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On the approximate solutions of an abstract equation

by M. KwaArisz (Gdansk)

T. Wazewski established in [4] a theorem on the existence and
uniqueness of solutions and the convergence of the successive approxi-
mations for equations considered in an abstract space.

In the present paper we discuss such equations and introduce the
notion of approximate solutions. We give some estimations for those
solutions. Applications to a special space and to some equations are also
considered.

1. We introduce the following
ASSUMPTION H, (see [4]).

1° @ is a partially ordered set, i.e. for some pairs of elements u, v e G
a relation # < v is defined in such a way that:

(a) # < v exclude u = v,

(b) if v <v and v < w, then v < w;

2° in @ there exists a minimal element 0 € @, i.e. forany v e @, 0 < u
(we write u < v if u < v or u = v),

3° for any u, v e G a relation «+ v is defined and has the following
properties:

(a) if u,ve@, then u4-ve@, u+v=v+u, u+0=u,

(b) if u,v,we@ and u <o, then u+w < v+ w,

(¢) if u,v,we@ and u+v << w, then % < w;

4° for any non-increasing sequence {un}, 4n € Gy Upi1 < Up, N = 1,2, ...
there exists a unique element u ¢ G called the limit of the sequence {ua}
(we write # = limwu, or 2y, N u).

N—>00
The limit has the following properties:
(a) limwu, is invariant with respect to the change of the finite elements
N—+00
of the sequence {ua},
(b) if 4y = u, n=1,2, .., then limu, = u,

N—>00
(e) if wy™N1, v NV and u, < vz, then u < v,
(d) if 2, N u, v\, then uy+ va Nu-+o.
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AssuMpTION H,. The function a(u) is defined for u e 4 C & and has
the properties:

1° 0ed and if ke 4, then for any v <k, u e 4;

a(4) C @ (a(d) is the set of the values of the function a(u) for

Ue 21);

3°if u,ved and u < v, then a(u) < a(v);

4° if uy,ed, n=1,2,.., and uyNu, then a(u,)Na(u);

5° 4 = 0 is only the solution in A of the equation u = a(u).

DEFINITION. For any % ¢4 we define the sequence {ap(u)} of the
iterations of the element # by the recurrent formula

o) =%,  Gai(4) = afan(u)) , 1 a(u)ed, n=1,2,..

2, We can write the following

LEMMA I (see [4]). If Assumption H, is fulfilled and there exisis a
¢ € 4 such that a(c) < ¢, then all iterations az(c), n = 0,1, ..., of the element c
exist and

Anaa(c) < anle) <e, n=0,1,.., and a(c)NO.

Leyua 2 (see [4]). If Assumption H, is fulfilled and there exist q e /
and bed such that

g+a(b)<d
then the equation
(1) u=a(u)+q
has the solution u = ( y q) < b, which has the properties:

1° m(b, q) = Lim by(b. ), where bo(B, g) = by bass (b, @) = g+ a(ba(b, 0),
n=20,1,..
2° 'ifp b and p < g+ a(p), then p < m(b, q).

LeMMA 3. If dssumption H, ds fulfilled and gned, gni1 < gu,
n=20,1,2,.., bed and

Gtad)<b,
then the equation

(2) w= a(u)+qn
has a solution u = m(b, q,) < b such that
(3) md, gni1) <mby gn), n=0,1,2,..

Moreover, tf gn ¢, then m(b, gu)Nm(b, q), and consequently if ¢n™n0,
then m(b, ¢n) 0.
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Proof. By Lemma 2
m(b, qn) = k]j_ﬂbk(br qn)
where
bolby gn) = b,  brta(b, gn) = tu+ a(bk(b: Qn)) y n=20,1,2,..
Further, we obtain by induction
be(by @uy1) < b(byqn), n,k=0,1,..

Hence, if k¥ —>co, we obtain relation (3). But relation (3) implies that
there exists a limm (b, g.) = %.

n—00
Now in view of the fact that m (b, ¢) is the solution of equation (2),
we obtain

z=a(u)+gq,
and therefore, according to Lemma 2, % < m(d, ¢). But ¢ < qn, whence
we have
m(b,q) <m(b,g.) and m(b,q)<u.
Finally we obtain % = m(b, q).
The last part of Lemma 3 follows immediately from Lemma 1.
LEvMmA 4. If Assumption H, is fulfilled, qe 4, b< b’y b'ed and

gt+ad)<b, g+a®)<d,
then

m(b,q) < m(’,q) .
Proof. From Lemma 2 we obtain
m(b, q) =£{ﬁbn(b5 7, m(,q = ']‘J’_{l;bn(‘b'&) y

but it follows by induction that
ba(b, @) < ba(b’ @)

whence we obtain the assertion of Lemma 4.

