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On a mixed-type interpolation problem for real polynomials

by ZALMAN RuBINSTEIN (Haifa, Israel)

Abstract. Based on a result about weighted integral interpolation an existence and
uniqueness theorem is established for real polynomials of degree (n+k+1) given k extremal
points and n extremal values.

Introduction. Along with the classical interpolation problem for real
polynomials passing through a given number of points on the real line a
different kind of interpolation was studied by several authors namely the
existence and uniqueness of real polynomials of degree n determined by
(n—1) extremal values. This kind of interpolation was applied by Paszkowski
[6] to determine disjoint intervals containing the Tchebysheff alternant
points of polynomials of best uniform approximation to a continuous
function on an interval.

This type of interpolation was also studied by Mycielski and Pasz-
kowski in [5] and by Kuhn [3]. They obtained the following results.

THEOREM A [5]. Given (n+ 1) positive real numbers wy, wy, ..., w, there
exists one and only one polynomial p of degree n with real coefficients
Jor which there are numbers —1=v,<v, <...<v,=1 such that p(v,)
=(—1)"*w, (k=0,1,....,n) and pP(v)=0(=1,...,n-1).

THEOREM B [3]. Given (n+1) real numbers yo, yi,..., y, Such that
(=17 Y (y;—y;-1) >0 (j=1,2,..., n) there exists a unique polynomial of
degree (n+2) with leading coefficient 1, which takes (in order of increasing x)
the extremal values yo, y,, ..., y, starting with y, at the origin.

In proving Theorem A the authors apply a topological method based on
the properties of covering spaces studied by Browder ([17], Theorems 4-7) and
Lelek and Mycielski [4]. We quote the result of [4] convenient for appli-
cation in the interpolation problem discussed here.

THEOREM C. Let F be a continuous mapping of the n-dimensional sphere
S" into itself such that F(S"—|p}) = §"—!p!, F(p) = p for some peS". If the
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mapping F|
onto §".

On the other hand to establish Theorem B the author uses some
properties from the theory of existence, uniqueness and continuability of
solutions of normal differential systems of equations.

In this note we shall refer only to Theorem B since a straightforward
argument shows that this theorem is stronger than Theorem A. In turn
Theorem B is equivalent to the following ([3], Theorem 2)

THEOREM B'. Given n positive numbers F,, F,, ..., F, there exists
n

sn- 1 IS @ local homeomorphism, then F is a homeomorphism of S

a unique polynomial of the form p(x)= [T (x—x), where 0=x, < x,
k=0
< ...< X,, such that

xj
[ px¥)dx=(=1"*"'F;, j=1,2,..., n.
Ij_ 1

In this note we generalize Theorem B’ by considering positive con-
tinuous weight functions. In particular we establish an existence and unique-
ness result concerning a mixed-type interpolation problem whereby a fixed
number of extremal points and of extreme values are a priori assigned. The
method of proof will be based on a topological argument as in [5] which
simplifies the proof as compared with the method used in [3] to prove
Theorems B and B’

Finally we remark that the complex plane counterpart of the problems
cited above was studied in a series of papers by Charzynski and Koztowski

[2].

2. Two lemmas.
LemMMa 1. Let

Xj
aj, = [ F)(x=xg) .. . (x=x4_ ) (X =Xy 41)...(x—x,)dx,
"j-l
where 1 <j, k<n, xg<x, <...<x, and f(x) is a continuous function of
constant sign defined on (x4, x,). Then
4 = det (ajk) # 0.

Proof. Adding row 1 to row 2, row 2 to row 3, ..., row (n—1) to row
n, we may assume that the determinant in question has elements

*j
b= [ f)(x—xg)...(x =Xy ) (X = X4 y)...(x—X)dx, 1<j, k<n
X0

Keeping the last column fixed substract from the columns 1, ..., (n—1) the
n-th column. This enables to factor (x,—x,) (x;—x,) ... (x,-;—x,). Then
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keeping the last two columns, (n—1) and n fixed, substract the (n—1)-th
column from the columns 1, ..., (n—2). This enables to factor (x; —x,_,) ...
ceo(Xp—3—X,-1). Then keeping the last three columns fixed continue the
process until the (n—1) last columns are kept fixed and column 2 is
substracted from column 1, thus factoring (x, —x,). This leads to consider-
ation of the determinant whose elements are

