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Extremal problems in some classes
of univalent functions in a half-plane

by JApwicA ProTrRowskA (L6dZ)

Abstract. The present paper aims at investigating variability regions of some
functionals defined on the class of univalent functions in the upper half-plane. The
method used is identical with the one employed by I. A. Aleksandrov and W. W. So-
bolev [1] and by P. P. Kufariov, W. W. Sobolev, £.. W. Sporysheva [5] for examining
the variability regions on the class mentioned above.

1. Basic notions. Denote by H' the class of all functions which are
holomorphic and univalent in the upper half-plane P} = {z: Imz > 0}
and which map this half-plane on regions contained in the hsglf-plane
P, = {w: Imw > 0}.

Moreover, those functions are normalized by the condition
(1.1) lim [f(z)—2] =0, =zeP].

£—>00

It follows from the above definitions that the class is non-empty, since the
identity function certainly belongs to it.
Assume now that we are given m funections

Iﬂ(f)=I(f’f1f”"'7f(1l)’f(n))7 831,-..,'”?/,

analytical with respect to their arguments in a sufficiently large region.
For an arbitrary z,, 2, € P/, consider functionals

Is(f) = Is(f(zu)r.f(zo)a --~7f(n)(zo))7 s =1,...,m,

where f is an arbitrary function of the class H'.
Let us consider the system of functionals

(1.2)  I(f) = (L(f), ..., L(f))y »<m, p — a natural number,

the funectionals I (f) being defined above.
The system of functionals (1.2) is called continuous on the class H'
if the almost uniform convergence of the sequence {f,} in P/}, f, € H',
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to the function f € H' results in the convergence of the sequence {I(f,)}
to I(f).

Let f, and f, be two arbitrary functions of some class K of functions
defined on the region B.

The class W < K of functions f(z, o), where ¢ € {a, ), 2 € B, being
almost uniformly continuous on B with respect to o and almost uniformly
convergent on B to f, and f, as ¢—a and ¢->f, respectively, will be called
the class of fumctions connecting f, and f,.

The class K is said to be connected in a region B if for arbitrary func-
tions f;, f, € K there exists a subclass W < K connecting those functions.

LEMMA 1.1 Class H' is a connected class in P .

Proof. Notice first that, without losing generality, we can take an
arbitrary function fe H' and an identity function as the two arbitrary
functions of class H'. Notice as well that for an arbitrary oe<0,1) if f
belongs to class H', then the funection defined by the formula f(z, o)
= of(2/0) also belongs to that class. We shall show that the class W
= {f(z, o) = of(2/¢): fe HY, o €{0,1)>} is the connecting class. Indeed,
functions of that class are almost uniformly continuous with respect to
o€ {0,1) in P}. From the normalizing condition for functions of elass
H' we have

lim{of(z/0)—2] =0 as o—>0
and

lim[of(2/0) —f(2)] =0 as g—1.

Therefore class H! is connected in P .
A class K is called a compact class if every infinite sequence of functions

of that class contains a subsequence convergent to some function of that
class.

LEMMA 1.2. Class H' is not compact.

Proof. To show this it suffices to find a subset of functions of class
H' tending almost uniformly to infinity in P} . Consider a family of func-

tions of the form w = f(2) = a+V(z—a)*—h?, where the parameters a
and h are real, and take that branch of the root for which f(a) = a-1i|h|.
Those functions map P} into P}, minus a segment of the length & beginning
at the point a and perpendicular to the real axis.

The remark that f = oo ¢ H' ends the proof.

The set of all points I(f), where f ranges over the class H' will be
called the set of the values of system (1.2) and denoted by D while its bound-
ary will be denoted by L. '

The function f, € H' will be called a boundary function with respect
to system (1.2) if I(f,) € L.
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The aim of the present paper is to investigate the general properties
of the set D and to determine it effectively in some special cases.

LeEMMA 1.3. The set of values of system (1.2) of continuous real-valued

functionals defined on a connected class of holomorphic functions is a compact
set, [3].

It is known [3] that this set is closed if the class on which system
(1.2) has been defined is compact and may turn out to be a non-closed
set if the class is non-compact.

COROLLARY 1.1. The set D of values of system (1.2) does mot have to be
a clesed sel.

LEMMA 1.4. The set D of values of system (1.2) of continuous functionals
i8 a connected set (cf. [3]).