DEFINITION. m(q) is called the mazimal solution of equation (1) iff
it satisfies this equation and for any solution %(g) of (1) the inequality
u(q) < m(g) holds true.

LEMMA 5. If Assumption H, s fulfilled, 4 = @, and for any qe @
the equation

u=a(u)+q

has a maximal solution m(q), p e @, and p < a(p)+q, then
p < m(q).

Moreover, if q < q', then m(g) < m(q').
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Proof. Now for any b, b €@ such that, b < b and ¢+ a(b) <. b,
g+ a(db’) < b’, we have

m(b, q) < m(b’, @) < mig) .
Take e @, §>p and b= m(g), where m(7) is the maximal solution of
the equation

w=a(u)+q+7.
We see that & > p and b > a(b)--¢. By Lemma 2 we obtain
p<m(b,q) <m(q).
Consider m(g), m(g'); we now have
m(g) = a(m(q))+ g < a(m(g)+¢ .

Hence, by the first part of our lemma, we infer the relation m(q) <. m(q');
thus Lemma 5 is proved completely. ’

3. We introduce
AssumpTioON H, (see [4]). R is an abstract space such that

1° for some sequences {Z,}, ¥, € B, n = 1,2, ..., there exist uniquely
determined limits lim#, = #, x ¢ R, lima, is invariant with respect to

n—00 n—o00

the change of the finite elements of {#,} (the relation lima, = z will also

N—+0Q

be written as z, —>z);

2°ifa,=s8€¢R, n=1,2,.., then limz, = s;
N=>00

3° the function »(x, y) is defined on the produet R » R and has the
following properties:

(a) r(z, ¥) € G,

(b) riz,y) =0 iff o=y,

(e) for any x,y,4s¢ R

r@, y) <z, z)+r(y,2);
4° for any z* e R and b € @ the sphere
S(@*, b)=[x: ve R, r(z, 2*) < b)

is a closed set;

5° the space It is complete in the following sense: if ¢, ¢ G, m == 1, 2, ...,
¢n 0 and for {zn}, #y ¢ R, n = 1,2, ..., the Cauchy condition

'I‘(.’I:‘n, mn.i.m_) ‘ Cn ) ’j'[,’ m = 1 y 2, e

is satisfied, then there exists a limit y of sequence {z,)},

lime, =9, wyekR.

n—oo
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AssumpTioN H,. The function f(z) is defined on the sphere S(z*, b)
CR, z*e¢ R, bed, and has the properties:

1° f(z) € R;
2° for any @,y e S(z*, b)
’(f(w)!f(?/)) < a’("(‘vy y)) y
where the function a(u) satisfies Assumption H,:
3° there exists a ¢q e 4 such that

ri@*, f(#*) <¢ and g+a(b)<b.

Now we can formulate the following
THEOREM 1 ([4], [2]). If Assumption H, is satisfied, then in the sphere

8(z*, b) there exists a unique solution T of the equation
(4) z = f(x).
AssumpTiON H,. Suppose that
1° the function f(x) is defined for = ¢ R, f(z) ¢ R;
2° for any z,y e R
"‘(f(“’)’f(?/)) < a("(wr "/)) ’
where the function a(u) satisfies Assumption H, with 4 = G;
3° for any ¢ ¢« G the equation

(5) u= a(u)+q
has 2 maximal solution m/(q).

TEEOREM 2. If Assumption H; is salisfied, then equation (4) has
in R a unique solution Z.

Proof. Let #* be an arbitrarily fixed element of the space R. For
any solution z of equation (4) we have

(e, a*) < r(f@), f(@*) +r(e*, fa*) < afr (2, a*)+r(z*, f(2%);
hence by Lemma 5 we obtain
r(@,a%) < m(g) <m(g),
where ¢’ = r(z*, f(#*)) and m(g) is the maximal solution of equation (5).
This means that all solutions of equation (4) are in the sphere S(z*, b),
where b = m(q). But in this sphere the assumptions of Theorem 1 are

fulfilled, and therefore there exists only one solution of equation (4) in
the whole space L.

4. Now let us consider two equations:

(6) z=f(z) and y=g(y).
4'
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We want to give the estimation of »(Z, 7), where ¥ and y are solutions
of equations (6).

