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Non-extendable holomorphic functions of bounded growth
in Reinhardt domains

by M. Jarnicki (Krakéw) and P. PrLuG (Vechta)

Franciszek Leja in memoriam

Abstract. Let D < C" be a Reinhardt domain of holomorphy with Oe D. We prove that, for
every N > 0, there exists a function f holomorphic on D and non-extendable beyond D for which
the function gj)-f is bounded, where g, denotes the euclidean distance to dD (Theorem 1). We
also present some characterizations of those domains D for which there exist bounded non-
extendable holomorphic functions (Theorem 2) and for which there exist non-zero square-
integrable holomorphic functions (Theorem 3).

1. Introduction. It is known that any domain of holomorphy D < C"
carries, for any ¢ > 0, a holomorphic function f non-extendable across oD
which satisfies the following growth condition
(%) sup{|f (z)| - [min {1, dist(z, éD)} -(1+|z]*)~ /2]"*¢} < oo.

zeD

This result, contained in [4]), can be strengthened if the boundary of D is
assumed to satisfy a general cone condition [5]. But, on the other hand,
there is the exciting example due to N. Sibony [7] which shows that, in
general, the bounded holomorphic functions do not characterize a domain of
holomorphy. Note that the bounded functions can be regarded as those
functions for which the above growth condition (*) holds with the exponent
zero instead of (n+e¢).

The results in [6], [8] imply that any bounded Reinhardt domain of
holomorphy is an H*(D)-domain of holomorphy (for this notion compare
[7]). The present paper gives a characterization of those Reinhardt-domains
which are H*(D)-domains of holomorphy. And, additionally, we will show
that, for any Reinhardt domain D of holomorphy and any ¢ > 0, there exists
an holomorphic function f on D with the following two properties:

(@) sup|f(2)|-[dist(z, D)) < x,

zeD
(B) f cannot bc holomerphically extended across dD.
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2. Formulation of the main results. Let D be a domain in C"; then, for
e D, ¢p(z) is defined as the euclidean boundary distance of the point -¢ D.
Then, for N = 0, 0'™(D, g,) denotes the space of holomorphic functions f on

D with sup|f(z)|-0B(z) < . Functions of O™ (D, gp) are called g,-tem-
zeD

pered functions of order < N. For a complete discussion of the properties of
the space O™ (D, g,) compare the book of J.-P. Ferrier [1] or the work of
M. Jarnicki [3].

Now we can formulate our first result.

THeoreM 1. Let D ¢ C", n> 2, be a Reinhardt domain of holomorphy
with 0eD('). Then, for every N >0, D is an O™ (D, gp)-domain of
holomorphy.

Let D ¢ C" be a Reinhardt domain of holomorphy, and let X — R
denote its logarithmic image, i.e.

Xi={x=(x;,...,x)e R (",...,e"eD}.

Let E denote a vector subspace of R" such that

(i) there exists x°e R" with x°+E c X,

(i) if F is a vector subspace of R" with X+F < X (XeR"), then
dimgF < dimgyE.

Because of the convexity of X it turns out that such a subspace E is
uniquely defined by D; henceforth, it is denoted by Ej,.

Now we use Ej, to distinguish specific Reinhardt domain of holomorphy,
namely:

DeriNmioN 1. A Reinhardt domain of holomorphy D ¢ C" is called to
be of rational type iff the space E;, admits a basis consisting of vectors in Q"

According to this notion we obtain the next theorem.

THeoreM 2. Let D ¢ C" be a Reinhardt domain of holomorphy. Then D is
an H™(D)-domain of holomorphy, if and only if, D is of rational type.

Since there are Reinhardt domains of holomorphy, which are not of
rational type, there are examples of Reinhardt domains D such that every
bounded holomorphic function can be extended beyond D but, for any
N > 0, there exists a non-extendable function fe O™ (D, gp).

Asking for the existence of holomorphic functions which are square-
integrable we have the following characterization.

TheoreM 3. Let D ¢ C" be a Reinhardt domain of holomorphy. Then
Ep # {0}, if and only if, }(D)nO(D) = {0}.

Remark. (1) Theorem 3 shows that a Reinhardt domain of holomorphy
D ¢ C" with I2(D) ~n O(D) # {0} is always an H®(D)-domain of holomorphy.

(2) Theorem 1 leads to the question for which pseudoconvex domain in

(") In the sequel we shall always assume that n>2 and OeD.
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C" such a result is also true. It would be interesting to know the answer, at
least, for Sibony’s example, because this is, in contrast to the present
situation, a bounded domain of holomorphy which is not an H®(D)-domain
of holomorphy.

