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by ZoriA SzMyYDT and BOGDAN ZIEMIAN (Warszawa)

Abstract. In this paper a natural construction of a fundamental solution of the
wave operator 9%2/dt2 — A, is presented. This is done in a completely clementary way
and without using the methods of Bessel functions as it is commonly the case. These
methods are replaced by an application of such natural and important features of the
wave operator as homogeneity and invariance with respect to the group of Lorentz
transformations. Taking these features into account and using the technigues of
the Fourier transformation we prove in Section 1 the main theorem which gives an
explicit formula (up to a constant factor) of the unique Lorentz invariant funda-
mental solution E, with support in the upper half-plane.

The following sections are devoted to the evaluation of the above-mentioned
constants. This is done in terms of the recursion relations obtained by an application
of the method of descent to the ealier obtained formulae for E, with an unknown
constant factor.

Lorentz invariance is one of the most important features of the wave
equation.

Therefore in the study of the wave equation the approach presented
by Methée [1], [2] seems to be the most natural. Methée gave, first of all,
a characterization of distributions invariant with respect to Lorentz
transformations, and then applied it to finding fundamental solutions
of the operator [J,.

The proof presented there was not simple. Owing to the importance
of the wave operator, we regard it useful to present a natural, intelligible
to beginers, way of arriving at a fundamental solution E, of the operator
O,, » > 3.

In Section 1 of the present paper we deftermine, up to a constant
factor C,, the form of a solution E, for » even, n > 4. It is the most signi-
ficant part of the paper, in which we apply the theorems on distributions
invariant with respect to the proper group of Lorentz transformations,
which were proved in [5]. These are: Theorem 1 and 3 from [5]. The
Methée theorem (1) itself is not necessary for the proof. Theorem 1 from

(1) See [1] or [5], Theorem 2.
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[56] would do instead; in fact, also the weaker version of it, which is easier
to prove and was published in [6], would suffice.
In Section 2 dealing with the case of » odd, » > 3, we determine,

using the results of Section 1 and applying the method of descent, the
form of E, up to a constant factor C,.

In Section 3 we find the constants C, applying the method of descent
this time from » odd.

The present paper is strongly connected with the preceding paper [5].
We retain here, as we also did in [5], all the notation introduced in [4],
which is generally used in the theory of distributions.

1. Explicit formulae for the fundamental solution E,,,, m € N, m > 2,
determined up to a constant factor C,,,. Suppose that there is a distribution
Ee S (E™") (?) satistying:

(1) O.E =6, 6D (E".

Then the distribution(?) B = F_F satisfies the equation
) 2 —in

(2) WE+ME (27)""" 6, ®1,.

We know that the tempered distribution given by

sint|z|

(3) B(t,s) = (2n)" " Y (1) i

for (¢, x) € E**!

is a solution of (2). Hence

(4) E = F;'E, where E is defined by (3),
is a fundamental solution of [7J,.

In our further considerations F will always stand for the distribution
defined by (4). Retaining the notation of [5] we have:

THEOREM 1. Let E be the distribution (4). Then the distribution E
is G-invariant, where E = FE = F,E.

Proof. Notice that E e D’ (E™*1) is mvana,nt with respect to rotations
in E", becausc E possesses this property and E = F,E By Theorem 3

9\~
in [5] we only need prove that (1 3y + 9, —a—) E — 0 on E™. On account
1 T

of the following two relations:

0 0 0 0
F:I(T 0y1 W) = —3 0y1 EF,—I’U), Fr_l(ylg ’M)) = —'l:yltF,_l’w,

(3) For simplicity we now write F instead of E,,.
(®) F(F;) denotes the Tourier transform with respect to the variable system
Z = (%y,..-»Fp) (Y0 t). F = F,F; = F;F, see also [4], footnote (10).
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which hold for an arbitrary w e §'(E™*!), it is sufficient to show that

The proof of this formula is easily obtained from the form (3) of the distri-
bution #.

THEOREM 2. The fundamental solution E is G-invariant and the support
of E is contained in V.
Proof. Let g €@G. Applying consecutively Proposition 3 from [4]

(on the Fourier transform of the substitution), Proposition 3 in [6] and
Theorem 1 we obtain(*)

Bog = (F~' E)og = F'(Eo(g"")) = F' E = E.
Hence the distribution ¥ is G-invariant. From (3) it follows at once that
supp £ < E**'. Hence by (4) also suppE c E"*'. A direct application
of Proposition 6 from [5] ends the proof.

It follows by Theorem 1 and Property 2 from [6] and by Theorem 2
(above) that there exists a unique distribution E* € D'(E") equal to zero
on E! and such that(®)

(5) Elgl = E*'[J(g)] for ¢ € O7°(£2)).