We can formulate

THEOREM 3. If Assumption I, is satisfied and

1° Z, 7 are solutions of equations (6) such that r(¥,y) « b, T e §(x*, b),
7€ S(a*, b);

2° 7(f(y)1 a) <0
then

*(F, ¥) m(b *(f (@) )) m (b, q)

Proof. From the relations

we obtain
r(@, ) = r(f(i),g(y)) r(f@), f@)+r(f@), 9@)
( ! ?/)) +"( ), 9(7) )
Now by Lemma 2 we obtain the assertion of Theorem 3.

THREOREM 4. If Assumption Hy is satisfied and
1° £,y are solutions of equation (6),

2° H{f(7),7) <4,
then

r(2,7) < mlr(f(@), 9@)) < m(g) .

.Proof. In view of the relations

T =f(z), ¥y=9(%)
we obtain

(%, 7) < alr(2, ) +(f(@), 9(7) ;
hence, making use of Lemma 5, we find the assertion of Theorem 4.
Theorems 3, 4 and Lemma 3 imply

THEOREM 5. If the sequence of the equations
y=galy), n=1,2,..,

1s such that for n=1,2, ... the assumptions of Theorem 3 (or Theorem 1)
are satisfied, ¥(f(Fn), ¥n) < gn and gu™\0, then

lim ‘g'n — ;.E .
5. Now we shall again consider the equation

(7) x=f(x).
We shall suppose that the function f(z) satisfies Assumption H, (or Hg).
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We introduce the following

DEFINITION. An element 2 ¢ B is called an e¢-approvimate solution
(shortly an c-solution) of equation (7) iff the relation

re, f) <e, ee@

holds true.

THEOREM 6. If Assumption H, is satisfied and

1° z and y are, respectively, the e, - solution and the e,-solution of equa-
tion (7),

2°r(z,y) <b, 2,y 8(@*b), &+6 < g,
then

r(@,y) <m(b, e+ &) <m(b,q) .

Proof. By the definition of the e-solution we get

')‘(:D, f(m)) < & "(y,f(?/)) S 6y
and further

r(z,y) < 1(m’f(x))+T(f(m)yf(?/))+r(f(?/)7 y) < a("(a% y))‘l‘ &t ey

hence and by Lemma 2 we arrive at the assertion of Theorem 6.
Similarly we obtain the following
THEOREM 7. If Assumption Hy is satisfied and x and y are, respectively,
the & -solution and the &,-solution, then

r(@,y) < mle+ey) .

Remark. From Lemma 3 it follows that if we have the sequence {@,}
of &,-solutions of equation (7) and &,N 0, then
limz, =%,
N—>c0

where ¥ is the unique solution of equation (7).

6. Now we shall give some applications of the results obtained in
previous paragraphs.

Let @, denote the set of non-negative functions u(-) defined for
tel={(,,, T), — oco<ty< T« 4 oo, bounded and L-integrable in
{loy 1>, for any 1, ¢ I.

If w,ve@y, then we write v < v iff u(t) < v(t) for any tel.

It is easy to see that the set Gy thus defined has all the properties
listed in Assumption E,.

Take an arbitrarily fixed Banach space B with the norm | -||. Let R,
denote the set of the functions x: t—x(l) ¢ B, { ¢ I, bounded and B-in-
tegrable in {i,,1,» for any ¢, el. The B-integral is understood as the
Bohner integral. Convergence in R, is understood as usual convergence



b4 M. Kwapisz

with respect to the norm |-|| at each point ¢ € I, i.e. if @x() € By, 2() € R,
then
() —>x(-) i |za(t)—2(t)| >0 for tel.

The function 7(z, y) is defined by relation
r(@,y)=lle(t)—y@l, tel.

We can easily verify [1] that the set R, thus defined has all the
properties listed in Assumption H;.

