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The functional cquation () = g(x)
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I. Introduction and notation. In this paper we are interested
in funectional equations of the form

(1.1) M) = g(x)

on a closed interval [a, b] of the real line. Here f* denotes the nth iterate
of the function f:

flo)y=a, Na)=f{), %=0,1,2,..

In particular we will consider the problem of the existence and construc-
tion of continuous solutions of the equation

(1.2) . Pe)=ga)

on the closed interval [a, b] of the real line.

We denote by E[a,b] the set of functions defined on [a,b] with
values in [a, b] and by Dl[a, b]C E[a, b] all functions which possess the
Darboux property on [a, b]. We denote by C[a, b] C D[a, b] the funetions
which are continuous on [a, b] and by M([a, b] C C[a, d] the functions
which are piecewise monotone (written p.m.). Here a function g is p.m.
on [a, b] if there exists a finite partition P = [py, ..., pa] of [a, b] such
that on every subinterval [p4, pi41] the function g is strictly monotone
(written s.m.). If every partition P* which has this property with respect
to ¢ is. a refinement of P, then P is said to be the partition associated
with ¢ and will be denoted by P(g). Let S(n,g) denote the set of all
solutions f ¢ R[a, b] of equation (1.1). In an earlier paper [3] the author
has shown that there exists ¢ ¢ C[a,d] such that S(2, ¢) ~ C[a, b] 18
empty while 8(2,g) ~.D(a,d] is not empty. However, if ge M[a, b]
then S(n, g) ~ D{a, b] = S(n, y) ~ M[a, b]. In light of this fact, it would
seem natural in studying continuous solutions of (1.1) to restrict oneself
to the case in which g ¢ M[a,b]. Thus in this paper we shall study the
set 8(2, g} ~ D[a, b] = 8(2, ¢9) ~ M[a, b] for gy e M[a, b]. We shall further
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restrict ourselves to functions g which satisfy conditions Al and A2
given below. We first have the following definitions.

For any ¢ e R[a,b] we define y(g) = {2| ®w e[a, b] and g(z) = 2).
y(g) is called the set of fiwed points of g. Let P(g) = [Py, ..., Pn] denote the
partition associated with g e M[a, b], then the set of points X (g) = {z( o,
=ps, 1=1,..,n—1} will be called the break poinis of g. Assume y(g)
is finite, then if ¢ is the first point of P(g) v y(g) preceding [following]
the point y; € y(g) we shall denote the open interval (q, ys) [(ys, )] by
I(,—)[I(, +)]. We say that I = I(j, +) or I =1(j,—) is a terminal
segment if g(I)C I and iirggi(w)= y; for any x ¢ I. Since g € M[a, b] it

is easily seen that I(j, +) = (ys,¢q) [L(j, —) = (q, vs)] is a terminal se-
gment if and only if y; < g(z) < @ for all ze(y;,q) [ < g(z) < y; for

all z e (q, 7’1)]'
We now state conditions Al and A2.

Al. The set y(g) is finite and the set of terminal segments of g is
not empty.

A2. For every »e[a,b] there exists an integer M, depending on 2,
such that gM(x) is contained in y(g) or in a lerminal segment of g.

For g e M[a, b] and satisfying conditions Al and A2 we shall show
in mection ITI that if fe §(2,¢9) ~n D[a,b] and f(vs) = ys for all y;eyp(g)

then f restricted to the set y(g) v O f'(P(g)) satisties conditions B,
=0

B2, and B3 as stated in section IT. Conversely if a function f defined on
P(g) v y(g) is such that its extension by equation (1.2) to the set

y(g) v Qo fi(P(g)) is single valued and satisfies conditions B1, B2, and B3,

then f may be extended to a function f e S8(2,g) ~ M[a, b]. In general
if § is any set and } is defined on § with values in [a, b] we may extend
the definition of 7 to the set G 1(8) as follows:

=0
P @) = @) = g(f'(x)) for ixz1and zed.