We know that E satisfies equation (1). In order to find the differential
equation which is satisfied by E*, we shall first consider the case of a G-
invariant function f. If fe (*(2,), then

*h dh
© Ot 0) = (48 57 +2man)
where f(t, ) = h(t*—|x]%) on £,.

Formula (6) can be extended to the case of distributions and we
have the following

LEMMA 1. Let v € D'(E™"). Suppose there exists a distribution o*
.€ D'(B") such that v[p] = v*[J(@)] for @ € C*(E™'). Then

for (t, ) € B3,

g=t2—|z|2

d* d -
(7) O.vle] =(43 - +2(n-+1) —E) *[F(@)]  for ¢ e C2(EH).

Proof. Let C2(B") 5 h, —=> v" € D' (E") and let f,(¢, ) — h,(1*— |a]?)

(» =1,2,...). We know that f,[p] =h[J(p)] for ¢eOF(ELY)
(»=1,2,...), and

limf,{p] = limh, [J(p)] = o* [F(g)] = v[p] for p e CX(E).

- 00 gl

(*) The symbol ¢¢ was defined in Definition 2 in [4].
(°) We retain the notation of [ 5].
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Applying formula (6) to the functions f, we obtain the relations:

d*h, dh,
0.l (2, @) =(4s L 2(n41) ds)

8=t2—|z]2
Hence

d? d

0. 19) = (1555 420041 ) W@ for peC(EL)

(v =1,2,..).
Passing to the limit as »—o0, we get (7).
PROPOSITION 1. Suppose that a distribution u € D'(R,) is G-invariant

and satisfies the equation [J,% = 0 on Q,. Let «"* be a distribution from
D' (E") such that(®) u[p] = u*[J(p)] for ¢ € CT(R,). Then

d d
4s (W +2(n+1)g)u* =0 on E.
Proof. Let

w* = (4s 2 +2(n+1) i) u”.
ds? ds
Since [J,u = 0, it follows by Lemma 1 that w* [J(¢)] = 0 for ¢ € O (E"H).
By Property 2 in [5] we get w* = 0.
Remark 1. As an immediate consequence of Proposition 1 we obtain
that the distribution E* defined by (5), equal to zero on E. ("), satisfies
the equation

ar +2(n+1 4T =0 on E
ds? w+1) ds )

(8) 4s

All distributional solutions on E) of (8) are classical solutions. They
are of the form a-s!~™2 b, where a, b are arbitrary constants. Sup-
pose(*) .
(9) n=2m, meN, m=2.
Then the general solution of (8) on E' is the function:
a1t 1 .
¢y =y —= ¢  €,cy — arbitrary constants.
ds l/s

(6) The existence of w* follows from Theorem 1 in [5].

(") E*isequal to zero on EL by Corollary 1 in [5] and on account of Theorem 2.

(8) Commencing from now, (9) will be assurned in all the considerations to follow
in this section.
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Note that a function k defined on E' by the formulae

1
— for s> 0,

(10) h(s) ={Vs
0 for s<0,

is a distribution on E', equal to zero on E' . Hence

dm—l

1 / L
( 1) dsm—l

is a distribution from D’(E") of order m —1, equal to zero on E' . What
is more, for any function a e CP(E!'), applying (10), (11), the Leibniz
formula and the integration by parts, we obtain:

6T o) ) o
ds? + ds a

c 1] amt! a
— 2(—1y™! Bf _}7?(2W(Sa(s))_(n+l)_ds_’" a(s))ds =0.
From the above considerations follows immediately
PROPOSITION 2. Suppose (9). Then every distribution T € D'(E") equal
to zero on E' and satisfying (8) on E' is of the form T = ¢;T* +¢, Y on
E'\{0}, where ¢,, c, are arbitrary constants, Y is the Heaviside function,
and T" is defined by (10), (11):

(12) T* [a] =f %:s—";—_r a(s)ds for a e C™ Y(E").

By Remark 1 and Proposition 2 there exist two constants ¢, ¢ such
that

(13) E* =c¢T*+6Y on E'\{0}.
Let E° be defined by the formal definition

oo

1 an!
. l/; dsm—l

(14)  E'lg] = (P*(¢))(s)ds (°) for ¢ e OF(E™!).

The correctness of (14) follows from Property 3 from [5]. We have
E e D'(E*t') and

(15) E [¢] = I"[a],

(®) The operation P* was defined in [5].
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whenever ¢ € OF(B"*"), a e OF~'(E"), a(s) = (P*(p))(s) for s> 0. Since
P*(g) = 0 for ¢ e CX(B"'\TV,), we derive from (14) that

(16) E =0 on E""I\V,.