Now we shall assume that the functions a(v) and f(z) which appear
in Assumptions H,, H,, H, depend also on telI. We write aft, u(-)),

and f(t, ®(-)) instead of a(w) and f(x).
AssumpTioN H,. Suppose that
1° the function aft, u(-)) is defined for teI, u e Gy
2° u € Gy and v(1) = aft, u(-)), t eI, imply v e Gy;
3° u,v €@, and » < v imply a(t, u(-)) < a(t, v(-)), tel;
4° up e Gy, n=1,2, .., and u,\u € G, imply aft, ua(-)) Na(t, u(-));
5° for any q ¢ &, in @, the maximal solution m(t, ¢) of the equation

(8) u(t) = aft, u(-))+q(?)

exists, and if ¢ = 0, then u = 0.
AssumpTiON H,. Suppose that
1° the function f(t, #(-)) is defined for teI and =z ¢ R;
2° we Ry and y(t) = f(t,#(")), tel, imply y ¢ Ry;
3° for any =,y ¢ R,

Iy () =1t y N < alty () =y )]

where the function a(t, «(-)) satisties Assumption H,.
From Lemma 5 we obtain
ConcLUSION 1. If Assumption Hg 18 satisfied and
p)<alt,p())+q(t), tel,peby,
then
p)<m(t,q), tel,

where m(t, q) is the solution of equation (8).
However, Theorem 2 implies
ConcLusiOoN 2. If Assumption H, is satisfied, then the equation

(9) 2(t) = flt, @("))
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has a solution %(t) unique in By, and for any fized 2* ¢ R, we have the
inequality
Iz (6)—a* () < m(t ¢*),

where ¢*(t) = [a*(1)—f(t, m"(-))ﬂ and m(t, g*) is the solution of equation (8)
with ¢* instead of q.

Now if we consider the equations
(10) z(t)=f(t,2() and y(t)=gft,y("),
then Theorem 4 implies

ConcLusioN 3. If Assumption H, is fulfilled and

1° Z(+), §() are the solutions of equaiions (10);

® ft, 7)) =70 <TO), tel, Teby,
then

Z(@) -7 < m(t, q) <m(t, 7,
where

qr.(t)=ﬂf(t’y ) g(tay( ))“ q(t), tel,
and m(t, q;) and m(t,q) are the solutions of equation (8) with ¢ and g,
respectively, instead of q.
At last, if we congider the e-solutions of equation (9), then we have
ConNcrLusioN 4. If Assumption H, is fulfilled and
1° &, and z, € R, are, respectively, the ¢ -solution and the e,-solution, 1.e.
"wi(t)_f(t:wi('))né e, e1ely, 1=1,2;
2° o(t) = wu(t)—£(t, 2u( ) — @) —f(t, 2 ) {

e(t) = g(t)+eft), tel,
then
(1) — 2D} < mAt, o) < m(dy ¢),

where m(t, o) and m(t, &) are the mawimal solutions of equation (8) wuh 0
and &, respectively, instead of q.

Proof. We can write

2 () —ay(t) = f(t, 2:())—F(t, @l ) +{{m®)— (¢, 2.())] = [2(t) = F {2, 2:( )]}
whence
Ny (8) — ()] < a'(t1 lleey( +) — o )”) + oft)

and b'y Conclusion 1 we obtain
Iy (1) — 2(OI] <2 me (2, 0);

but we know that o < e implies m(t, o) < m(¢, ), and therefore the
proof of Conclusion 4 is finished.
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7. The function f(t, #( -)) appearing in equation (9) may take different
forms. Let us give some examples:

t
(a) Flty () = [Pty s, w(s) ds+o(2)
o
T
(b) Fltsa(+) =‘f Flt, s, 0(s))ds+ 9 (1) ,
4
(c) flt,=() = 2(2, m(t).‘fg(t, 5, 0(s))ds) ,
?
(d) fltsa() = [Pt 8,0(5), a(c(s)))ds+0(), v(s)<s.
to

It is quite clear that the Cauchy problem for the differential equations
@'(t) = f(t, z(2) ,
(1) = f(t, 2(1), 2'()
and also for the equations with a time-lag (cf. [2])
a'(t) = f(t, 2(-)) ,
o'(t) = f(t, @ (), @'(-))

can be reduced to an equation of form (9). Thus, using conclusions 2, 3, 4,
we can obtain corresponding theorems on the existence, uniqueness and
estimations of solutions of suitable equations.

8. We want to consider in more detail the case of the Cauchy problem
for the differential equation

(11) 2'(t) = Ft, (1), @'(1))

with the initial condition 2(f,) = z,.
By substituting #'(t) = ¥ (t) we reduce equation (11) to the following
one:

{
y(t) = F(t,lf y(5)ds+ap, Y (1)) -

Suppose that
1° the function

Tt y()) = Flt, [9(8)ds+ay, 9 (1))
ty

has the properties listed in Assumption H;;
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22|F(t, », y)—F, Z, Pl< o, le—2,ly—7l), for tel and
®,%,y,y B,
3° the function

¢
afty u(+)) = oft, [u(s)ds+uo, ult)), u>0,
lo

satisfies Assumption H,.
Under these assumptions we infer that
1° there exists a unique solution Z(t) of the equation (11) and

i
[=6] <tf i (3) ds + [y

where #(t) is the maximal solution of the equation

¢
w(t) = “’(t’, S w(s)ds+liadll, u (1)) + £t 0, 0]
o
2° it z(-) is the solution of the equation
2'(1) = Q(t, 2(1), 2'(1))
with the initial condition z(#,) = #,, then

[2' (0 =2 (1)l < my(?)