We shall refer to this extension of f as the extension of 7 by iteration.
It should be noted that for arbitrary f and 8§ this extension may not be
single valued. Thus if p,,p, ¢ 8, f(p:) = f(py), and g(p,) # g(p,) then f
defined by iteration is not single valued on j(p,). We shall avoid this
difficulty by restricting ourselves to sets S and functions f for which

the extension 7 is single valued on O F48).
i=0
In section III we show for g e M[a,bd] satisfying conditions Al
and A2 the existence or non existence of a function f € S(2, g) ~ M[a, b]

such that f(ys) = y¢ for all y;ey(g), may be established by checking
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g finite number of finite sets A(k), k=1, 2, ..., r. Here the number r of
sets A (k) and the number of points in each set 4 (k) are completely deter-
mined by the given function ¢. In fact given g one may always construct
the sets A (k) and thus the question of the existence, or non existence, of
a solution fe8(2,g) ~ D[a,b] which satisfies the condition f(y;) = 4
for all y; € ¥(g) can be completely answered in a finite number of steps.

II. The equation f*(z) =g(z). We shall assume that g ¢ M[a, b]
and satisfies conditions Al and A2. The sets P(g) = {po, ..., P»} and X (g)
are as defined in section I. Let I = I(y;, +) denote a terminal segment
of g and § be any finite set contained in I. Let 7 be defined on § ~ I into I.
Since g(I) C I, using the relation f2(z) = g(x), the function ; may formally

m -
be defined on the set §* =) f{(8)C I by iteration. We assume this
i

extension is single valued. Since ¢ is s.m. on I and I is a terminal segment
it follows that §8* is finite on I ~ CN(y;), where ON (y;) denotes the com-
plement of any open interval N (y;) containing y;. We say that f is com-
patible with respect to I and S if for every 7, s ¢ 8%, f is single valued and
f(r) < f(s) if and only if » < s. Next, consider the case of two adjoining
terminal segments I,=I(i, +) and I,= I({,—) and a finite set
8 CI, v I,. Assume }is defined on 8 and that f(8 ~ I,)C I, f(§ ~ I,) C I,.
Again we assume that f has a single valued extension, by iteration, to

the set §* = | J F(S) which is finite on (I, w I,) ~ ON () for any N (y).
=0

Then f is said to be compatible with respect to I, © I, and 8 if it is single
valued on S* and if for every r, s ¢ §* one has f(r) > f(s) if and only if
r < 8. We now have the following two theorems.

THEOREM 2.1. Let 8 be a finite set contained in a terminal segmen?
I=1I(i, +) and let f be defined on S into I. Then a necessary and sufficient
condition that there exists a continuous s.m. function f on I © yy into I U y4
satisfying f2(x) = g(x) and f|8* = f is that [ be compatible with respeot
to I and 8. .

THEOREM 2.2. Given two terminal segments I, = I(i, +), I, = I(i, —),
a finite set SCI, v I,, a function f defined on S into I, w I, y¢, then
a necessary and sufficient condition that there exist a continuous s.m. func-
tion f on I, u I, u y, into dtself satisfying fXx) = g(x) and f|8* = f is that
either (1) or (2) below is satisfied. '

(1) /I8 ~ I; is compatible with I; and S ~1; for i=1,2.

(2) } is compatible with I, v I, and 8.

These two theorems are direct consequences of the work of Kuczma [2].
In that paper he gives a complete description of the general solution
of equation (1.1) for the case in which ¢ is a 8.m. function on the interval B



126 J. C. Lillo

of the real line. In Theorems 2.1 and 2.2 the sets I vy, and I, v I, u y,
play the role of the domain F in the work of Kuczma. It then follows
for the case where F = I u y; that any continuous solution f of equa-
tion (1.1) must be s.m. increasing on F and satisfy f(y:) = y:. Thus for
any finite set § C I if f = f|S then f will be compatible with respect to I
and 8. For the case where ¥ = I, v I, v y; one has that f(y;) = y; and f is
either s.m. increasing on F or 8.m. decreasing on Z/. In the first case if
S C I, uI,is any finite set and f= f|§ then f on I, ~ 8 [I, ~ 8] will be
compatible with respect to I, and I, ~ 8 [I, and I; ~ §]. In the second
case f will be compatible with respect to I, v I, and §.