To determine the boundary of a closed set it suffices to find the set
of all boundary points which are non-singular (in the sense of N. A. Lie-
biediev [6]) and to close that set. In the case of mon-compact classes
the knowledge of non-sigular points does not always suffice to find the
boundary.

The boundary points of the set D of values has the following simple
property which will be useful in our further considerations. Assume that
the set D possesses exterior points and let I be one of them. Then there
exists a point I,, I, e L, such that

(1.3) \I,— 1)< |I-1],

for all I € UnD, where U is a sufficiently small neighbourhood of the
point I,. The set L’ of points I, is dense in L.

Closing the former, we obtain the latter, [4].

It follows from what has been said that, in the case of a compact
class, in order to characterize the set of values of a set of functionals
defined on that class it suffices to find the boundary of that set. When
the class is non-compact, it is sometimes possible to find the region D
or the region D' majorizing it, i.e., the smallest region containing D.

The following theorems used in the sequel can be found in [5].

TUEOREM 1.1. Let f be an arbitrary function of class H'. Let q be a func-
tion such that for every t, 0 <t < T, the function f(2)+1tq(z) is holomorphic
and univalent in the set

(1.4) {2: 0 <Imz<h,h> 0},

and maps the set (1.4) on a set bounded By the continua Dy(t) and D, (t) cor-
responding to the real amis Imz = 0 and the line Imz = h, respectively.
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We assume, moreover, that for a sufficiently great z with respect
to its absolute value, in the set (1.4) we have the inequality

c
Izla )

lg(2)] <

where ¢ is a positive constant and a is a positive real parameter. Then in
the half-plane P} the function w = &(2,1), z e P}, 0 <t T, satisfying

im[&P(z,1)—2] =0 as 2—o0, 2P},

and mapping the half-plane P, on a region B(t) for which D,(t) is a bound-
ary, has the form

(1.5) D(z,t) = f(2)+ U (2) P(2) +o(?),
where

—iml ([2@] 8= —xti 00
(1.6) P(z)—llmn_iIm[f(c)]c_z, = z4if as f->oo.

In particular, let us put, analogously to what was done in [5],

m

(9 9(2) =2{f(z;4—k Wy, + f(z;‘l—k@—vk}’

k=1

where f is an arbitrary fixed function of class H', w,, k =1, ..., m, are
arbitrary points belonging to P} and 4,, ¥ =1,...,m, are arbitrary
constant complex numbers.

It turns out that the function f(2)+1g(2), where g(z) is defined by
(1.7), satisfies, for a sufficiently small ¢, all the assumptions of Theorem 1.1
and the image of the real axis Imz = 0 under w = f(2)+1q(2) lies in P} .

THEOREM 1.2. a) If the points z,, k = 1, ..., m, 2, € P}, are such that
f(z) = wy, then, together with f, a function of the form

m

(18)  ful2) =f(z)+tg;{ - A A

@) | 1@ —f @)

4 1O, 4 16
@) z—2z  [f(2)]® Z—2
belongs to class H' for sufficiently small t.

b) If the points of the half-plane P} w,, ..., w,, are exterior for the region
which is the image of P} under f, then, together with f, a function of the form

+

.+.

Lot

ST 4
1.9 *» — t k k }
9 fle) = 1@+t D, o2 o
belongs to class H' for sufficiently small t, [3].
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2. Set of values of the system I(f) = (I,,I,,I,). In this chapter
we shall find the set of values of the functional system

(2.1) I(f) = (I, I, I,),
‘where

(2 £(2)
2.2 I, =1 —1, I, = —
(2.2) o8 ! 7(2) ) M8 1)

z being a fixed point of the half-plane P, 8 being an arbitrary real number
and functions f being those functions of the class H' for which

I, = Re{é’f'(2)},

(2.3) Re{c’f(z)} = K, K - fixed.

LEMMA 2.1. Every function f(3) which s boundary with respect to the func-
tional system (2.1) satisfies the following differential-functional equation:

(2.4) M(f)f2(3) = L(3),
where
y 23 /2 P P
2.5)  M(f) = _ ___
@3 M) =Fa=rer T To—Jer To—1@ | fe—T@
y 23 P2 q: 71
2.6 L(3) = ,
(26) &) G- G- -2 G-9)
and
Po = —a;,+1ia,,
Py = Pyt
@.1) f(z)
P = —Po+aae "(2),
_ I'_(_zl_ ._f_(_ ()
g = Po @) Do 72 +asf"" (2)€”,

—_

a;, © =1,2,3, are directional cosines of the vector I1,I,, I, is a reqular
boundary point of the set of values of the functional system (2.1), and I, is an
exterior point of that set.

