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Generalized Fredholm eigenvalues of a Jordan curve

by JAN G. Krzyz (Lublin)

Franciszek Leja in memoriam

Abstract. The aim of this paper is to give a definition of Fredholm eigenvalues of a Jordan
curve I' without any reference to the Neumann-Poincaré kernel and without any regularity
assumptions on I. To this end we introduce conjugate holomorphic eigenfunctions of I
(abbreviated: CHE), i.e. functions holomorphic in complementary domains of I" whose boundary
values on I satisfy relation (2.6). The real parameter A in (2.6) has most of the familiar properties
of classical Fredholm eigenvalues of I'.

1. Introduction. Let I be a Jordan curve in the finite plane C and let D,
D*>00, be its complementary domains. Many important problems in
conformal mapping and the potential theory (e.g. the solution of the interior
and the exterior Dirichlet, or Neumann problem, conformal mapping of D,
or D* onto the unit disk 4) can be reduced to the solution of a linear
integral equation of Fredholm type with the Neumann-Poincaré kernel:

1 ¢
(1.1) k(, )= —Egn—cloglﬁ—tl, {, tel,

or its transposition. Here d/on, denotes the derivative along the interior
normal of I' at ¢ For details see [2], [5], [12], [13]. If I'eC? and x(p)
denotes the curvature of I' at teI', then putting 2rk(t, t) = »(t) we obtain a
kernel continuously differentiable w.r.t. the arc length s on I'. The
eigenvalues of k, i.e,, the real numbers 4 such that the homogeneous integral
equation

(1.2) )= A{ k@ Op@ds, tel,
r

has a non-trivial real-valued solution y, are called Fredholm eigenvalues of I
The smallest positive Fredholm eigenvalue A, of I' is of particular interest
since it determines the rate of convergence of the Neumann series for the
kernel k.

If I' is a quasicircle, ie, if I' admits a K-quasiconformal (abbreviated:
K-qc) reflection (for the definition of K-qc reflection and properties of
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quasicircles cf. [10], [3]), then 4o > (K + 1)K — 1), as pointed out by Ahlfors
[1]. Some recent papers exhibit another interesting connection between
Fredholm eigenvalues and qc mappings: In some extremal problems
involving conformal mappings with qc extension it is rather the smallest
positive Fredholm eigenvalue 4, than the maximal dilatation that appears in
the extremal case, cf. [9], [15].

In his seminal paper on Fredholm eigenvalues [14] Schiffer was able to
prove many interesting properties of Fredholm eigenvalues of a Jordan curve
I' under the assumption I'e C3. This paper aims at giving a definition of
Fredholm eigenvalues without any reference to the kernel (1.1) and without
any regularity assumptions on I'. To this end we introduce the notion of
conjugate holomorphic eigenfunctions of I" (abbreviated: CHE), i.e., a pair f,
F of functions holomorphic in D and D*u {w}, resp., whose boundary
values on I satisfy relation (2.6) and we call the corresponding real number A
in (2.6) a Fredholm eigenvalue of I'. Under some additional assumptions on f
and F we are able to show that the spectrum A(I), ie., the set of all
Fredholm eigenvalues of I" has all the familiar properties of the spectrum in
the classical sense. Moreover, if I'eC® and F(w) =0, a corresponding
eigenvalue is also a Fredholm eigenvalue in the classical sense.

The results of this paper were presented at the Oberwolfach Conference
on Function Theory on February 15, 1984. The author wishes to thank
Professor Kilhnau for discussions and critical remarks.

2. Conjugate holomorphic eigenfunctions. In this section we shall derive
some characteristic properties of classical Fredholm eigenvalues which will
serve as a basis for their generalization. Let I' be a Jordan curve of the class
C3. If ©(¢): T - R is real-valued and continuously differentiable w.r.t the arc
length s on I' then the integral

*f’dﬁ L j +(¢)d; log (¢~ 2)
—2Z Tt .

r r

(2.1) 1) =+ j

™

represents in the complementary sets D, D*> o of I' holomorphic functions
f, F which may be called conjugate holomorphic potentials of double layer
with density 7. In fact, ReI(z) is the logarithmic potential of double layer
with density 7 as generated by the kernel (1.1), ie,

(2.2) Rel(z) = —l jr(é)-a—loglé—zlds, ze C\T.
T 3n¢
r
If we put
(2.3) p-v.I(t) = a(t)+if (),

where p.v. denotes the principal value of integral (2.1) at the point te I, then
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a+if is continuous on I' and by Privalov’s theorem on Cauchy type

integrals [4] both f and F have continuous extensions on D and D*, resp,
which satisfy

24) [ =a@+1()+if(&), FO)=a)-1(O)+ip(), <Lel.