The converse statement that if f is compatible with respect to T and
8 [I, v I, and 8] then f may be extended to a continuous solution of
(1.2) on I v y;¢ [I, v I, v y4] is also a consequence of the work of Kuczma.
Oonsider first the case of a single terminal segment I and a finite set
SC1I. Let p denote the point in § such that § ~ (v, p) is empty. Then
since ¢ is s.m. on I v y; and f is compatible with respect to I and 8, one
may show that for each ¢ e S the interval [f(p), p) contains a unique
iterate f*(q) of g. Here the integer » depends on the point ¢ « §. Since 7 is
compatible with respect to I and 8, we have that f is s.m. on [7(p), p] ~ 8*
and we may extend f, in many ways, to a continuous s.m. function defined
on the closed interval [f(p), p]. Then the construction given by Kuczma [2]
suffices to extend f to a continuous s.m. function on the entire set F
= I o Yi.

In the case where B = I, u I, u y; and f is compatible with respect
to I, v I, and S a similar argument is used. Let p denote the point in
[8 v f(8)] ~ I, for which [ys, ») ~[S ~ f(8)] is empty. Then one may
again show that for every g « § the interval [f(p), g(f(p))] contains a uni-
que iterate f'(q) of ¢. Since f is compatible with respect to I, v I, and &,
f is s.m. on {f(p), g(7(p)})] ~ 8* and so may be extended, in many ways,
to a continuous s.m. function defined on the closed interval [f(p), g(/(p)}]-
Again the work of Kuczma [2] assures us that f may be extended to
a continuous s.m. function on the entire set £ = I, v I, v y;. This com-
pletes the proof of Theorems 2.1 and 2.2.

We are now ready to state and prove Theorem 2.3. Since g ¢ M[a, d],
we know that any continuous solution f of (1.2) must also belong to
Mla, b] and P(f) C P(g). Thus one might hope to state necessary and
sufficient conditions for & function f defined on P(g) to be the restriction
of a continuous solution f of (1.2) to the set P(g). This is the content of
Theorem 2.3 for solutions f of (1.2) which satisfy the condition f(y:) = y;
for all y; € ¥ (¢). We note that if f is defined on the set P(g) and if 7 is to
be extended to a solution of (1.2) then its extension to the set Cj f’:(l’(g))

i=0

is completely determined by iteration as described in section I. Thus
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the conditions of our theorem are stated in terms of the behaviour of f
on the set y(g) v G ft (P(9)). To facilitate the statement of Theorem 2.3
1=0

we introduce the following conditions.
B1, f is defined on P(g) v y(g) and the extension of f by iteration to

the set y(g) v C;lo F{(P(g) is single valued. F(yi) = ys for all y; e ¥(g).

B2. (a) f(p:) # f(pis1) for any i, and f is s.m. on

[y () v Cjo F(P@)] ~ s, Pesi]

fOT ?:= 0’ 1’ seey %-—-1.
(b) There exists a subset E of X (¢) such that if x4 ¢ E then

sign[7(pi—1) — F(@:)] = sign[}(pis1)— F(@:)].
If wye X(g)—F then,

sign[f(Pir1) — F(@)] = sign[f(ws) — F(pi-1)] .
e) f(w:)) e B for all 2y e X(g)—E.
(@) If @ € [F(p), 1(Pos)] ~ B for any o and F, then f(pori) = a5 for
some value of 1=10,1, ..., k.

B3. Let I =1(j, 4+) denote any terminal segment and J(I) the subset
of P(g) whose iterates are eventually contained in I. For each ps e J (1) there
18 a first iterate which belongs to I which we denote by ;. Define for each I the
set 8 = {Bs; pi e (I)} and let f be defined on 8 by iteration. We then insist
that for every I = I(%, +), f i8 compatible with respect to I and 8 or else | is
compatible with I (4, +) v I(i, —)and 8. In the second case, I, = I (%, +) and
I,=1(i,—) are both terminal segments and S = {Pi; pieJ (1) wJ(I,)},

THEOREM 2.3. Let g ¢ M[a,b] and satisfy Al and A2. Let fe S(2,q)

~ Dla,b] and f(yi) = s for all yee y(g). Then if }= 1| U f(P(9)) © (@)

f will satisfy conditions B1, B2, B3. Conversely, if f is defined on P(g) v v(g),
and its extension by iteration is single valued and satisfies Bl, B2, and B3
then there exists fe S(2,g) ~ M[a, b] such that f| P(g) v y(g) =]