The proof of the lemma is analogous to that given in [5], § 7.

It can easily be shown that the function F(w,t) corresponding
(cf. {5], § 2) to a boundary function with respect to the functional system
(2.1) satisfies the following differential-functional equation:

(2.8) B(F, 7)F,;(w, 1) = A(w),
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where
4 71 Q, Q:
(2.9) B(F, 1) = F—a)? + F—a) + 7 a + 7’
L P2 y 31 D1
2.10 A = — —,
(2.10) W = T T w_B
and
a(r) =F(f(z)’t)’ f(z) = &,

. [F;,(f(z), T)]-l d[F:u(f(z)’ T)I—ll

(2.11) @, =p, 7(2) —Po dw -+
—|—aae"3f' (2) d[F,;,(f(z), T)]_l ,

dw
Doy P1y P2y ¢ — defined in (2.7).

From the normalizing condition for the class H' it follows that
F(w, 1)
w
us to state that polynomials in the denominators of the rational functions
B(F, t) and A(w) are of the third degree and, moreover, the coefficients

at the greatest powers are equal.
Now, our way of reasoning being analogous to that in [5], § 10, we get

lim

=1 as w—>oo and limF,(w, ) =1 as w—>oco. This allows

(w —wg)?(w—w,)

(w— &) (w—2)

(F — p)*(F —)
(F —a)*(F —a)?’

(2.12) Aw) = 4,

(2.13) B(F,r) = B,

and A, = B, = const.
Moreover, the functions u(r), v(7), a(r) satisty

(2.14) 2p —2(a+a)+v = const,
d 1
(2.15) 2 :
dr  u—a
d 1
(2.16) . .
dr pu—v

Notice first that B, is a real number. Indeed, B, = @, +@, = 2ReQ,.
Let w from equation (2.8) tend to infinity. Then

(@a—p)la—v) q
(2.17) T TR

= ¢onst.
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Comparing in (2.17) the main arguments of the two sides, we obtain

(2.18) 2Arg(a—u)+ Arg(a—v») = 6, = const,
where
(2.19) 0o = Argq, + k.

Depending on whether the coefficient B, is positive or negatiire, the number
k takes the values 0 or 1, respectively.
Let us introduce the following notations:

(2.20) a(7) = u(t)+w(7),
(2.21) a—p = |a—u|eEes — p oth
(2.22) a—y = |a—v|TEE) — p o2,

With the.use of the above notations, relation (2.18) may be rewritten
in the form

(2.23) ty = 0,—2t,.

We shall now show that the function v () is a real function of the variable 7.
Indeed, since

2u—2(a+ @) = —v+const,
we infer that Im» = const. On the other hand, we find that

dImyvy Imyw

dr |p—v?
and hence »(7) = 7(7).
Moreover, from the definition of the funetion F(w, v) it follows that

the function »(7) is positive and hence the following constraints must be
imposed on the numbers ¢, and %,:

o<t,<m, O0<t<m.

From these inequalities and from the fact that the functions x(v) and
v(t) are real we find
» v(T) v(7)
2.24 = S R S—
(2.24) "t = e, " T sin(e, —ot,)
where a(t) = u(7r)+w(7).

Consider again condifion (2.17) and use relations (2.24). We have

0 riry
— = = eonst
| By 402
Write
7,
= |—=—] = const
, B,
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On the other hand, we have

¢ 3 621317. eztz vzezill,veitg
‘B, = —4v®  —d4v%in®,sin( 6, —2t,)
@3’:30
= - - = c¢onst
—45in2¢,8in (6, —21,)
and thus
=8|~
Hence we obtain
(2.25) ’U = QSinztlSin(eo _2t1)o

We shall now write the derivative with respect to v of the function ?,(7)

a8 the function of ¢,.