3. Proof of the theorems. We begin with a general remark.

LemMa 1. Let D ¢ C" be a Reinhardt domain of holomorphy and let
F < O(D) be a Banach-space of holomorphic functions endowed with a topology
stronger than the topology of uniform convergence on compact subsets of D.
Assume that

(x) for any feF, for any @,...,0,cR, the function g given by g(z)
=1 z,....,e"z), 2 =(z,,...,z,)€ D belongs to F.

Then the following equivalent conditions (1) and (ii):

(i) D is an F-domain of holomorphy;

(i) there exists a function foe F such that f, cannot be extended be-
yond D;
are the consequence of:

(1) for any t =(ty,...,t,)e 0D N (R, )", for which exists at least one k,
1 <k<n with(ty,...,Dt,...,t,) = D, D denotes the unit disc in C, there are
a number j, 1 <j< n, with (t,,...,Dt;,...,t,) = D and a function feF such
that the function g(A):=f(ty,...,A-t;,...,t,) has a singularity at 0D.

Because the proof of this lemma is standard it is left for the reader.

Remark 1. Let D ¢ C" be a Reinhardt domain of holomorphy. Then,
for every N > 0, the space O™ (D, gp) satisfies assumption (*) of Lemma 1;
in particular, H*(D) = 0'“(D, gp) does.

As a particular case of Theorem 2 we receive the following proposition.

ProposITION 1. Let o =(ay,...,2,)e(Ry)3:= r =(ry,...,r)e R"—={0}:
r; =0, c>0and let D:=1{z=(z,,...,2,)e C" |2,|"" ... |z, &, < ). Then D is
an H*(D)-domain of holomorphy, if and only if, xe R(Q.)"(?).

Proof. By a suitable change of the coordinates we reduce the problem
to the case when:

Qy,...,% are positive and o, =...=a,=0,c=1 (1 <k < n).
Then D = Dy x C"™*, where
Do:={(z1,...,z)e C*: |z,|" ... |z ™* < 1},

Note that D is an H*(D)-domain of holomorphy iff Dy is an H®(Dy)-
domain of holomorphy.

Consequently, without loss of generality, we may assume that 0 <x; <1
for 1<j<nand a, =1.

(*) Equivalently: there exist ve(Z.); and ¢’ > 0 such that D = {ze C"|2"| <)
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Suppose now that a ¢ R-(Q"), so at least one of the numbers «,,...,a,_,
is irrational. We can assume that a«,...,,eQ and a,q,...,0_;¢0
O0<k<n-2).

Let fe H*(D) with ||f]|], =1 and let f(z) = ) a,2" the power series

ve(Z )"
expansion of f on D. Then, for every t = (t,,...,t,) e+(6D)m(R>0)", according

to Cauchy’s inequalities, we get:
la) <t~ for ve(Z,)"; in particular: |a,| < 1.

Note that t,=1¢; '...t,"77", thus |a,| < '™ "t . 7" "" L Since a,¢ Q
for k+1 <j< n—1 we obtain a;v,—v; # 0 and therefore, letting ¢; — O (resp.
tj— + ) we obtain a, =0 for any v with v; >0, k+1<j<n-1.

Hence we have received:

f(Z) = z avz' = z a(;l,O ..... O)Z‘l‘1 "’z‘h‘k'

» a(Z )" pe(Z )k
Since |a,] < 1 this series converges at least in D* x C"~* where D denotes the
unit disc in C (?). Observing, that D ~(D* x C""*) is connected, we have
constructed an holomorphic extension of f from D to D u(D* x C"™*). Hence
D is not an H*(D)-domain of holomorphy.
In order to prove the converse we assume o; = p;/q with p;, geN
(1 <j< n-1). It suffices to prove (iii) of Lemma 1. We define

QO

1
fo@:= Y S ...zpmta for z=(zy,...,2)€D.
u=1 H
It is obvious that f; is well defined and bounded on D.
Fix t =(ty,...,t,)€(dD) N (Rso), then t, =t; "V 1, Pr=19=1 and s0
it is clear that the function

v

1
g()') =f0(tl’~-atn—ls A'tn) = Z Pln

p=1
has a singularity on 0D. In view of Lemma 1 it is proved that D is an
H®>(D)-domain of holomorphy. Thus the proof of Proposition 1 is finished.
Before proceeding we remind the following simple geometrical fact for
logarithmically convex Reinhardt domains.

LeMMa 2. Let D ¢ C" be a Reinhardt domain of holomorphy. Then, for
every ac(0D)n(C,)" there exist ac(R,)" and ¢ > 0 such that

Dc{zeC™ |z;|"" ... |z/"" <c} =:G and acdG.