Applying (5), (13), (15) and Property 1 from [5], we obtain for ¢ € C3°(V )
the relations:

(17)  El¢]l = E*[J(9)] = ¢T*[J (9)]+E[J (9)] = cE [p]+ dw[e],
where w denotes the distribution:
(18) wlp] =1[J(p)] for p e CP(V,).

To prove ¢ = 0 we need the following lemmas:

LevMaA 2. (a) Suppose (9). Then the disiribution E is homogeneous
of order 1—n on E™*', and the distribution w is homogeneous of order zero
on V,.

(b) The distribution E is homogeneous of order 1 —n on E"H!.
Proof. Let A,(t,x) = (ht, hx), h > 0. To prove (a), note that for

@ € C(E™') we have

(19) P*(gpo 4,)(s) = h" — (P*(¢))(h?s)  for s> 0.

Set a(s) = (P*(¢))(s) for s > 0. By (14) and (19) we get

1 01 a! 8
(B0 A)p) = ey B [podyp] = w | e o) s

1 f1 !
= hzm—l ;/—i dtm—l a(t)dt hn— E[¢]
0

Similarly we have
(wo 4;)[9] = wle] for @ e CF(V,).

To prove (b) observe that E = F,E implies the relation FE = F, E.
Applying (3) and introducing a convergence factor ¢~ % we have FE
= lim », in D'(E™*"), where distributions », are functions:

&0
_r
(t—iey—lgl*’

Hence, by the continuity of the operation of superposition, we 6btain

1 ¢ .
v,(t, Y) = (2r=)“‘"+"-|—yT f e Tsintly|dr = — (2m) K+
0

(FE)o 4, = (imy,)o 4, = llm(v 04,) =lim_— 1 Dugn _1 e

8—0 h h 2
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Therefore the distribution FE is homogenecous of order —2. Then by
Corollary 2 in [4] we see that E is homogeneous of order 1 —mn.
LEMMA 3. If n is even, n >4, then V__ < suppF.

Proof. Suppose, conversely, that there exists an open set U c V,
such that E[¢] = 0 for ¢ € O°(U). Since obviously V. cF and V, ,c
supp w, it follows by Lemma 2(a) that for the constants ¢, ¢ different
from zero, the functional cE +¢éw, where E', w are defined by (14), (18),
respectively, is not equal to zero on C°(U). Therefore from (17) it
follows that ¢ = ¢ =0. Hence E =0 on V., and by Theorem 2
supp Ec @V _. So, from (5) and Property 2 of [5], we derive the
equality suppE* = {0}. This implies the existence of a finite number
of constants @, such that E* = Y a,6%. Because E* must satisfy (8),

%

we have a, = 0 for k # (n—3)/2 =m—3, so E* = 0 on E', and on ac-
count of (5) E = 0 on E%"'. Applying once again Theorem 2, we obtain
suppE = {0}. Hence £ =0 on E™' by Proposition 2 from [4]. This
contradiction ends the proof of Lemma 3.

We known that V_ < supp &', V, c suppw. By Lemma 3 also V, <
supp E. Therefore the orders of the distributions B, E', w are determined
uniquely on V_ . Applying (17) and Lemma 2 we obtain ¢ = 0. Therefore,
from (13), E* = ¢T* on E'\ {0} and by the same argument as in the proof
of Lemma 3, we get E* = ¢T" on E'. Now, from (5) and (15) follows:
E[p] = c¢T*[J (¢)] = cE [¢] for ¢ € C7(E%"). Hence, in virtue of Theorem
2 and formula (16), the distributions F and E' are equal to zero on E**'\V
and, again by Proposition 2 from [4], we have E = ¢E on E"*.

Returning to the notation £ = E, (1°) we rewrite the last equality
in the form

(20) E, =C,E.

Applying (14), (20), Lemma 3 and Theorem 2 we get the following

THEOREM 3. Suppose (9). Then there exists a constant C, such that
the distribution E, given by:

| d’";' o (Vs + |22, z)
21 E,l¢p] =C, | =-—x ( 2 )d
&1 ¢ J Vs ds™ E{ 2Vs + |z A

for @ e CP(E™Y)

is a fundamental solution of the wave operator 6|9tz — A,,.
This fundamental solution is unique (') in the class of distributions
having support in E4*'. Moreover, E, is G-invariant, E, e S (E"*'),

(1) See footnote (2).
(}1) See Theorem 24.3 in [3].
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suppE, = V.. Inside V_, E, is a function ('?):

1:3-... -(2m—3)
(12— ]mla)i(n—l)

E,(t,s) = C,(}H)™! for (t,z) eV, .

