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On an integro-differential equation

by J. SzArski (Krakow)

Introduction. The paper deals with the following integro-differen-
tial equation

b
(1) [f we, nay]uict, o) = —act, 2yu(t, o),

where a,b and A(f,x) > 0 are given and u(?, x) is the unknown func-

tion. An equation of this type was derived by J. Bodziony for the de-

scription of the process of screening of granular bodies [1]. The unknown
b

quantity [ «(t,y)dy has the physical meaning 'of the total volume of

the ma,te;ial contained in the screen at the moment i.

A funection-u (¢, z) defined for 0 <t < {, and almost every z in (a, b)
will be called the solution of equation (1) if it satisfies (1) almost every-
where and has the following properties:

1° w(t, x) is absolutely continuous in t for almost every z,
2° wu(t,x) is Lebesgue integrable with respect lo x,
b
3° [fu(t, g/)dy]"1 i8 integrable with respect to t in every compact in-
a
terval contained in 0 <t <, (1).

The following initial value problem for equation (1) is considered
(see [1]).

PrROBLEM P,. To find a solution of (1) satisfying the initial condition
(2) (0, z) =v(x) for almost every x

where v(r) 18 a ¢iven function in (a, b).

The purpose of this note is to prove, under suitable assumptions
on the coefficient A(?, ) and on the initial function v(r), the uniqueness,
the existence and continuous dependence on A and v of the solution
of problem P, and to discuss some of its important properties. The method

(*) We restrict ourselves to solutions satisfying 3° since without this requirement
the solution of problem P, would not be uniquely determined (see § 2, Example 1).
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used is that of successive approximations. In the case when A(t, ) does
not depend on ¢t and has at most one point of discontinuity the existence
and uniqueness of the solution as well as some of its properties were
proved by J. Bodziony and S. Golgb [2]. Their method is quite different
from ours and cannot be applied if 2 depends on ¢.

§ 1. Reduction of problem P,.
AssuMPTION H,. We suppose that v(r) is non-negative, Lebesgue
integrable in (a, b) and
b
(3) [v(@)dz>o0.
a
AssumpTIioN H,. We assume that A(t, x) is defined and non-negative
almost everywhere in 0 <t, a < x < b. In every finite rectangle 0 <t < t,,
a <z <b it is bounded and Lebesgue integrable (as function of two vari-
ables).
PropPoSITION 1. Under the assumption H, problem P, is equivalent
to the following one.
PRrROBLEM P,. To find a solution of the equation

@) wit, o) = vio)exp | [a(s, )] [ (s, pray]as}
0 a

which is defined for 0 <t < t, and almost every = in (a, b) and satisfies 2°
and 3°.

Proof. Let u(t,x) be a solution of problem P,. Then, for almost
every fixed x in (a, b), u(t, ), as a function of ¢ satisfies almost every-
where in 0 < ¢ < {, the linear differential equation

() u = a(t, x)u

with the initial condition (2), where
b
a(t, o) = —A(t, @) [ [ w(t, y)dy

is, by 2° 3° (see the Introduction) and by assumption H,, integrable
in ¢ for almost every z. Therefore, owing to 1° (see the Introduction) % (¢, )
satisfies equation (4) for almost every x and hence is a solution of prob-
lem P,.

Now, suppose u(t,z) to be a solution of problem P,. From (4) it
follows that 1° holds true and that equation (1) is satisfied almost every-
where in 0 <?{<1t,, a <2 <b. Hence u(t,x) is a solution of problem P,.
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ProrosiTioN 2. Under the assumptions H, and H, we have for the
solution w(t,x) of the problem P,

b
1 u(t,2) >0, [u(t,y)dy >0,
a

v

3° fu(t,y)dy is non-increasing with respect to 1,

a
b
6° [w(t,y)dy is absolutely continuous in every compact interval con-
a
tained in 0 <t <t,.

Proof. From assumption H, and from equation (4) follows 4°.
Therefore, u(t, ) satisfying almost everywhere equation (1), we have
by 4° and assumption H, w(t, z) < 0 almost everywhere. Hence, by 1°
#(t, z) is for almost every x a non-increasing function of ¢ and conse-

b

quently the same is true for fu(t,y)dy. From this and 4° we get for
a

any t; <<,

b b
(6) I u(t, y)dy = f w(t,y)dy = K, >0 for O0<t<4.

@ [12
By assumption H, we have for some constant .1,
(7) 0 < Alt, 2) < 4,

almost everywhere in 0 <t <<t, a <<z <b Put

]

(8) ] v(v)dr = A .