From (2.15) we have
2.26 i
(%.29) dr (u—a)’

and from (2.25)

dv
i 2psint, cost, sin (0, —2t,) —205sin2¢, cos (6, —2¢,).
1

Thus we obtain

, dv . .
(2.26") o 2psint,sin(6, —3t,).
1

Note that
dt;, dv dv v

v drdt, lp—al® [20sint, sin (6, —3¢,)]7"
] —

Hence, after some calculations, we have

(2.27) % = [202%sint, sin (6, —2¢,)sin (6, —31,)] .
Since sint, > 0 and sin(6,—2t,) > 0, the sign of the derivative depends
on the sign of sin(6,—3t,), which in turn is the same as the sign of the
number v — 4. Thus the sign is constant for every value of the parameter
7€ (0, 7,).
Indeed, the inverse assumption would result in »(z;) = u(r,) .for
a certain argument 7,, which is obviously impossible. '
Hence we can state that the function f,(z) is monotonous, which
results in the possibility of introducing an inverse function of the variable
i, and ¢, € (¢,(0), t,(7e)). Thus v = z(f,).
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From Lowner’s equation for a half-plane (cf. [5], § 2, equation (2.13))
the following equation can easily be obtained:

7 1

F,  [u(r)—F(w, )]

Let us put f(2) = £ in this equation. Then F (&, 7) = a(7), and, by (2.21),
we get

dlog F',(£, 7) = i = ¢ *
8 Fu&, ) = O lu(7) —a()®

Further, using (2.26) we have

, L, d
dlog Fly(£,7) = e *47,

which can be rewritten in an equivalent form as:
(2.28) dlogF, (&, 1) = e t1dlogw.

Integrating both sides of equation (2.28) in the interval {#,(0), t,(7,)>
= {t;, 1>, we get

ty

(2.29) logf'(2) = [ e*"dlogu(ty).

b

Notice that

t 4

1
A 4

We shall write

1

I =fe‘z“ldlog(gsin%sin(ﬂo—2t1)).
Then
I = 2((eos2t, —isin2t,) (cott, — cot (6, —2t,)))dt,
— 2logsint, —2sin®?, —2it, —2isint, cost, +

4o cos G,

7
log [ — cot? (tl—— ?0)] + cos2t, +

sin 0 0
+Hi— °log[—cot2(t1—?°)] —sin2t,.
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Hence relation (2.29) takes the form
(2.30) logf’'(z) = 2logsint, —2logsint, —2sin2) -2 8in%t, —

oo et .., ©osf ., 0
—2i(t, —1t;)—28in2t; -+-2sint, — 2 olog[—cotﬁ(tl _70)]+

cos 0,
2

. 8in 6, ofr o .simfy . ofs o
+1 2 log[—cot (tl—?)]——z 2 log[—cot t1—7)]-

In expression (2.30) the numbers ¢, and ¢, are unkown and should be
calculated.

From equation (2.15) we have

+

0 ' '
log[— cot? (t{ — —2—0)] +cos2t] — cos 2t +

(2.31) du _ _p—v

v |p—al?’
and thus, by (2.20) and (2.21), we get

p—u = —|a— ulcost,.
Hence formula (2.31) takes the form

du — cost,

‘dv  osint,sin(6,—2t,)
Next, by (2.27), we obtain
du

(2.32) — = 20€08t;sin (6, —3t;)..
1

Consider now relation (2.25). Putting successively v =0 and » =7,
in (2.23), we get the following relation:

. Vo . ¥y
 sin?t;sin(0,—2¢,)  sin2t) sin(0,—2t;) ’
where v, = Imz is given together with a point z e P but v, = v(%,)
is unknown.
Integrating (2.32) in the interval (t,, 1, >, we have
u(ty) —u(t) = —}elcos(6,—2t) —cos(6,—2t,) —
—Lcos (4t — 6,) + }cos (4t — 6,)].
Notice that u(f;) = u, = Rez is given together with a point z e P}
and the number u(¢,') = u, is unknown and thus we have
%, = Ug+}o[co8 (0, —2¢,) —cos (6, —2¢,) -+
+3}cos (48, — 6,) — §cos(42; — 6,)]

(2.33) 0
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or in an equivalent form, using formula (2.33),

cost, cos(6,—2t;")
sin®¢ sin (6, —2t))

(2.34) Uy = Uy+ Vg [cotzt;cot(ﬂo—zt{)—-

It can be seen that, using the accepted notations, we can write (2.14)
in the form

(2.14") 2{(p —u)— (¥ —»)—u = const.