Now we are in the position to prove Theorem 1.
Proof of Theorem 1. Fix ae(dD)n(C,)" and let G as in Lemma 2.

() In the case k = 0, this means that H*(D)~ C.
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Note that gp(z) < gg(z) for ze D which implies: O™ (G, g6)lp = O™ (D, gp).
Hence it is sufficient to construct a function f e OV (G, g¢) which cannot
be holomorphically extended through a.
Thus, without loss of generality, we may assume that

={zeC" |zy|""...|zy/"" <¢} with ae(R,)3, ¢ > 0.

Since the space O™ (D, gp) is invariant with respect to affine isomorphisms
and since a domain DyxC* is an O™ (D, xCk ep, .c)-domain of
holomorphy iff D, is an O™ (D,, 0p,)-domain of holomorphy we can reduce
the problem to the case 0 <a; <1 for 1 <j<n—1, a,=1and c=1

Since for ae(Q.)" the result is a direct consequence of Proposition 1
and the fact that H(D)® < O'W(D, gp) we can assume that a,,...,a,e Q.o
and apyq,...,0%-1¢0Q (0<mM<n-1).

Since a; > 0 then according to the Dirichlet pigeonhole principle [2]
there are sequences of natural numbers (P;,);~; (1 <j<n—1) and (g,)%,
and a integer m with ni < m < n—1 such that:

Pj.u < a; N

1 0~ —a;x————— forany ueN, 1 £j<m
M 4 IS n-1Ke, <
p'n a;- N .
(2 O<a,—22g——— for any ueN, m+1<j<n—1;
i (n—1)Kq, ,
(3) g,—> 0 as y— .

The denominator K is an integer chosen so that K > 2 and

K min (11—«

M<us<n—1
Fix pe N such that
“4) p=N{l/a,+ ... +1/a,_4)
and let, for |@] <1,
6?
&) c, 6"
(1-6)y ,.Zn

Note that ¢, > 0 (for any peN) and Y/c, - 1.
We define, for z =(z,,...,2,)e D,

f(z)= Zc A s l"‘zq“

and we observe, that for every t =(¢y,...,t,)e(dD) " (R;,)" and for every
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AeD the series taken at the point (ty,...,0,-;,4t,) is equal
Y b(ty,....t,-1) A" with
p=1

. Pl.u~ 219 Pn—1,u" %n—19
bﬂ(tl,...,r,,_l).—cqurl Lty .

In view of (1), (2) and (5) one obtains q\’/b“(tl,...,t,,_l) — 1; hence f is
well-defined and satiesfies (1) of Lemma 1.

It remains to show that there exists ¢ >0 such that, for every
(ty,.--, t)e(@D) N (R, )" and every 0 < O < 1, the following inequality is
true:

Qg(tl,---’tn—la Qtn).f(tls---’tn—l9 @ln) (\< C.

Without loss of generality we may assume that there are integers k
(O0<k<m)and s (0 <s<n—1-—m) such that:

tl,tuo,t*, tm+l""’tm+s$ 1 <th+l""’tm’ l"l+$+1""3t’l“l'

Then we estimate the function f as
f(tls"'a tn—la @tn)

b &
_ . Plou~ 219, Pm,u~ %m9y Im+ 19~ Pm+ 1,u
=) €, 11 I o Y/
u=1

(1t 1)%— 19~ Pn— 1, n

[ Ni(n— 1)K x,, Ni(n— 1)K a N/iin— 1)K
Stk,fl-ivl1 "'tmm '(l/lm+l)m+l
(1t yim+sNin= K Ol
.. m+s (I—O)N
p
< [k +1 Zm 1 Im+1 1/t )“m+s N/(n- DK, o
\[tl('f‘l "'rm(/tm+l) “'(/M+S ] (l_@)N’

Observe that the points (fy,...,t,) and (f,...,5-,, 50 "%,

ti+1,---, Ot,) are boundary points of D. Thus we get

TSt  tasy, OL,)
<, 0@ o). (@ Yoy L
g T 1= O) ey (O ) (@7 1

k n—1 s
S[l‘[ [v(Q-l/av—l)]'[n t#_a"](l—@)'[n tm+).(@_1/am+l—])]
v=1 u=1 i=1

=1-0)( [T (] w1 © "=

v=k+1 u=1
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Therefore we find:
f(tla“',tu—la Qtn)gﬁ(tla--wtn—lv @tn)

or
<
(1-enr

T1-eye 1_1.. @ k_ye mri_y...
. (@' l/"’m+s_ 1)]Nl(k+s+l) x

N Win= l)K k+s+l)N : k+s+l(l Emtp) T (g lnx T+ p)
<[] @ I 1
‘l'__

Fix v between k+ 1 and m we observe, since K > 2, that the exponent of
t, is non-positive. Using the assumption on K we also find the exponents of
tm+, (1 < p<s) to be positive.