Remark 2. The fundamental solution (21) can be written in the
form (*2):

~ Y(t—lal) 9 (1 0\"(p(t,a)
(22)  Bulel =Gy (f Vit — (o2 6t(2t 0t) (T-t_)dt)da"

Er EL
for ¢ € CX(E**Y), m = 2m, m > 2,

which follows from the following computations:

g m—1 TS
(23) En[‘P] =C, (f ;'; (’?sm_l (‘P(‘/S‘*' 2|2, ) )dS)dKL‘

2Vs +|x|2
Y(t—lal) (1 2\" (ol )
= Cn f(f]/tz ]mlz 2t E) ( 2t )2td,t)dw'

2. Explicit formulae for the fundamental solution E,, ,, m €N,

> 1, determined up to a constant factor C,, . ,. Let ke N, k>1, n
= 2k+2 T = (47 mn)7 z = (wh . n-—])

We know that supp By, = V+, and so we can apply the method
of descent to find a fundamental solution E,, , from the fundamental
solution Hyy,) of the operator [ypyy) = Dyyy—0/0a]. Let y
€ C2(E***1), and let {5,} be a sequence convergent to 1 in E!' (). Taking

(12) Notice that inside the cone V .., E, can be written in the form

1:3-...-(2m—3) () /s + |z|? ,av)
Enlp) = Cp | s~¥n=D
n (9] gm—1 f (E"['j 2) s+ Izlz )ds

1:3-...-(2m—3) o(t, z)
= =1 (t-— e dtdz  for ¢ e CP (V).

(13 B ( L9 )0 ¢ mean the identit erat ( 19 )l stands f 12 and
— —] we mean identity operator, {— — an or — — an
v Y OPeraton or 2t ot

2t ot
1 9\k F) 1 0 \k-t
____) =_1——(——) for k =1,2,...
2t ot 2t 9t \2t ot

() {n,} is convergent to 1 in the sense that 5, € CF (E!), ,(x) = 1 for |z| < »
and for every a € N, there exists a constant C, such that |D?y,(2)] < C; for z € E*
(» =1,2,...). The mecthod of descent is presented in 24.4 in [3].
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the fundamental solution E,, n = 2(k+1), in the form (22) we obtain

(24) By [y] = lim E2k+z [y(t, Z)n,(x,)]

P—>00

_ k-1 ~
~ows [ ([ ez sl ) 25 e)on)e

E2k+1 gl
Note that
|/t2 |1|"'
Y(t—|z]) .
0T aw, = 2Y(1—13) f T Y (t—13).
o Vir— o2 Vit — [:c|2—a7

Hence (24) takes the form

2k+l [y] = 2(k+1)7‘

1 y(t, &) .
fy(t—' a0) at\et at) ( 2t )dt)d"’
"k+l

o y(t,a) =
= — 7041 J((zt 6t) 2t t=|51)dw'

Thus we have proved

THEOREM 4. There exists a fundamental solution of the operator [J,
for n =2k+1, ke N, k> 1, of the form:

_ly(t’x) 00 n+1
(25) B,y =0, f((.?t az) ~ .¢=|z|)d$ for y € C°(E™),

where C, is a suitable constant. E, € 8'(E"*') and suppE,c oV,.. E,
18 G-invariant and it is a unique fundamental solution in the class of dis-
tributions having support in E‘?l.

Remark 3. The constants C, occurring in formulae (21) and (25)
satisfy the relation

3. An application of the method of descent to the computation of the con-
stants C,,, » > 3. To find the constants C, in formulae (21) and (25), we apply
once more the method of descent, this time from E,, » odd. Let n = 2k 41,
T = (2, ..., %,_,), 4€CF(E") and let {5,} be a sequence convergent to 1.
Because supp By, = 0¥, we obtain from (25):
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By [2] = Nm By, [A(t, &)1, (2,)]

B i 1 0\ A, #)

“o [(wa) o))

_ o A, @)
?Nud,imdﬁJ“

A(t, &)do, = 2r f Y
f ]/,.2 ]m|2

Noting that

we obtain

mm~wﬁﬁ%f(fwwvi_
|

~ 1 4\ 1, &) 3
o [ [ o lmm) ") “"")""
0 S Iwi t=r
— 1 0\ At Y
e [ [ Yo 2
g2k+1 I‘”|2 2t 9 t t=r 02"
Therefore

(27) Coppy1 =0y, for keN, k>1.

It is well known that C, = 1/2%, C, = 1/2n.
Hence and from (26) and (27) we derive by induction the explicit for-
mulae for O, :

1
02k=02k+1=%(_1)k+17 (k=1,2,..).

K
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