%
(1) Cik = [ S () (x = xo) (x = xq)...(x =X, () dx,

x0

1 <j, k < n. Denote the determinant of the matrix (1) by 4,(x,) to emphasize
the dependence on n and x,.
Obviously by hypothesis

xy
A, (x)) = | f(x)(x—xo)dx # 0
xQ
and
Xy X
[ S () (x—xo)dx f S (x)(x—xo)(x = x;)dx
4(x;) = :(2) ig .
[ F(x)(x—xo)dx [ S () (x—xo)(x—x,}dx
x0 x0

If .1,(x;) = 0, then since 4,(x,) = 0 it would follow that 4%(x,) = O for some
X,€(x;, x;). A short calculation shows that
*1
A5 (x;) = f (%) (X2 — Xo) ' S (x)(x—xg)(X;—x)dx

X0

and we obtain a contradiction. Now assume by induction that Lemma 1
holds for determinants of the form (1) up to order (m—1), 1 <m—1<n—1.
In particular 4,,_,(x,-,) # 0. Denote by 4,(t) the expression 4,(x,) in
which r substitutes for x,,. If 4,,(x,,) = 0, then since 4,,(x,-,) =0 we would
have 4,,(x,) =0 for some X,€e(x,_, X,). Differentiating 4, (r) with respect
to r and in the resulting determinant multiplying column (m—1) by (r—x,,_,)
and substracting from column m, column (m—2) multiplied by (r—x,,_,)
substracting from column (m—1), ..., multiplying column 1 by (r—x,) and
substracting from column 2, we obtain the relation

A (1) = (= D" f (1) (e — xo) det (dy,),
where

*k
dkl = ' f(x)(x—t)(x—xo)(x—xl)...(x—x,_ l)dx’
x0
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1<k,I<m-—1. It remains to apply the induction hypothesis with the
function f(x) substituted by f(x)(x—X,) and the interval (xq, x,_,) to
obtained a contradiction to the relation 4,,(x,) =0.

In the case where f(x) is a constant the determinant 4 was evaluated in
closed form in [3].

LEMMA 2. Ler f(x) be a function defined for x > 0, integrable on every
finite interval and such that f(x) = m > 0 for some positive constant m and

x > 0. For given n distinct positive reals x; < x, < ... < x, define n numbers
A, A,, ..., A, by the formulas

*j
(2) Aj=(=1)*t | f(x)p(x)dx, j=1,2,...,n,

x}"'l

where xo =0 and p(x) = [| (x—x,). Then if
k=0

@, = Min (x;—x;_,, x,;') >0 also B,= Min (4;, A;")—0.
1€j<n 1<j<n
Proof. One verifies that 8, > 0. We show that there exists a positive
function h(d) defined for d > 0, h(d) - 0 as d — 0, such that , > h implies
a, = d*"** for all sufficiently small positive d. Indeed in this case we
have h < A; < h™'. Therefore by (2) choosing an interval (x,_;, x,) such
that x,—x,_, > x,/n we have

Xu
h"'>m j (x =X, P (x,—x)""#*Ldx

x,‘_1
1 _ ! n+ 2
— - nt+2 #‘(n 'u+l)> Xn
(X = Xu-1) n+2 2w
Hence
(3) Xp < ch™ 1+ 2

where ¢ is a positive constant which depends only on n and m. Furthermore
for 1<j<n
Xn

%j
4 h< [ f(¥)Ip(a)ldx < xp(x;—x;-,) [ f(x)dx.
Xx; 0

j—1

t
For t >0 let ¢(t)=[f(x)dx and let Yy =¢~'. For d >0 define h(d)

[
=c""2(Yd ") " or d = (p(ch™""*2))"! By hypothesis on f, ¢(1) — o
as t - oo and thus y(s) » oo as s >0 and hence h(d) -0 as d - 0.
We now have by (4) and (3)
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(5)  x;—x;_y =2 hx;"(f f(x)dx)"!
0
> c—nh(2n+2)/(n+2)(‘p(ch—l/(u+2)))—l — C_—uh(2n+ 2)"("+2)d.