Proof. We first prove that if f € S(2, g) ~ D[a, b] and f(y:) = y; for all
yiey(g) then f= 1] L) f(P(g)) v »(g) satisties conditions B1, B2, and B3.
1=0
Since fis the restriction of a solution f of (1.2) to the set |J f*(P(g)) v y(¢)
{=0

it is single valued on this set and satisfies equation (1.2). By hypothesis
f(ye) =9y for all p;ep(g), so condition Bl is satisfied by f. Since
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fe8(2,9) ~ D[a,b] we know that fe M[a,b] and P(f)C P(g) (see [3]).
Thus f i8 s.m. on [p;, pisa] for 4=10,1,..,n—1, and } satisfies B2a.
Since P(f) C P(g) we have that X (f) C X (g). Set I = X (f), then f satis-
ties B2b. If py e X (g) but p; ¢ X(f) then f(p:) e X (f). For if this were not
the case, since f ¢ M[a, b], we would have that f was s.m. on an open set
containing p; and f(p:). Thus f2= g would be s.m. on an open set con-
taining p; which contradicts p: ¢ X (g). Thus f satisties B2¢. Let @; ¢ (f(p,),

f(Posr)) ~ E. Then gince f is continuous there exists 7 e (p., Porr) Such
that f(r) = x;. If v ¢ P(g) then f is 5.m. on an open set containing r. Since
f(r) = 2; ¢ X (f) we have that r ¢ P(g). Thus v = p,.,forsomei =1, ..., k—1
and @; = f(Po+1). I 2518 an endpoint of [f(p4), f(Pe+r)] then either o = f(p,)
or & = f(Posr). Thus f will satisfy B2d. That j satisties B3 follows from
Theorems 2.1 and 2.2.

We now prove that if f is defined on P(g) w y(g) and its extension

to y(g) v Cj 7{(P(g)) by iteration is single valued and satisfies B1, B2,
=0

and B3, then f may be extended to a continuous of (1.2) on [a, b]. Define
the set

Si= () v Plo) o | D7) w1014

where I;,¢=1, ..., % denote the terminal segments of g. By A2 the
k

set S;—( | J L) is finite. As a consequence of B2, B3 the function f
t=1

satisfies the conditions of Theorems 2.1 and 2.2 and so may be extended
to a function f, defined on 8; and possessing the following properties.
On each of the sets S; ~[ps, Pi41l], 1= 0,..,2—1, f, is s.m. For all
e 8, fi{z) = g(@) and f,(w) C 8;. We now define §;,,,j=1,2,3,.., as
the union

Bjpr A [Py pin], i=0,.,n-1,
where

Birs A [Piy Pind] = [04) Diva] A |2 g(@) € (87 ~ (1)) [1(ps11)])] -

We define f;41 on 8ji1 A [Py, Diga] 88 fr(®) = f7 (g (#)) where f;" denotes
that branch of the inverse of f; which has its values in the set [f;(p:),
[i@isr)] ~ 8.

Now by B2d,

(fpd, ipa))nB8=9,
and so if f; is s.m. on [p,, pyia] for all 4, and if ;| P(g) == f, then this in-
verse is well defined and is s.m. on this set. Ilowever, g(x) is s.m. on
[2¢y Di+1] and so the composition f;.,..(x) is s.m. on [p;, Piya] A Sypq. Thus,
it follows by induction, that for every j, fi; is s.m, on the sets 8541 A
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A[PiyPt+1], 1=0,1,2,...,2—1. It is also clear from the definition
of 8;;1 that f;fj41(2) = g(x) for all z € 8;41,. We next note that 8, CS,.
Thig reduces to

81 A P4y D] C P4y Div] A [’” g(w fl(S n [Hi(p4), il Pt+1)])]

If wel; [Py, Pit1] then from Theorems 2.1 and 2.2 we have that

f(@) € U I A0, fpera)]

and
g(z) = ]‘?(m) el;n [piy Pisa].