Now, from (1), (6) and (7) it follows that for « .t €[0,?,}
. h

b
” w(t’, ac)(la:—f w(t', .-z:)da:[

(47

b v b
= U v(x) [exp{-—f [A(s, m)“ u(s, y)dy]ds}-—

v’ b .
—exp{—f [l(s,a:)/f u(s, y)dy]ds}]dzi
0 a

b r 4
< [w(@)|/ [l(s, o)/ [ s, «'/)d?’]dsldx
(2 v @

K,

Itl '—t”l ’

e
=

which completes the proof of 6°.
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§ 2. Uniqueness of the solution of problem P,.
THEOREM 1. Under the assumptions H, and H, two solutions of prob-
lem Py, in 0 <t <1y, a<<x <b are equal for almost every wx.

Proof. Let wu,(t,x) and wu,(?, x) be two solutions of problem P,.
It is sufficient to prove that for any 0 < #, < ¢, the statement of Theorem 1
holds true in 0 <1< t, a <z <b. By the same argument which led
us to conclusion (6) there is a constant K such that

O
Jwt,pdy =K >0,

(9) ‘o for 0<t<1,.
f Us(t, y)dy > K > 0,

«

Since w, and u, satisfy equation (4), it follows that for almost every z

t b
fty @) — ot @) = o(@)jexp{- [ (s, )/ [ wi(s, y)ay]as} -
0 a

¢ b
-—exp{—f [l(s, :I;)/f Uy(t, y)dy]ds}l .
Hence, by (7) and (9) ’

lul(t’ m)_“z(t, .E)[
[/ b b

< v(x) f [A(s, x) J |y (8, ¥)—ua(8, y) Ay /f (8, y)d-yfbu,(s, y)dy] ds
0 «@ «

. «
gv(w)%f{f lu](s,y)—uz(s,y)ldy]ds—
0 «

From the last inequality we get by (8)
b t b
| AAI ) y
(10) | (t, @) —ult, @)idz < 52 | | | lwls, 1) —wals, )l dy fds -
« 0 @
Hence, it follows by a standard argument that
b

(11) [ lwy(t, @) —unft, @)dw =0 for  0<t<t,

a

whence u,(t, x) = uy(t, #) for almost every =.

Remark 1. By 4° and 6° (see Proposition 2) it is evident that if »(x) is
continuous in a certain subinterval 4C(a, b) and A(t, x) is continuous for
0<t<ty, ved, then the solution of problem P, is continuous in the

same set. In that case, by Theorem 1, any two solutions of problem P,
are identically equal for 0 <t < t,, = € 4.
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ExampLE 1. The following example shows that if we drop the re-
quirement that the solution of problem P, satisfy 3° (see Introduction), then
it may happen not to be uniquely determined. '

Let A(t,2) =1, a =0, b =1, v(2) = 1. Then

U(t, ) =1—1 for t>0,
and
1—t for 0<t<1,

Uy(t, @) =
() @) {0 for t>1

are two different solutions of equation (1) satisfying the initial con-
dition (2). Of course, in accordance with Theorem 1, they are equal in
the interval 0 <t < 1.

§ 8. Existence of the solution of problem P..

THEOREM 2. Under assumptions H, and H,, for t, sufficiently small,
there exists a solution of problem P, in

(12) 0<ti<ty, a<z<bh.
Proof. Choose ¢, > 0 so small that

2ty A 1
(13) exp(———f‘l——") >5, l<1,
where A is defined by (8) and A, is the upper bound of A(f, ) in 0 <t <1,
a<x<b We now define the sequence of successive approximations

b

4 .
(14) wlt, @) =v(@), wult,2)=v(@exp{—[[1(s, 2] [ uls,y)ay]ds} .

First we prove by induction that formulas (14) define in (12) for almost
every x functions satisfying 1°, 2° (see Introduction) and that

b

(* ‘4. . - .
(15) ‘ w(t, y)dy > o and is continuous in 0 <t <{,,

«a

(16) u(t, z) < v(x).