It remains to estimate

(T_%)W[(l ~0)©@ 1.0 1@ Fmri_1)...

B (6_ l/am+s_ 1)]n/(h+s+ 1)

- (1_@”"[) (1_@”"1() (1_61/“m'+1) (1_91/“m+s)' Hk+s+1)
Sl 1-e T 1-e 1-e ' 1-6

which is bounded for 0 < © < 1.

Hence we have shown that the function f belongs to the space
O"™(D, gp) which completes the proof of Theorem 1.

Now we turn to the proof of Theorem 2. Preparatory to this we state
without proof the following simple geometrical fact.

LeMMA 3. Let E be a vector subspace of R"; let E' be its orthogonal
complement. Then, for every open convex subset X — R", the following
conditions are equivalent:

(i) rhere is a point x®c R" with x°+E < X;

(ii) there exists a convex set Y — E* open in the topology of E* such
that X = E+Y,;

(i) for every xe X it holds that x+E c X

(iv) for any xe dX: x+E < éX.

The claim of Lemma 3 then easily leads to the following conclusion.

CoroLLary 1. Let D ¢ C" be a Reinhardt domain of holomorphy and let
X be its logarithmic image. Then:

(1)) if F is as in condition (ii) in 2, then F < E; in particular, E; is
uniquely defined;

(*)

P
(4) In the case k=5 =0 we get “_—G)N-(l—@)Ns 1.
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(1) for any xe X one has: x+Ep c X;
(iii) for any xe 0X: x+E, < dD.

ExampLE 1. Let D=D;n...nD,, where D;={zeC" |z1|“11 ---IZ.J"{'
< ¢} with we(R.);, ¢; >0, 1 <j<k We also assume that the intersection
is minimal, ie. DgDyn...nD;_ynDj,;n...nD, for any j, 1 <j<k
Then it is easy to see that

Ep={xeR" {(x,&) =0 for 1 <j<k}.

al

In particular, dim Ej, = n-rank

ak

Modifying Definition 1 we put:
DEerFINITION 2. We shall say that a vector subspace E < R" is of rational
type if E admits a basis consisting of vectors from Q"

Remark 2. If D is a Reinhardt domain of holomorphy, we have: D is
of rational type iff Ep is of rational type.

Then, from linear algebra, using Cramer’s rule we can adopt the
following result. ‘

LEMMA 4. A vector subspace E — R" is of rational type iff its orthogonal
complement is of rational type.

Therefore, as a direct consequence, we obtain the following conclusion.

CoroLLARY 2. If E = {xe R": {(x, a) =0}, ae(R"),, then E is of rational
type if and only if e R-(Q"),.

Remark 3. Let D ¢ C" be a Reinhardt domain of holomorphy. Then
dimEp, =n—1 iff D={zeC™ |z,/"*...|z,"" <c} with ae(R,):, ¢ >0 (cf.
Lemma 3 and Example 1).

ExampLE 2. Let D =D, n...n D, be as in Example 1. Then, we claim,
that the condition “D is of rational type” may be numerically characterized.

Proof. We already know that

Ep={xeR" (x,a’) =0 for 1 <j<k}.

al

Let k =rank| : | and assume that

Then the vectors

vP:=<d;—'p,...,%—’, 0,...,0, —l,O,...,O)—k+l <p<n,
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span E*, where

1 1

o ...aj_l

x Kk
af oo ab ok, ... a

1 1 1
Ap Xjpy oo- Qg
d; = det P :

In view of Lemma 4, E is of rational type iff there exists a non-singular
(n—k) x (n—k)-dimensional matrix A such that all entries of the matrix

Pl At okt
Al |=la: -4
" v} ... Uf :

are rational numbers. In particular, A has to be rational therefore the matrix
AL A |
: : has to be rational.
vl e vk

Finally, we get the following condition: D is of rational type iff %—‘fe Q

for any j=1,..k; p=k+1,...,n.

To show that any Reinhardt domain of holomorphy, which is an
H™(D)-domain of holomorphy is of rational type the following lemma is
essential.

LEMMA 5. Let E be a k-dimensional subspace of R" (1 < k < n—1), which
is not of rational type. Then the subspace F:=(Q"n E")* has a dimension
which is larger than k.

Proof. It suffices to show that dim H < n—k~1, where H:= Q"n E*.
But this is clear, since E* is not of rational type.