We shall now put into (2.34) the quantities given by formulas (2.21),
(2.22), (2.24) and the quantities obtained from (2.14’) by putting succes-
sively r = 1, and 7 = 0.

We shall get
(2.35)  u,+v,[2c0tt; +cot(0,—2t,)] = uo+v,[2coti; 4 cot (8, —2t;)].

On the other hand, by (2.2), we have
(2.35") u,c080 —v,8inf = K,

and thus equation (2.35) enables us to find the required «, and »,. Notice
that the numbers ¢; and #, will be determined as well.
We shall now find the value of the function a(z) for v = 7, because
we have a(z,) = u(zr,) + (7)) = f(2).
To do this we shall integrate equations (2.26) and (2.32) in the inter-
val (t;,%).
We obtain
(2.36) Imf(2) = Imz+3}o[sin(6,—2t,)—sin (6, —28;) +
+}sin (48, — 6,) — %Sm(‘it; —60)1,
and
(2.37) Refz = Rez—Lo[cos(0,—2t,) —eos(0,—2t,) +
+3cos (48 — 6,) — Lcos (4t — 0,)],
respectively.
From (2.36) and (2.37) we get

—i(Bg—2t7)  —i(fp—2ty)

(2.38) logf(z) = logiz— 3o(e e +

—iaty—6p) | —i(4t]—6)

+1e
Moreover, from (2.30) we find

0 .\ Jeost,
tan (70 — tl)

(% -5)
tan |— —1,
2

X exp(cos2t, — cos2t, —2sin2t, +2sint,).

X

. sint; \?
(2.39) Ree’f'(2) = ;I:cosﬂo( . )

sin?,
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Basing ourselves on the results obtained, we can formulate the fol-
lowing theorem:

THEOREM 2.1. The points Iy, Iy, I,,, where

f'(2)
f@)’

belong to the boundary of the region of the values of the functional system
(2.1). The quantities logf’(z), logf(z) and Ree f’'(z) are determined by for-
mulas (2.30), (2.38) and (2.39), respectwely, while the parameters t;, t,
may be calculated from equations (2.35), (2.35") and 0, is an arbitrary real
number.

Lo +ily = log—— I3, = Ree”f'(2),

()
e f(20)

lem concerning an extremum of the functional

3. Extrema of the functional I(f)= . Let us consider a prob-

f'(20)
. I(f) =
(3.1) (f) = arg 70

defined on the class H' of functions f, where z, is a fixed point of the
half-plane P/, under the condition

(3.2) K(f) = Re{e"f(2,)} = K

assuming K to be fixed and K > Imz,.

Assume that in the class H' the extremal value of fuctional (3.1)
under condition (3.2) is attained by a function f # oco. This function will
be called an extremal function.

Suppose now that the image B of the half-plane P under the map-
ping w = f(2) has an exterior point w, € P;; and hence another exterior
point w, € P}. Then for a sufficiently small ¢ and for arbitrary 4, the
function

fule) = z)+t2{ (;4 }

belongs to the class H' (Theorem 1.2).

We shall calculate I(f,)—I(f) and K(f.)— K(f) for this function.
We obtain

eiﬁ e—ie
W K(f)—K = tRelAd —
(3.3) EK(f)—K(f) =t e{ l[f(zo)_wl e _w1]+

61:0 e—ia
4, _°
+ [f(zo)—’wz T f(2o) — ws ]}
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and
2

Ayt Ayt
3.4) I(f—-I(f) = —tRe{ ; [ Tz [f(20) —wa) f(zo)(,f(zo)—wk)] N

2

- 2|~ e}

kel

It follows from condition (3.2) that
(3.5) E(f))—E(f) = 0.

It can be seen that, by (3.3), relation (3.5) will be satisfied provided that
the constant numbers A4, and A4, are chosen as follows:

e*’ [f(20) _wl]—l + ¢ [f_(zo) - ’“’1]_I
L6 [f(20) —w] M+ e [Fl2e) —w,] 7

where A is a complex constant. Therefore, by (3.4) the quantity I(f.)—I(f)
takes the form

4, = —

=4,

I(f))—I(f) = —tRe{d-C(w,, w,)}, where C(w,,w,) #0,

the points w, and w, being suitably chosen.