This is obvious for » = 0 by assumption H, and (8). Suppose it to be true
b

for » = k. Then, | u(t, y)dy being continnous, (15) holding true for » = k&
@
and A(f,r) being integrable and bounded in (12), the function
b
Aty x)/ fu,,.(t,y)dy is also integrable and bounded in (12). Hence it

followsu that
b

f o
exp{—f [).(s, <v)/'vj u,_.(s,"y)dy]ds}

21+
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is defined in (12) for almost every « and is integrable with respect to z;

consequently, the same is true for u,..(¢, z) and inequalities (15) and (16)

hold true for » = k41 by (13) and (14). Since 1° is obviously satisfied
b

by #x+1, it remains to prove that f U 11(t, y)dy is continuous. Now, this

follows by Lebesgue’s theorem froE the continuity of u;.,(f, z) in ¢t and
from (16). Next we will prove that sequence (14) is convergent for all ¢
and for almost every z in (12). Indeed, by (14) and (15) we have for » > 1

[uv+1(ts w) - u,,(t, 'I‘.)l

< ”(m)’exp ‘—f [l(s, w)/ _f u(8, ?/)d.u] ds} -
0 [

—exp ).(s v) U—1(8, y)dy | ds
l

\'v(:v)U A(s, x) [J (u,s w)— (8, y))dy/fw,s ’l[)dl/J Uy—1(8, r/)d'y]ds'

[

<%v(w)ofUIu»(s,.f/)—'u-»-l(s,y)ld.u]ds-

Hence, using the obvious inequality

by (8 @) —19(t, 2)| < 0(x)

we get by induction

¥y = 0, 1, )

f,41(2, ) —w,(¢, )] < v(2) [4/10 ]

The last inequalities imply our assertion. By Lebesgue’s theorem and
by (16) we infer that

u(t, ) = lim u(t, x)
r—>+400

is integrable with respect to x and

b

b
lim j w,(t, y)dy =fu(t,y)dy for 0t <ty
»—>+00 a

a

By (15) we have moreover

b

J w(t,y)dy >

@

> 0.

Lo| %
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Therefore
b b
lim 4(t, @)/ [ wit, y)dy = (¢, @)/ [ uit, y)dy

almost everywhere in (12) and since by (15)

|act, =)/ f w(t, y)dy| < 2A(t,2)/4,

we infer by assumption H, and by Lebesgue’s theorem that

¢ b t b
lim [ (26, 2)] [ o, 9)dy|ds = [ [a¢s, 21 [ wit, wydy]as

for all t¢[0,4,) and almost every z ¢ (a, b). Hence, letting » tend to oo
in (14) we find that « (¢, x) satisfies equation (4) in (12) for almost every =
and consequently is a solution of problem P; in (12).

Remark 2. By Remark 1, if #(x) is continuous in a certain sub-
interval 4C (a,b) and A(¢,x) is continuous for 0 <t <{,, €4, then
the solution «(t, z), just obtained, is continuous in the same set.

Let us denote by 7' > 0 the largest positive number such that the
solution of problem P, exists in

(17) 0<t<T, a<w<bh.

By Theorems 1 and 2 such a number is uniquely determined and obviously
there are two possible cases: I} T'< + oo, II) T = +oo.

§ 4. Some properties of the solution of problem P,. We
suppose throughout this section that assumptions H, and H, hold true.

THEOREM 3. For the solution w(t,z) of problem P, the limits

b
(18) imu(t, z), limf'u(t,y)dy
t->T t->T
exist and are finite and non-negative. If we put
(19) v¥(zr) = lim»(t, z),
t-T

then v*(x) is integrable and

b b
(20) [ v*@)de =lim [ u(t, y)ay .

a
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b
Proof. Since «(t,«) and f u(t, y)dy are non-negative and non-

a
increasing with respect to ¢ (see § 1), limits (19) exist and are finite and
non-negative. Now, from the obvious inequality

(21) 0 <u(t, ) <o)

and by Lebesgue’s theorem, we conclude that v*(x) is integrable and
that (20) holds true.

THEOREM 4. For the solution w(t, x) of problem P, we have

b

b
(22) %f 'uf(t,y)dy;:J u?(t,y)dy fqr almost:every te[0,T).

a

Proof. Since u(t, z) satisfies almost everywhere equation (1) (see
Proposition 1, § 1), it follows by (6), (21) and H, that
b

, N A
[uitt, @)i < Ayu(t, )/ [ ult, pdy < ;2 o(a)
f - ‘ 1

almost everywhere in every finite rectangle 0 <t <{, a <z <¥b con-
tained in (17) with suitable constants 4, and K,. The right-hand member
of the last inequality being integrable, relation (22) is an immediate
consequence of Lebesgue’s theorem and of the absolute continuity of
w(t, z) in t.

~ §5. Discussion of cases I and II. We assume in this section
H, and H, to hold true.

