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The translation equation on a direct product of groups

by S. MiDURA (Rzeszdw) and J. TABOR (Krakéw)

" Abstract. Lot X he an arbitrary set and G an arbitrary group. We consider the
functional equation

(1) F(F(a”: a)vﬂ) = F(z, fa) forgeX, a,fe Gl'

where : X x G — X is tho function which we look for.

TaeorEM 1. Let G = Gy X Gy be the direct product of the groups Gy, Gy. Then the
general solution F': X x G — X of equation (1) can be written in the form F(z, {a, )
=T, (F(z,a),8) forseX, aclGy, pely, where F;: X xG—~X and Fy:
X x G, —~ X satisfy equation (1) and the following condition:

(2) Fo(Fy(w,a), ) =P, (Folx,f),a) forzeX, a,.BeG.

TEEOREM 2. Let G = G4 X G, be the direct product of groups Gy, G, and let IF':
X x G-~ X be a solution of equation (1) such that the funolion F, occurring in (2) is
iransitive (i.e., satisfies the condition A VG ‘Tz, a) = y) and commuliative (i.e.,
T,YeX ae .
satisfies the condition T (I (»,a), f) = .%!F(F(m, B),a)forze X, a,f €@). Then there
exisls o normal subgroup Q3 of G, and a homomorphism @: G - Gy)Gy such that
F(z,{a, p) = Fy(z, fp(a)) for xe X, ac Gy, fely. .
We also give a sufficient condition for the solution of equation (1) to be contin.
uous. .

1. In the present paper X denotes 2 non-empty set and G denotes
a group. The functional equation

(1) F(E(‘”)“);ﬂ) = F (%, fa),

where F: X X@ - X is the function which we look for, is called the
translation equation. '

Let @ =G, X @, be the direct product of groups &, #,. We shall
investigate in this paper the relations between the solutions of the transla-
tion equation on the groups G, G, and on the group G. In particular, we
shall express the general solution of the translation equation on the group ¢
by the solutions of this equation on the groups G, @,. A sufficient condi-
tion for the solution of equation (1) on & to be continuous will also be given.
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The solution F: X xG — X of equation (1) is called an algebraic
object (cf. [8], p. 69) whenever F(z, 1) = o for » € X. An algebraic object
F: XxG — X is called transitive if for every @,y € X there exists an
a € @ such that F(x, a) = 9. An algebraic object F': X X G — X is called
commutative (cf. [1], p. 19) whenever

F(F(z,a), f) = F(F(z,B),a) forazeX, a,fed.
Let F: X X @ - X be an algebraic object. Let us write
(2) N =laeG: V (F(z,a) = a)}.
TeX

M. Kania and Z. Moszner have proved (cf. [2]) that the object I is commu-
tative iff the commutant K (@) of G is included in V. _

Moszner has shown {cf. [56], p. 1) that a function F: X X G+ X
is a transitive algebraic object iff it is of the form

(3) F(x,a) = g (ag(x)) forazeX, aed,

where g is a bijection of the set X onto the left cosets of the group @ with
respect to some subgroup G* (not necessarily normal).
Let G* be a normal subgroup of G. Then the function F of form (3)
is constant on every coset A e G/G". This proves that for every fixed z € X
the mapping
GIG*s2A>F(w,a), acd,

.iis_ well defined. Furthermore, since g is a bijection, it is a bijection of G/G*
onto X. In consequence, we may define a new object F: X x G/G* - X
in the following way (cf. [5], p. B7): '

F(z,A) = F(z,a) for aeAdec@/G".

It can-be verified that if I js transitive (commutative), then so is 7.
We shall use the same letter F' for the objects I' and 7.

For the next gecetion we need the following simple

LeMma 1. Let F: X x G — X be a transitive and commutative algebraic
object and let H' be written in form (3). Then the subgroup G* is normal.

Proof. Wehave N = (") a~'G*a (cf. [6]), which proves that N < G".
ae@

By the theorem of Kania and Moszner (cf. [2]) K(G) = N and hence
K (@) <= G This implies directly that @* is normal.