Since A is an arbitrary constant number, the sign of the difference
can be made positive or negative and hence I(f) cannot attain either the
maximum or the minimum in this case.

LEMMA 3.1. The set f(P}), where f is an extremal function with respect
to functional (3.1), does not possess any exterior points in the half-plane Pl.

We shall show that f(P;), where f is an extremal function, is obtained
from the half-plane P, by deleting from it an analytical arc begininng
at a finite point on the real axis.

In order to do that we shall use the second of the variational formulas
in the class H, i.e., (1.8), and find variations of the functionals K (f) and
I(f). We have

(3.6) -K(f,,)—K(f) =tRe{d,U(2,) +4,U(2:)}+o0(t),
where

¢ e 1 [6F (2) e““f’(z°)]
3.7 U = - ,
D VE) = ey T Fe—f T T [ sz oz

and

(3-8) I(fs) —I(f) = —tRe{id,V(2;) —id, V(22)} +0(1),
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where
e e = fz()z—)]f(s) - f([:o()zo—);;)  [f(20) if(s)]er

R L o +_ . (13 - [ e+ (_z(;)o[f%zo)r .
i - +f’s’(—z'0;"wl(%)]ﬁl - (s —120)2 (s —.120)2]'

Functional (3.1) will attain its minimum if
—tRe{1A,V(2,) +14,V(2,)} +0(¢) > 0,
Thus, by the option of the constant numbers 4,, k¥ = 1, 2, we have
(3.10) ?.'Al V(zl) 'i_ i.Ag V(Z2) = 0, Al U(zl) +A2 U(22) == Oo
Since the determinant
'V(zl) V(2.)
Ul(z) Ul(z,)

of the homogeneous system (3.10) should be equal to zero, denoting
V(2,)
U(2,)
half-plane P}, we shall obtain, after replacing z, by 2, the following
equality:

= A and using the fact that 2, is an arbitrary point from the

V(2)—AU(2) = 0.

This condition together with (3.7) and (3.8) will give the following
differential-functional equation, which ought to be satisfied by the extremal
funection f(z):

i _ e‘io __1; _ze—ia
(3.11) f(20) 4 f_(zo) L ) n )
' f(2e) = f(2) flz))—f(z)  [f(z)) —f(2)1* * [f(20) —f(2)]?

_ 1 [ if" (20) +4f" (20) [f (#0) 1 — 26"f"(20)
&) L z2—2,
_ if (20)— if"(20) [f (20) 17+ 267 f (2,) n 7 7 ]

z2—7%, (2—20)* (2—%)

Equation (3.11) affirms that the boundary of the extremal region consists
of the finite number of analytical arcs (dissections), which, together with
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the fact that a double zero of the right-hand side of equation (3.11) cor-
responds to each of the ends of a dissection, results in the statement that
the disseetion can have only one end.

Moreover, that dissection should be finite in the half-plane P} since
if it were not, the condition that an extremal function belongs to class H',
would not be fulfilled.

Let I' be that dissection along the Jordan arc w = Y({), 0 <t < 7,
and let ¥(0) be an end of the are I' lying in Pj;.

Consider a region B, = {w: Imw > 0, w # ¥Y(1), te{v, 7y} and
a function z = F(w, v) mapping the region B, onto P;.

This function will be called a function associated with a function f
if the inverse function of F(w, r) with respect to the first argument,
denoted here by @(z, 7), is a function of class H' for an arbitrary
€ {0, o).

Notice that the following relations hold:

Fw,r) =w and @D(z,0) = f(2).

Let us denote by u(7) a point on the real axis Imz = 0 which is map-
ped onto the end of the dissection w = ¥(1), under w = d(z, 7).
In [5], § 2, it is stated that such a point always exists and

oF (w, t) 1
(3.12) ar’ = W) —P(w, 1)’ F(w, ) =w, 7€40, 1),
)
@ 1 o
(3.13) 0 (z77)+ 0P (2, 7) —0.
ot u—2z oz

We shall now obtain one more variational formula in the class H'.
In order to do that let us replace f(z) by @(z, v) in formula (7.2) of [5]
and put z = F(w, 1), 2, = F(w,, ), where w, = @(2,, r). Then clearly
the function

m

@18 e "f(z’“,;{f(z)—@(zk, R
A4, [F,(w, 7)]" Ay [F,(w, )]

+ }+0(t)

[D.(2, 7)) 2, —F(w, 7) (D, (2, 7)Y %—F(w,7)
belongs to the class H' together with f(z) and, for & small ¢, maps P; on
a region in PJ close to the region B.