THEOREM 5. In case T < -+ oo we have

b

(23) lim | w(t,y)dy = 0.
t---T ;'

Proof. By Theorem 3 the limit (23) exists and is non-negative.
Now, suppose that

h Y

lim | «(t, y)dy > 0 .
=T,

Then, from (4) and (20) it would follow that

b

/ ’ n(s, ¥y ).d;l/] ds}

T
(24)  o*z) =limu(l, r) = v(z)exp {— | [l(s,,;z;)
t--T 0 '
and /
b )

(25) [ v™@)de =1lim | w(t, y)dy > 0. :
° -7 ;'

a
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In virtue of (25) we might apply Theorem 2, replacing v(x) by v*(x) and 0
by T, and hence for a suitable T, > T there would exist in T'<<t < T,
a < x <b a solution u*(t, ) of the problem P, for the equation

t b
(26) wuXt, &) = v*(m)exp{—f [).(s,x)/f u*(s, y)dy]ds} .
T a
Writing
o _ u(t, ) in 0<t<T,a<az<b,
(27) wr{t, @) {u*(t,w) in T<t<Ty,a<z<bh,

we would have by (4), (24), and (27)

¢ b
u**(t, r) = v(z)exp {—] [1(3, w)/f n**(8, y)dy]ds}
0 [
almost everywhere in
(28) 0t<Ty, a<z<b.

Therefore, u**(¢, x) would be the solution of problem P, in (28) and thus
we would obtain a contradiction because of the definition of 7' and of
the fact that T,> T.

THEOREM 6. If for almost every t and almost every x in a certain subset
EC (a,b) of positive measure we have A(t,z) = 0 and f'v(m)d:c > 0, then
K
T = + oo.
Proof. Under the assumptions of our theorem equation (4) gives
Ju(t, r) = v(x) for almost every r ¢ E and for all . Hence, by 4° (see § 1)
b . .
[uit,pydy > [ wit,p)dy = [ viy)dy >0 for- 0<t<T,
K

[ K

and consequently by Theorem 5 we have T"'= - oo.

The following example shows that the conditions A(¢{,z)> 0 and
v(2) > 0 everywhere, do not imply T < + oco. .
EXAMPLE 2. Let A(t,r) = exp(—1t), v(z)=1, a=0, b =1. Then

w(t, r) = exp(—t) is the solution of problem P, defined in 0 <, 0 < = < 1.
Here we have T = L oo,

However, the next theorem shows that 7' < + oo whenever (1, x)
has a positive lower bound.

THEOREM 7. If almost everywhere in 0 <t, a <z <b
(29) A, @)= 4> 0,
then 1' < + oco.
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Proof. From (1), (29) and %(f, ) = 0 (see § 1) it follows that almost
everywhere

b
([ wtt, pyaw)uitt, 2) < —dgut, o),

b
whence integrating with respect to # and dividing by [ u(t, y)dy we get

for almost every ¢
b

[ ity yyay < —4, -

Hence, by Theorem 4 we have for almost every te (0, 7)

14
d
Ei&fu(t,y)dy < —4

/]
and, putting a, = [« (0, y)dy, we get by 6° (see §1)
a
]
J it y)dy < ag— st
for all t [0, T). Put {, = a,f4y; then, if ¢, < 7, we would have by the

last inequality .

J‘ #(t, y)dy <0,

aQ
which is impossible by 4°. Hence, we must have 7' < ?, and consequently 7'
is finite.

§ 6. Continuous dependence on the initial values and on 1
of the solution of problem P..

THEOREM 8. Let v(z), va(z) and A(t,z), As(t, z) (n =1, 2,...) satisfy
assumplions H, and H, respectively. Denote by wu(t, z) the solution of prob-
lem P, corresponding to the tnitial function v(x) and to the coefficient A(t, x)
and let

(30) 0t<T, a<z<bh
be its largest existence domain. Suppose that

-]
(31) lim [ |oa(@)—v(2)|de =0,
n-00 o
(32) lim A,(t, z) = A(t, ©) almost everywhere in (30),
-0
and that

(33) Aa(t, z), A(t, ) have a common upper bound in every finite rectangle
contained in (30).