Now since ¢@(t) = mt, Yy(t) < t/m for t > 0.
Therefore (3) implies :

(6) xn—l > c 1 pl/int2) =(l//(d—l))_1 >md > d2"+4.

for all sufficiently small positive d.
Also since Yy (d™')<d~'/m we have

(7) h(d)=C"+2(lll(d_1))_("+2)ZC"+2mn+2d"+2
By (5) and (7)
(8) ' X;—Xj_ > "t 2mAnt2 g2nt3 5 g2nta

for all sufficiently small positive d.

By (6) and (8) a, > d*"** for all sufficiently small positive d. As a result
we have established that «, < d*"** implies B, < h(d) for sufficiently small
positive d and h(d) - 0 as d - 0. This completes the proof of Lemma 2.

3. The Main Theorems.

THEOREM 1. Let f(x) be a continuous positive function defined on the
positive real axis such that xf (x) is integrable near the origin. Assume that f (x)
is bounded away from zero. For any n (n > 1) positive numbers A, A,, ..., A,

there exists a unique polynomial p(x) = [[(x—x), 0=x<x; < ... <X,
k=0
such that
‘tj .
©) [ p(Of(xdx =(=1y7 14, j=1,2,...,n.

Proof. Denote by P the subset of R" consisting of all points
(1> Y25 ---» YER"such that 0 < y, <y, < ... <y,. Let Q o P be the set of
all points (z,, z,, ..., z,)€R" such that z;, >0, i=1,2,..., n.

Define a mapping ¢: P—> Q as follows: For a point x =(x,, x5, ...

.., X)) € P construct the polynomial of degree (n+1), p(x)= [] (x—x),
k=0
where xo =0 and define numbers

A;=(-1)i*t j" p(x)f (x)dx, j=1,2,...,n.

One verifies easily that A4 =(A4,, A2; ..., A))€Q. Define the mapping ¢ by
setting ¢@(x) = A. Since both P and Q are homeomorphic to R" we can
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consider ¢ to be a mapping from §" to $" by adjoining points x , and x to
P and Q, respectively, with the one point compactification topology and
letting ¢@(oop) = 00p. By Lemma 1, ¢ is a local homeomorphism on
S"—{oop}. By Lemma 2, ¢ is continuous at the point cop. Therefore
all conditions of Theorem C are satisfied and ¢ is a homeomorphism of S”
onto S” and, in particular, of P onto Q. This implies Theorem 1.

As a consequence of Theorem 1 we obtain the following result concern-
ing the mixed-type interpolation problem:

THEOREM 2. Let the k points (k = 0)
X_ ) X341 € ... <x_1 <0,

and the n values yo, yy, ..., yo-1 which satisfy (—1)""/ (y;—y;-4) >0 be
given (j=1,2,...,n—1). There exists a unique monic polynomial of degree
(n+k+1), Q(x), which has the extreme points X_,, X_4 41, ..., X_, and has
the extreme values yq, ¥y, ..., V,— taken according to increasing values on the
x-axis starting with y, at the origin.

Proof. Define

-iYi—VYi—1 .
A =(-1)y"=V—F—, =1,2,...,n-1.
i==D nik+1 7 "
’ k
By Theorem 1 with f(x) = [] (x—x_;), there exists a unique polynomial

i=1
n—1

p(x) = [] (x—x,) such that

1=0

xj .
[ px)f)dx=(=1)""4,
Ij_l
J=1,2,...,n—-1,0=x<x;, <...<Xx,_,.
Let

Q(x) =(n+k+1) | p(x) f(x)dx+y,.
x0
Then Q(x) is a monic polynomial of degree (n+k+1) which satisfies
Q(x)=vy;, j=0,1,...,(n=1) and Q'(x_;)=Q'(x)=0, i=1,2,..., k;
j=0,1,...,n—1.

With regards to the uniqueness of Q(x) one notices that if Q(x) has the
required properties by Theorem 2, then Theorem 1 implies that the points
Xg. Xy, ..., X, are uniquely determined. Hence the zeros of Q’(x) as well as
its leading coefficient are uniquely determined. Therefore Q’(x) and thus Q(x)
are uniquely determined. For k = 0, Theorem 2 reduces to Theorem B.

Remark. The requirement on f(x) to be bounded away from zero
cannot be entirely dispensed with. It is easy to give an example with n =1,
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f(ty=0(t™*) for large r such that the problem discussed in Theorem 1 has
no solution.
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