. Consider the set C:= {(x, y)eR?*: y > |a(x)|}, where
a: R—R is a discontinuous additive function. This set is midconvex, its
projection on the first axis 7(C) = R is convex and open and all the sections
C,.. xeR, are convex. However, there is no additive function A: R — R such
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that the set B = ) ({x} x(Cx—A(x))) is convex (cf. Example 1). Analogous

xeR

properties has the set C:= R x(0, 1) u @ x {0}, where Q denotes the set of
all rationals.
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