Now we are able to present the first part of the proof of Theorem 2:

Let D¢ C" be a Reinhardt domain of holomorphy which is an H*(D)-
domain of holomorphy and assume that D is not rational type. Let X
=logD and k:=dimE,. Because the case k =n—1 was considered in
Remark 3 we may assume 0 <k <n—-2

Let u',...,u* be a basis of E, and fix fe H*(D), ||f|| . = 1 such that f
cannot holomorphically continued beyond D. Let f(z)= )Y a,z* its

v(Z 4 )"
power series expansion in D. Fixing x°e X the Cauchy inequalities deliver for
ve(Z,)", t;eR, since xX°+Ep = X,

la,| <exp[—<v, x®>—1, (v, ud— ... =1, (v, u*].
Define M:= {ve(Z,)" (v, W) =0 for 1 <j <k} we get
f@=73 a,z.

veM



138 M. Jarnicki and P. Pflug

Since f cannot be continued, so the domain of convergence of the last series
is equal D.
On the other hand, let F be as in Lemma 5. Then it is obvious that, for

ve F, the series ) a, (et = Y a,e**” is convergent, so x°+F c X
veM veM
and therefore dim E;, > k+ 1. This is a contradiction. Hence it is shown, that

any Reinhardt domain of holomorphy which is also an H*(D)-domain of
holomorphy is of rational type.

In order to prove the inverse direction of the claim of Theorem 2 we
need the following geometrical fact.

LEMMA 6. Let C be an open convex cone in R" with vertex at x°. Assume
that C does not contain any affine line. Then there exists a non-empty open set
U < R" such that, for any Be U, C is contained in {xe R": (x—Xxq, f> # 0}.

For a proof compare the discussion of the dual cone in [9].

Now we are going to apply Lemma 6 to complete the proof of Theorem
2. Again, let D ¢ C" be a Reinhardt domain of holomorphy which is of
rational type, and we can assume that dim E;, = k with 0 < k < n—2. In view
of Proposition 1 it suffices to prove: for any x°c X and any ¢ > O there
exists x' € R" and an (n— 1)-dimensional subspace P — R® of rational type
such that:

(i) Xn(x'+P)=0Q;

(i) dist(x°, x!+P) <e.

Because of Lemma 3, X = E+Y, where Y is an open convex subset
in E* and Y does not contain any affine line. Note that in the case k =0
one has E' =R, Y=X. Fix x°¢dX and let x'eE*\Y be such that
[[x' —prg L(x%)|| <& In the space E* we denote by C the open cone

generated by Y U {x'}. Then, by Lemma 6, there exists an open subset U in
Et, U # @, such that for any feU:

Y c {xeEY (x—x', B) # 0}.

This means, since E* is rational, there is an (n—k — 1)-dimensional subspace
V < E* of rational type such that (x' + V)Y = (. Then P:= E+ V satisfies
conditions (1) and (i).

Hence Theorem 2 is completely verified.

In the last step we turn to prove Theorem 3.

Proof of Theorem 3. Let X = logD and fix f e I?(D) n O(D) with its

series expansion f(z)= ) a,z"
ve(Z 4 )"
Assume Ej # {0} and note that

@ Y lal*[I="PdAlz) < If1PdAz) < =,
VE(Z+)" D D

(b) ‘ |:V|2 d,{(:) = (27[)" ‘ e(x.Z(v+1)>dx,
b X

where 1 =(1,...,1).
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In view of Lemma 3 we may assume X = Rx Y, where Y « R"~!. Then,
for e R",
+ %

j &0 dy = ( j o 171 dxl)_" exzaz+...+x..andx2 ...dx, = + 0.
X Y

-

This implies that, necessarily, a, = 0 for all ve(Z,)" which shows that
f=0.

To argue into the converse direction assume E, = {0} and fix x% X. In
view of the proof of the second part of Theorem 2 one can construct
a',...,a"e(Z )% such that

X cixeR: (x—x% a/y<0for 1 <j<n =X,

Cll

with rank | : |=n.
a’l
Define v, =aj+ ... +af—1 for 1 <j<n and put v =(v,...,v,).

We shall show that

f e(x,Z(v+l))dx < a0
Xo

which will give a non-zero I?-holomorphic function.
Let

A:=| : and  d:=[eR" & < &= (x°, &f));

all
then it turn out that

1 s ot e2(¢(1)+...+¢,?)

{(x,2(v+ l))d __ 1T Top dE=——

e X

xjo |det A| j ¢ 2"|det 4]
4

Thus the proof of Theorem 3 is completed.
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