Our way of reasoning being analogous to the one employed while
mtroducing equations (3.11) and using formula (3.14), we find that the
function F(w, r) should satisfy the equation

[6F(w,r

(3.15) o )]B<F yT) = A(w),

7 — Annales Polonicl Mathematicl XXXIV,2
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where

(316) BF,9--—1 4 B, * G
F—a  F—a @ (Fea)p (F—a)p’

(3.17) Aw) =P 4 P —¢ :

i—w  F—w  (E—wp  (F—wp’
1 dF,w, 9]
(o) dw

3.18) g = —il [Fuw, 9T ~ 261,
- ¢ P
(3.19) P = f(z2) ie®,

(3.20) £ =fz), a=a(r)=1F(§,1).

Notice that equation (3.11) for the extremal function f(z) is obtained
from (3.15) for r = 0.

From the normalizing condition for the class H! it follows that poly-
nomials appearing in the denominators of the rational functions A (w)
and B(F, ) are of equal degrees (in our problem of the third degree)
and that the coefficients at the greatest powers of those polynomials
are equal.

From equations (3.12) and (3.15) it follows that

(w —w,)* (w —w,)

(w—&)2(w—7)2

[F — p(x)*(F — (7)]
[F—a(0)[F—a(r)]

(3.21) A(w) = A,

(3.22) B(F,v) =B

and A, = B, = const.
Moreover, the interrelations between the functions a(r), () and x(z)
are the following:

(3.23) 24 —2(a-+8)+ % = const,
da 1
d 1

(3.25) = _ )
dr u—x

From (3.19) and (3.16) we find that B, is real.
Let w tend to & in (3.15). Then F(w, ) tends to a(r) and

[a—pl(a—wn) _

(3.26) e

= const.
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Comparing the main arguments of the two sides we obtain
£
(3.27) 2 Atg(a—p)+ Atg(a—x) = —(1+2k),

and k can take the value 0 or 1 depending on whether B, < 0 or B, > 0,
respectively.
Let us write

(3.28) o — otiy,
(3.29) 0—p = |a—p| 6o — g giht
(3.30) a—zx — |a_x]eiarg(a—x) _ 7‘26?1'1.

Notice that from (3.25) it follows that

dImax _ Im=x
v [u—x]2’

which, by (3.23), implies Im» = 0. Thus we find that the function x»(r)
is a real function.

We shall now use the fact, following from (3.28) and (3.20), that
¥ > 0 and therefore ¢, € (0, «) and ¢, € (0, =).

Moreover, from (3.29) and (3.30) we have

(3.31)

(3.32) = Si.ztl and 1, = sin[{m(le/—}-l)—ml]'
Thus from (3.26) we obtain .
-1];'—01 = T:;? = const,
and from above and (3.32) we find
(3.33) y = By 'sin’t,co82t;, when k =0,
and
(3.33") y = — B 'sin’t,cos2f, when k =1.
Since from (3.23) we have —dl = s and from (3.33) and
dv e — af?
(3.33') we find —;’% = 4-2B; 'sint,cos3tf;, where the ‘-’ corresponds
to the number & = 0 and “—" to the number & = 1, therefore
(3.34) ih _dy M B:[2sint, cos2t,c083t,]7".

dr dv d,
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Notice that the function ¢,(7) is strictly monotonous and thus it has
an inverse funetion z(¢,) defined in the interval {¢,(0), {,(7,)> = (&, &, D

Let us now put f(2,) = & in equation (3.12). Then, using notations
(3.20) and (3.28), we obtain

dt . dt
dlogF,, (&, 1) = = ¢ %ih
B T = ) —Fw, 07 () —a(o)F’
d
and since Y _ __y_, we have
dx |4 —al?