Following Schiffer [14] we may consider the double layer potentials
with density 7 = Ay, where u is an eigenfunction associated with the
eigenvalue A. For any non-trivial solution u of (1.2) u(&(s)) is a finite linear
combination of D(s, s;; ), where D(s, s’; 1) is Fredholm’s first minor; cf.
[11], p. 43 and [S], p. 235. Therefore u(£(s)) is continuously differentiable
w.r.t. s. Moreover,

Repv.1(t) = [ 1(Dk(¢, ds = 1; 1Ok (S, )ds = u(r)
r

so that

(2.5) - Py I =p(Q)+ivE),  cel
In view of (2.3) and (2.5) equations (2.4) take the form

(2.6) FO=00+D)pu@@)+iv(©), FE)=Q0-p)+iv(),

where u, v are real-valued and continuous on I'. Relations (2.6) can be
written in the following concise form

(27) f@Q)=LoF(§), F(&)=Iof(),

where
28 Lw=(01-2)"'w+iw), W =0+ (w=—iw) =L 1 (w).
From (2.6) we obtain

(29) FO-FEOUL O+F()]=4=const, (lerl.

Conversely, if f, F are holomorphic and non-constant in D, D*, resp.,
and have continuous extensions to the closure of respective domains such
that (2.6) holds for some real A and F(o0)=0, then 4 is a Fredholm
eigenvalue of a sufficiently smooth I'. In fact, both g and A can be recovered
from the boundary values f(£), F(£) by means of (2.6) and (2.9) and then
formula (2.1) with 7 = Au determines f and F. Now, it is easily verified that
(1.2) holds so that 4 is a Fredholm eigenvalue of I[. This characterization of
Fredholm eigenvalues is also implicitly contained in Theorem 5 in [7].

Therefore holomorphic functions f, F whose boundary values satisfy (2.6)
may be used in defining Fredholm eigenvalues of a Jordan curve I' in the
following way.

DEerFINITION 1. We call (f, F) a pair of conjugate Aholomorphic eigen-
Junctions (abbreviated: CHE) of a Jordan curve I' in C if f and F are non-



160 J. G. Krzyz

constant functions holomorphic in the domains D and D* u{(o0), resp., that
satisfy the following conditions.

(i) Both f and F have extensions to the closures of respective domains
which are continuous in the spherical metric and satisfy the boundary
relation (2.7) on I

(ii) If h and h* map conformally the unit disk 4 onto D and D*, resp.,
then both foh and Foh* belong to H!(4).

(iii) For any we 4 there exists a neighbourhood N, of w such that
both foh and Foh* are univalent in N, n 4.

DeriNiTiON 2. If the functions f, F satisfy the assumptions of Definition
1, then the real constant A in (2.9) and the real-valued function

(2.10) W& =[S (O+F©)], (&er,

are called Fredholm eigenvalue and a Fredholm eigenfunction of I' associated
with 4, resp.

Note that no regularity conditions are imposed on I' in the above stated
definitions. In what follows we shall use the term classical Fredholm
eigenvalues, whenever Fredholm eigenvalues in the usual sense appear. If
F(o0) =0 and I is sufficiently smooth, then A satisfying the conditions of
Definition 2 is a classical Fredholm eigenvalue of I', as pointed out above.

Assumption (i) was suggested by the classical case. Assumption (ii)
enables us to determine f and F in a unique manner from their boundary
values. Assumption (ii) was suggested by the fact that it holds in all cases
where the eigenvalues are known. Moreover, it is ‘useful in proving various
properties of spectrum A (I') as known from the classical case. In particular it
implies finite valence of CHE. The rejection of A =1 from A(I'), as well as
the absence of the condition F(o0) = 0 in our definition may be considered
even as an advantage since Schiffer achieved in [14] the same by
investigating the derivatives of CHE rather than CHE themselves. This
approach results in the symmetry of A(I') and its invariance under Moebius
transformations.

3. Properties of generalized Fredholm eigenvalues. In what follows we
denote by A(I) the spectrum of a Jordan curve T, ie., the set of its all
Fredholm eigenvalues. The references that follow a property discussed below
are related to the classical case.

I. There is no Jordan curve with Fredholm eigenvalues +1.

If A =1, then Re Foh* = 0 on 04 and by (ii) this also holds in 4. Hence
ReF =0 in D* and consequently F = const contrary to Definition 1. The
case A = —1 can be treated analogously. Thus our definition eliminates the
eigenvalue 4 =1 known from the classical theory.

II. If AeA(), then —Ae A(I).



Generalized Fredholm eigenvalues 161

Suppose f, F are CHE associated with the eigenvalue A. It follows from
(2.6) that f{ = —i(1-A)f, F; = —i(1+A)F are CHE associated with the
eigenvalue —A.