I
Since CJ I,C 8, it follows that
i=1

g(z) e fl(sl ~ [f(pq), f(P’Hl)])

and so ze8;. If wey(y), say o= yie[ps, ps+1], then fi(2) = g(x) =2
and @ € [f,(p;), fi(pj+1]1). It then follows that z e 8,. Finally, if

z el jL_JOﬂ(P(y))] A [piy piral,
say @ = fi(py), then
9(2) = hif@) = fi™(ps) -

But f,(z) = fit'(ps) € 8, and by the monotonicity of f; on [p;, ps41] it belongs
to [fi(ps), fu(Pi+1)]- Thus, » € 8, and it follows that S;C8,. Now if 2 ¢ 8,
then g(x) = f,(fi(%)) and so fy(@) = fi'(g(w)) = fr(x) which is to say that
f2S1=f,. We now assume that S,_; C 8y, fulSp—1 = f, and show that
8, C 8y and fnil8n = fn. The assertion 8§,C S,;; may be written

(D1, Pita] N [m: g(2) € fn—l(Sn—l A [fa-a(24) fn—l(PHi)])]
C [Py Pita] N [m: g(@) e fn(Sn ~ [}, fﬂ(_’PHl)])] )

which is an immediate consequence of the fact that 8,,-; C 8, and f,|8p-1
= fn—1. Thus, 8, C Sp+1. To see that f,+1|S, = f, we note that for x ¢ S,
we have
Fr—1(fn(®@)) = fu(fule)) = g (@) .

But
' Twti(®@) = fa' (g (@) = fa'{falfn (@) = ful@) ,
g0 that

far1lSn=fn and fop(w)=g(zr) for all ze Sy

We now define
S = G S; and j(z) =}imf,(m) for any 2 e S§ .

j=1
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It is clear that f is s.m. on each of the intervals [p:, Pi+1], fISm = fm,
and that f(x)= f‘l(g(m)) for each o eS8 A [pe, pisi], Where f ' denotes
the branch of the inverse of f with values in [f(ps), /(p:+1)]. Since (f(ps),
J(Pir)) n B =@ it is clear that ' is well defined and s.m. Finally,
fAx) = g(x) for all @ ¢ 8. It remains to show that § = [a, b] and that f(x)
is continuous at each point of §.

We shall now show, for any w, that if g(x) € 8; then x e 8y.e. Let
® € [p;y Pi+1] and denote by @5, %j41, ...,y ¥m the points of X (g) which are

contained in (f(pq), f(pe+1)). Define

6 =[f(p4), [(P141)],
b= [f(pe), w], di=1[2/, 041, oy  Op=[Bm, [(Pe41)].

Since j(#;41) ¢ B, h=10,1,...,m—j, we denote it by e;.5. Thus,

(Q(Pi), Q(PHI)) ~AE= (615 <oy €m]
and we define

K, = [g(p), &], K, = (e, 511, <oy Ky =[lm, g(@s1)] .

Then, a = g(x) e K; for some 4, say ¢(z)eX,. Define w = f;(a) and
y = ¢~ '(w)|6s. Since f; is s.m. on &, ~ §;, we have that

w = fi(a) e [f(€j4n-1), [(€s41n)] = [9(Z14n-1)y §(21+a)]

and y is a single point. It then follows that y € 8;+, and f;4.(y) = a. From
this it follows that @ € S;+» and f;42(2) = . But by A2, for every = € [a, b]
there exists an M such that gM(2) ¢ 8; and 80 2 € 823741 C 8. Thus, 8 = [a,b].
We have already observed that f is s.m. on [p;, Ps+1] and [f(p4), f(Pi+1)]
for every <. The continuity of f will follow from the following
lemma.

LemmA 2.1, Let f be s.m. on [a,b] and b be s.m. on [f(a), f(D)]. If
g(@) = h(f(x)) is continuous on [a, b] then f is continuous on [a,b] and h
18 continuous on [f(a), f(b)].

Proof of lemma. Since f and % are s.m. it follows that ¢ is s.m.
Thus, ¢ defines a homeomorphism of [a, b] onto [g(a), g(b)]. It follows
that f is a 1-1 map of [a, b] onto [f(a), f(b)] and & is a 1-1 map of [f(a),
f(b)] onto [g(a), g(b)]. Since f and h are s.m. it follows that they are
continuous. This completes the proof of the lemma.