(3.35) dlog P, (£, 7) = e *1dlogy.
Integrating (3.35) in the interval (f;,1'>, we get

r?
tl

(3.36) logf'(z) = [ e~*"dlogy(t,)
4
and hence
' . . 1 . L4 . 1 ’ Sin2t’l’
(3.37) logf (2,) = 2¢(sin2t, —sin2¢,) —2¢(t, —1,) +log ——-.
sin 2t,

In (3.37) the numbers ¢, and ¢, are unknown and we are going to
determine them. From (3.24) we obtain

d —_
(3.38) v =7

dv  |u—al?
and thus, by (3.28) and (3.29),

p—x = —|a—pleost,,
which gives

dr -+ B,sint,cos2t, =

Basing ourselves on (3.31), we get

d —2cost,cos3t
(3.39) == 1295
dt, + By cos2t,

Take under consideration, in turn, relations (3.33) and (3.33"). Put-
ting successively v = 7, and v = 0, we obtain

Y1 Yo
3.40 B = 17 17 = . 14 ’
(3.40) * 5 sin’t] cos2t; ~ sin’t;cos2t; ’

where ¥, = Imz, is given together with the point z, € P} but ¥, = y(z,)
is still unknown.
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Integrating equation (3.39) in the interval (%, t,>, we have

(&) — (L) B”"‘[ sm2t’ — “logtSBE | rop 4 Lo 1—sm2t;]
r —x(t) =4 — ——log——— —log—7—1-
! =3 1T g "8 {sinat] LT g 8T {simat,
It is known that «(f;) = z, = Rez, is given together with the point z,
but z(t;) = , is unknown. Thus

1 1—sin2t; 1 1 —sin2¢;
@, =a,+ B;?| —sin2t] — —log =— — - +sin2t, + —log— 1
1= %L B [ 1T 8 T ginay TOMRT S g1+sin2tl]

and hence, by (3.40), we get

(3.41) @, =@+ Yo [— sin2t; — 1 log,l—s.ﬂ
sin®t, cos’2t; Y2 T 14sin2¢)
L sinat, + Llog L5024 ]

2 1-+sin2¢)

Notice that (3.27) may be written in an equivalent form as
(3.27") 2(u—2x)—(x—=x)—a = const.

Put in (3.27") v = 0 and v = 7,, successively.
Then, using (3.28)—(3.30), we get

(3.42) Ty + Yo (2 cott, - cot 2t;) = @, v, (2cott, +cot2t).
On the other hand, from (3.2) we have
(3.43) x,c08a—¥Y,8ine = K,

and therefore it is possible to calculate the unknown quantities z, and v,
from (3.42) and the numbers ¢, and ¢, will be calculated at the same time.

It is obvious that a(z,) = #(7,) + %y (7)) = f(2,). We shall now find
f(2) and in order to do that we shall integrate successively the equations
dy Y

- and (3.39) in.the interval (¢, t; )

v |u—al?
We get
1 1 —sin2t)
3.44) R — R B3| —sin2t — —log ————~
( ) ef(z,) ez, + By [ sin 21, 5 0og 1+ sm2t,

N ,nzt,+110 1 —sin2¢,
1 508 T
Ty %8 T sme,

and

(3.45) Imjf(z) = Imz+ B;*[}cos2t, —}cosdt, — 1eos2t, +}eosdt;].
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Thus
R | 1 —sin2t) o,
(3.46) f(z,) = zc,:i;Bo‘a[ —sin2t, — Elog m~+sm2tl+

+ ! lo 1—sin2t + B; '[$cos2t) — Leosdt, — Leos2t + Lcos4t,]
B g1+sin2t1 0 1 12 1T g
Moreover, from (3.37) we obtain
’ .o s iz . ’ L ’ stt;,,
(3.47) I (z,) = exp[2¢(sin2¢, —sin28)—2¢(¢; — )] ——.
sin2t,

Equalities (3.46) and (3.47) enable us to determine Arg“—);c((z°))
29

and thus to find the required extremum.

THEOREM 3.1. The extremal values of functional (3.1) are determined
by the following formula:

e oy et o SID2EY
Jextr = Arg {exp [2¢(sin2t; —sin2t,) —2i(t, —tl)].—l, X
sin 2t
y B_a(, or + 1o 1 —sin2t sin2¢’ — L1 1—sin2t;’)
1 ’S 1 e T e o s ol
Gk Dot \SINEh o 08 ey 1 79 %8 1 sinat,

-1
+iB; (3 cos2t, — Leosdt, — Leos2t, — 1eos 4t1)] }

and the numbers t,, t, and B, are defined by formulas (3.41), (3.42)
and (3.43), respectively.
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