On an integro-differential equation 331

Under these assumplions, for every 0 <t, < T the solutions uq(t,x)
of problem P,, corresponding to the initial functions va.(x) and coefficients
Aa(t, ), exist in 0 <t <t, a<x<b for n sufficiently large, and

b
(34) Hm [ ua(t, @) —u(t, 2)|dz = 0

7nt—>00

uniformly with respect 1o t €0, t,].
Proof. By (31) we have for all indices » sufficiently large

b
(35) 24+1> [va(@)dz > A>0,
a

where

b
24 = f v(r)dz .
By (32) and (33) and by Lebesgue’s theorem we obtain

bt
36)  lim [[ |An(s, 2)—A(s, x)|0(z)dsde =0 for O0<t<T.
N=>00 ad
Let t, satisfy the inequality
. 4, 1)
0<t < mm(l, —mln—) y

where A, is the common upper bound of i(f,z) and A4(¢,z) in 0 <t <1,
a <x <b. Then, from the proof of Theorem 2 it follows by (35) that
u(t, ) and w,(t, z), for n sufficiently large, exist in

(37) 0
and satisfy

/
{

t<ty,, a<ax<b,

b b
A
(38) Jutnay=5, [, piy>

[/ 2 a

4
5 -

We will now prove that (34) holds for ¢ ¢ [0, #,]. Indeed, from equation (4)
it follows that for almost every x in (37)

¢ b
[ualty 2)—(t, )i = {vn(2)exp {~ [ [an(s, 2) ] [ wats, y)ay]ds} —
0 a

t b
—-v(a:)exp{—f [).(s,w)/fu(s, y)dy]ds” .
0 a

Hence, by (38) and by the definition of A and A4, we obtain
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luﬂ(t’ x) —u(t, z)|

< |va(z) —v(2)| exp {—"f [ln(s, :c)/f u(s, y)(ly] ds} +
0 a
t b
+vn(m)|exp {—f [}.u(s, w)/J (8, y)dy] ds} -

—exp{——f [‘vn('?y-'”)/j: u(s, ?’)dy]d"’” N
3 s

+‘D(w),exp{_f‘ [h(s’w)/fb u(s, ?I)dy]ds}—

—exp{—j [}.(s, "’)/f (s, y)dy]d8}|

< |va(2) —0(2)| +

t b b b
+0u(@) [ [2ato, @) | 1eats, ) (s, iy [ wals, pay] ws, yay]ds +
. a » « a
+oia) [ [12ats, 2) 266, @)/ [ s, yyay]as
0 a
[ ]
< Ioa(a) (@) +on0) 22 [ [ fuals, y)— s, w)layds +
0«

. ¢
+§o(m)J \n(s, @) — A(8, 2)|ds .

Putting
bty

b
An =fl'”n($)""7(“f‘)|dw; B, =ff | (8, &) — A(s, x)|v(x)dsdx ,
a a0
we get from the last inequality by (35)
_ b
30 [ ity ) uit, o) do

2 (24 - 1)44,

4 b
< Aat :{Bn + Y T J U ln(8, y) —u(s, ¥)| d‘!/] ds .
p .

It follows from (39) that ([3]) putting C = (24 +1)441,/A2

b
f |a(t, m)—u(t,{m){dm <‘(A,,+ ;21 B,,) exp(Ct) for .0 <t< .
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Hence, by (31) and (36) we get (34) uniformly in 0 <t <{,. Thus we
have proved that the set Z of numbers {, > 0, such that, for indices =
sufficiently large, wun(f,x) exist in (37) and (34) holds uniformly in
0 <t <t,, is non-void. Now, denote by ¢* the least upper bound of the
set Z (or + oo if Z is unbounded). To complete the proof of our theorem
it is sufficient to show that ¢* > ¢,. For this purpose, suppose that the
contrary t* <1, holds true. Then ¢* < T and (¢, z) exists in 0 <t < t¥,
a < x < b. Therefore, we have by 5° (see Proposition 2)
b
(40) [u(t,z)ds>24*>0 for O0<t<t*,
b

where 24* — fu(t“, xz)dx. Choose 0 < i, < t* so that

[
. A* 1

(41) t*—t,<mm(1,—2lTln§),

where A* is the common upper bound of A(t,x) and A.(t,z) in 0 <1

<t+1l, a<z<b. Since t, <t* t,e¢Z and the solutions wua(¢, z), for

indices n sufficiently large, exist in 0 <t <t,, a < < b and (34) holds

true for 0 <t <{,. Hence, by (40) we have

b
(42) [ talty, 2)dz > A% > 0
a@
for n sufficiently large. Now choose {5 so that
. A* 1

From (42) and (43) it follows, by the argument used in the first part of
our proof (replacing va(z) by ovn(x) = ually, z), 0 by ,, A by A* and 4,
by A*) and by the argument applied in the proof of Theorem 5, that for n
sufficiently large u,(t, z) exist in 0 <t <t,+ 15, a <z < b and satisfy (34)
in0<t<t+1t. Thus we have obtained a contradiction because of the
definition of t* since by (43) t* < t,+15. This completes the proof.
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