1
() — 20 < [ ma(s) ds+ llwo— |
to

where m,(t) is the maximal solution of the equation

{
w(t) = olt, [w(s)ds, u(®) +a
to
and

0(t) = |B(t, Z2(t)+ @o— 2, 2'(1)) — &(t, 2(t), Z(0))].-

3° if @;( ) and a,(-) are, respectively, the e, -solution and the &,-solu-
tion of equation (11), i.e.

|zt () — Pty 24(t), i (D)) < et), i=1,2,
and
| (1) =P (¢, @,(1), 21 (1) — [ @5 (1) — B(t, aa(t), @2 (1)) ]|

e(l) = & (1) F &(t) ,

e(t) =
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then

llwt (8)— @2 ()] < ma(t) < ma(t)

i !
loy(t)— B()]] < [ my(s)ds + lwo— Baoll < [ 1mo(8) d - |lwrg— ol
to to

where m,(t) and m,(t) are the solutions of the equation

3
w(t) = wlt , Ju(8)ds 4 lwso— zaoll, () + (1)

with o(¢) and e(t), respectively, instead of ¢(t).
Remark. If the function w(t, %, ») has the form
w(t, u, v) = p(t)u+@(t)o,
pi(t) 20, i = 0,1, ¢(f) < 0, <1, oy = const, then we have the case con-
sidered in [3).
In our comsiderations the function w(t, u,v) may take more general
forms, for instance

w(t,u,v) =9y, u)+k, 0<k<l,

where the functionl—i-ﬁy(t, %) i non-decreagsing with respect to # and

for any u, there exists a maximal solution of the equation

w(t) = T vft, ()

with the initial condition wu(t,) = %, and if u,= 0, then () = 0 is the
only solution of that equation.

9. Now we shall consider an implicit equation of the form

(12) h(t, m(-)) =0,
We introduce

AssuMPTION H,. For any te I there exists an operator C(f) from B
into B such that

1° no equation C(1)z = 0, t eI, has a non-trivial solution in B;
2° for any y e Ry, 2(t) = C(t)y (1), t e I, implies z ¢ Ry;
3° the funection

flt,ye(-))= CWhr{t,=(:))+a@), tel,zeckR,,
satisfies Assumption H,.
Now we can formulate

-

ConoLusIioN 5. If Assumption g s satisfied, then equation (12)
has a umique solution % ¢ R,.
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Proof. To prove this conclusion it is sufficient to point that under
Assumption Hy equation (12) is equivalent to the equation

@(t) = o(1)+ O(t)h(t, a( ) = ft, = (")) .
Further, by Conclusion 2 we obtain the assertion of Conclusion 5.

DEFINITION. An element z € R, is called an e-solution of equation (12)
iff the relation

[{ts () < e (8)
holds for ¢ @,.
Conclusion 4 implies

CoxcLUsIoN 6. If Assumplion Hj is satisfied and
1° there exists a constant d > 0 such that

ICWal < dlell for weB,tel,

2° z, and x, are, respeclively, the e, -solution and the e,-solution of
equation (12),

3° 2 (1) = [C(DR(t, zi(-))— C(OIR{E, 2l )],

e(t) = [a(t)+&(t)]d, tel,
then \ :
lly () — z,(2)]| < m (2, 0) < m(2, €)

where M (t, ), m(t, €) are the maximal solutions of equation (8) with ¢ and &,
respectively, instead of q.

Remark. The function h(t, z(:)) may be of different forms, for
instance:

[
(a) h(t,a:(-))=:k(t,a:(t),fg(t,s,w(s))ds) )
to
(b) hit, @( ) = ki, z(t)) ,
T
(c) W, @ () = k(t, 2(t), [ ofts s, @(8))ds) .

lo

However, the differential equations
k(t, z(t), @'(8) = 0,
k(ty Ty &)ty a"l(t)) =0

can eagily be reduced to equations of form (12).
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