2. We shall prove the following
THEOREM 1(!). Let G = Gy X G, be the direct product of groups G, &,.

(1) This theorem for commutative algebraic abjects has been proved by Kania
and Moszner (cf. [2]).
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A function F: X x @~ X satisfies the translation equaiion iff F can be

written in the form

(4)  F(m, <o, p)) = Fo(Fy(z, 0), ) for seX, acGy, ey,

where Iy: X X @y~ X and Fy: X X G, — X satisfy the translation equation

and the following condition

(5) Fz(F1(m’ a),ﬁ) = Fl(Fz'(mfﬂ); a) for zeX, ael, feb,.
Proof. Suppose that a function F: X x G — X satisfies the transia-

tion equation. We put

(6) Bz, a) = F(w,{a,1>) for veX, acly,

(7) Fy(z, ) = F(z,<1,p)) for zeX, feb,.

It is immediately seen that ¥, and F, satisfy the translation equation
on the sets X X G, X x G, respectively. Furthermore, we have for » € X,
a€@,, fel,:

Fz(F1(wy a), B} = F(F(m7 {a,1}), 41, :8>) = F(z, 1, $)>-{a, 1))
= F(w, {(a, B)) = F(z,{a,1)><1, )
= F(F(wy a, ), <a, 1>) = Fl(-Fa(mr p), a)'
Hence, condition (5) holds.
Conversely, let us suppose that the functions F,: X XG, - X and
F,: X x @, X satisfy the translation equation and condition (5). We
shall show that a function F of form (4) satisfies the translation equation.
Applying (4) and (5) we obtain for zeX, <ay, f1), <ay 2y € G1 X G,

F(F(z, <t1y b))y {tay B2Y) = FaFa(Fa(Fy(w, 1), Ba), ), B)
— By (Fo(Py (Fu(2, ar), ag), B, Bo) = FolFa(@, a,01), faby)

= F(0, {ay0,, f2B) = F(®, {as, fz) {az, B1)).

This completes the proof.

We have proved in Theorem 1 that every solution F of equation (1)
on the direct group @ = &, X @, can be written in form (4). We shall
prove in the following theorem that under some assumptions on # formula
(4) can be simplified.

TEEOREM 2. Let G = G X @, be the direct product of groups Gy, @,.
Lot F: X xG— X be a solution of the translation equation such that the
objest F, defined by (7) is tramsitive and commutative. Then there exists
o normal subgroup @5 of the group @, and a homomorphism g: G, — G,/G;
such that

(8) F(z, {a, B7) =.F'2(95',ﬂlp(a)) for veX, ae@, fel,.
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Proof. The object F, can be represented in form (3), i.e., in the form
(9) Fo(w,8) = g7 (Bga(@) for we X, fethy,

where g, is a Dbijection of the set X onto the set G,/G; of the left cosets
in @, with respect to some subgroup G- < @,. In virtue of Lemma 1, G';
is a normal subgroup of &,. Let «, € X be arbitrarily fixed. As we have
observed in 2, the mapping G,/G; » B Fy(2y, f), f € G4 is a bijection
of @,/G; onto X. Hence, for every a € @; there exists exactly one element

o(a) € G5/ such that
(10) ' Ty, p(a)) = Fa(ay, a),

where F; is defined by formula (6). By Theorem 1, condition (5) holds.
From this condition, from (8) and from the commutativity of F', we obtain
fOI' al, a2 € Gl:

"B (%, aya,) = F1(F1(mo; ay), a1) = F1(F2(wo; ‘P(az))-y af)
= Iy (T4 (29, 01), p(as)) = Fz(Fz(mm ‘P(%))a ‘7’(‘12))
= Fy(Fy(m0, ¢(a5)), p(a1)) = Folay, 9(ay) 9(as).

Hence, it follows from the above equality and from the definition of ¢
that ¢(a;as) = g(a;)@(as), i.e., that p is a homomorphism.