III. All Ae A(T) satisfy |4] > 1.

Suppose that A, —1 <4 <1, belongs to A(I') and f, F are CHE
associated with A. By assumption (iii) in Definition 1 we may apply the
argument principle due to its topological character. For any wef (D) not on
f(I) the index n(f (I), w) is positive. Since F (£) = lof (¢) and the Jacobian of
l is positive for |4 < 1, the index n(F(—T), w) is negative at we lof (D) not
on F(I') which is impossible in absence of poles.

IV.If T is a Moebius transformation and the Jordan curves I,
I', = T(I') are both situated in the finite plane, then A(I') = A(I",); cf. [14],
p. 1195.

Let f, F be CHE associated with Ae A(I'). If the inside domains of I" and
I'y correspond under 7T, then obviously f; = foT~!, F;, = FoT ! are CHE of
I'y associated with A. If T maps the inside of I" onto the outside of I'y, then
fi =FoT™ !, F, =foT~! are CHE of I', associated with —A. Hence A(I)
= A(I'y), in view of 1L

V. If A>1 and one of the Dirichlet integrals ({[f% [f|F? is finite,

D D

so 1s the other one and we have
(3.1) A=DfIf P =G+ D [[IF)?;
D D*

of. [14], p. 1193.

The functions f, F map simply connected domains D, D* onto the
Riemann surfaces S, S* over the w-plane. Relation (2.7) induces a
homeomorphic correspondence between their boundary curves. The affine
mapping | carries S onto a homeomorphic Riemann surface § whose
projection -on the w-plane, as well as the boundary curve, are the same as
those of S*, in view of (2.7). By the argument principle each point w of the
projection has the same number of preimages in both § and S*, if possible
branch points are counted with due multiplicity. Thus the areas of § and $*
are equal. Since S arises from S by the affine mapping / with the Jacobian
J, =1 =41+ A), we have

IS| = (A=DAA+1)(S] =|S*, ie, (A—1)|S|=(A+1)|S¥

which proves (3.1).

The proof of equality (3.1) given in [14] for the classical case was based
on the isometry property of Hilbert transform in I2,

VL. If I' admits a K-qc reflection and CHE f, F with finite Dirichlet
integrals are associated with a positive ie A(I'), then

(3.2) AZ(K+1)AK-1); cf [1]
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The functions v=Imf, V=ImF are harmonic in complementary
quasidisks D, D* and have equal continuous boundary values on their
common boundary [I. Hence their Dirichlet integrals satisfy:

K™ ' ¢[v]1 < 2[V], cf. [1], or [3]), p. 46. However, 7 [v] = {{|f1%, #[V]
D
=|f |F'|* and this gives in view of (3.1): K~ ! <(A—1)/(~+1). This implies
D"
(3.2).
VII. If CHE f, F associated with a positive Fredholm eigenvalue

Ae A(I') are locally univalent in D and D*, resp., then I' admits a K-qc
reflection ¢ with K = (4A+1)/(A—1) which locally satisfies the relations

(3.3) Fop =lof in D, fop=LoF in D*

For the proof and the uniqueness discussion see [6]. If CHE are
univalent, then VII implies Theorem 7 in [9].

There are relatively few Jordan curves for which Fredholm eigenvalues
and eigenfunctions are known. We give here some examples.

ExaMpLE 1. Let E be the ellipse ¢ =e®+ke ™™ 0<0<2n, 0 <k <1.
Then A(E) = {+k™": ne N}, cf. [14]. It is easily seen that f(z) = (k—1)" 'z,
F(Z) = (2k)™'[Z—(Z*—4k)"/*] are CHE associated with A, = 1/k. Let P,(z)
be the sequence of polynomials defined as follows:

P (z)=2z, P,(z2y=2*-2k, P,.,(z)=2zP,(2)—kP,_, (2).
One can verify that
fi@)=(k"=1)""P,(2), F,(Z)=(F(Z))
are CHE associated with 4, = k™"

ExamprLE 2. Let I' be a circular wedge symmetric w.r.t. the real axis,
with vertices —1, 1 and interior angles an, 0 <a < 1. The functions

f@) = log(i+2)(1=2), F(2)=5—log(Z~IZ+1)

—a

are CHE associated with the eigenvalue A = (1—a)~ !. In this case CHE are
unbounded and have infinite Dirichlet integrals although I' is a quasicircle.

ExampLe 3. Consider the analytic Jordan curve f:
E=e(1+ke 9?3 0<O<2n, O<k<l.
As shown by Kithnau [8], A =k~ ? is an eigenvalue of I". The functions
f@)=(k*=1)""(z>=2k), F(Z)=(2k)"*[Z°*—(Z>—4k)"/*]?

associated with the positive eigenvalue k=2 are CHE which are not locally
univalent which was the case in the preceding examples.
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