~ We shall show that equality (8) holds. Let us consider the arbitrary
elements 2 € X, a € @y, f € G,. Let y € G, be such an element that

(10) 0 = Fy(@, 7)
Since objéct ¥, is commutative, we obta,fn from (5) and (10),
(11)  Fi(w, a) =F1(F2(m079’)’a) =Fz(El(mu) a)y'}’)
= F(Fa(mo, p(a)), 7) = FolFa(@o, 7), () = Fy(w, p(a)).
This equality, (4) and (11) give .
F(w, a, B)) = Fy(Ful, ), f) = Fy(Fy(z, ¢(a), f)
= I, (w’ ﬁ‘P(@);

which completes the proof. .
As an immediate consequence of Theorem 2, we find, that under
the assumption of this theorem function 7 can be written in the form

(12)  F(x, <a, ) = !/2—1(18‘?(‘1)92(“)) for e X, ae@y, fely,

where g, is the same function as in formula (9) and ¢: @, — G,/@; is a homo-
morphism. It can also be seen that every function F defined by (12) satis-
fies the translation equation.
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Let the assumptions of Theorem 2 bhe fulfilled and additionaly let
the object F, be effective, i.e., let

A [V {Fz(w; B1) = Fy(w, ,32)) =(fy = ,82)] .

A1, Bye@y zeX

Then we have (cf. [5], p. 59) the relation
NA'6p = {1}
ﬁtG‘2

and consequently, since G5 is normal, @; = {l}. Hence, we may look at
function ¢ occurring in (10) as a homomorphism of &, into G,.

3. Let X be a topological space and let G, and &, be topological groups.
Then the direct product @ = &, x @, is also a topological group. Under
these agsumptions one may look for a continuous solution of equation
(1). We have the following

THEOREM 3. Let X be a Hausdorff topological space locally compact
at some point o € X. Let @, and @, be topological groups and let G, be a count-
able union of compact sets. Let F: X X G — X satisfy (1) and let B, defined
by (7) be a transitive and commutative algebraic object. Let Iy satisfy addi-
tionally the following conditions:

(a) there ewists an x,€ X such that the fumotion Gg 3 T, (24, B)
18 continuous,

(b) for every fized B the function X s x— Iy (x, f) 18 continuous.

Let there exist z, € X, B, €, such that the function G4 2 a— F(z,, {q, ﬁl})
18 continuous at some point a, € @,.

Then the function @ occurring in formule (8) 4s continuous and I is
continuous.

Proof. By a theorem of Moszner (cf. [4], p. 90) the function F,
can be written in form (9)'in such & manner that g, is a homeomorphism.
We obtain from formula (12)

(13) p(a) = Brga(F (2q, <a, fr))) - (g2 (2)) "

‘We have for some point z e X

= 92 {w}

Since X, as a Hausdorff space, is a T,-space, the set {x} is closed.
In consequence, G5 is a topological subgroup of G, which implies that
the multiplications f-A and 4B, where f € G,, A, B € G,/@;, are contin-
uous (of. [7], p. 101). Thus it follows from (13) and from our last assump-
tion that ¢ is continuous at some point a, € @,. Furthermore ¢ is 2 homo-
morphism. Ag is well known, a homomorphism continuouns at one point
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ig continuous everywhere(?). Thus, ¢ is continuous. Now, it follows from
formula (12) that F is a composition of continuous functions. This shows
that ¥ is continuous and this completes the proof.

We shall illustrate our congiderations by the following simple
ExAMPLE. Let us put

F(w,a+pi) =av+ca+o,f for zeR, a+piel,

where ¢ denotes the additive group of complex numbers and ¢;,¢, are
real congtants different from zero. We treat R and C as topological spaces
with the usual topologies. Obviously, ¢ is the direct product of the topo-
logical group R by itself. It can be verified that I satisfies (1). We have

Fiz,a) =a+06a for zeR, aeR,

Fy(z, pi) =w+ec,p for weR, fekR.
The object F, is commutative and effective. Hence, @; = {0}. It is obvi-
ous that the object F, can be written in form (11), where p(a) = —a

for e R.

(2) This theorem hLas heen proved in [7], p. 109, for the unity of the group under
consideration. A proof for an arbitrary fixed element can be realized in a similar way.
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