Since 8 = [a, b] it follows from the above lemma that f is continuous
ol [p4, Pit1] for each i, Thus, we have shown that if f has the properties
stated in the theorem it has an extension fe M[a,b] ~ S(2,g). This
completes the proof of Theorem 2.3.
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In the above theorem we have restricted ourselves to solutions f
which satisfied the restriction f(z) = x for all z e y(g9). We now display
a function g € M[a, b] for which there does not exist any fe M[a, b] ~
~ 8(2, g) satisfying this restriction. The construction’of g, however, makes
it clear that M[a, b] ~ 8(2, g) is not empty.

EXAMPLE 2. Define:

— T, re[—-1,1],
f@)=1{—2+3(x+2), we[-2,-1],
~14+3(@x—1), @e[1,2]
and

(@) = (=) .

Now if f ¢ 8(2,g) and f(x) =z for v ey(9) =[-1,1]w — 2 v 2 then it is
easily seen that f is not continuous on [—2, 2].

III. Application of Theorem 2J3. In this section, when re-
ferreing to a solution of f*(z) == g(x), we shall always assume that we
are restricting ourselves to solutions as described in Theorem 2.3. The-
orem 2.3 assures one that, under suitable restrictions on f and g the
existence of a solution for f3(x) = g(z) may be reduced to the existence
of a function f defined on P(g) and possessing certain properties. Let f,, 7,
be defined on P(g) and assume that f; may be extended to a solution
of f¥(z) = g(x). Then one might expect that the existence of a one to one
order preserving map of /,(P(g)) v P(g) v y(g) onto f,(P(g)) v P(g) v »(9),
which is the identity on P(g) v y(g), could imply that f, would also be
extended to a solution of f%(x) = g(x). If this were true then the problem
of solving the equation f%2) = g(x) under the given restrictions on f
and ¢ would reduce to making a finite set of choices for f(P(g)) which
define all possible distinet orderings of f(P(g)) v P(g) v y(g). Un-
fortunately, this is not the case. However, we shall define the sets A(f),
where the number of points in A (f) is finite and essentially independent
of f, and B™, which is finite and depends only on g for which we have
the following result. Let f, and f, be defined on P(gy) and assume that
there is a one to one order preserving map of A(f;) v BM o y(g) onto
A(f,) v BM U y(g) which is the identity on y(g) v P(g). We then say
that 4 (f;) and A(f,) are equivalent. In Theorem 3.1 we show that if A(f,)
and A (f,) are equivalent and if f, can be extended to a continuous solu-
tion of (1.2) on [a, b] then f, may also be extended to a continuous solu-
tion of (1.2) on [a, b]. Corollary 3.2 then asserts that the existence or non
existence of a continuous solution of (1.2) as described in Theorem 2.3
may be determined by examining a finite number of finite sets. To facilitate
the statement and proof of Theorem 3.1 we first make several obser-
vations and definitions.
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Congider any terminal segment I, and let J(I) be as defined in B3.
Denote the elements of J(I) by @, ..., #,. Then we may assume that M
has been chosen so large that the set

lg="(), 9™ (@)) ~ U @)

is not empty and contains for each j exactly one point of the form g*(x,),
where & depends on § but & < M for all . If I = I(j, &) is a terminal
segment, but I(j, F) is not, then for any solution f of /%(z) = g(x) the set

{[g™-Y2y), g™ ()] ~ | lL:jl g4 (@s) qu g*(1 ()]}

containg for each § exactly two points of the form g (z;) and g’*(f (%))
where h, ! depend onj, h < M,and h=1lorh=1+1. If both I, = I(j, +)
and I,= I(j, —) are terminal segments and f is any solution of f*(x)
= g(x) such that f(I;)CI,, f(I,) CI,, then the analogous results hold
in I, and I,. It f(I,)CIL,, f(I,)CIL, J(L)= {#, .., %}, and J(I,)
= {4, ..., ¥»} then for every j and = the set

([ ), @] ~ [ O e o U g'(i )]}
l=1 =1

contains two points gx;) and ¢*(f(y.)), where | depends on j, h depends
on n,l < M,h+1< M., The set

”g-M—l /() gM(f(ml))] ~ [ k@l 9" (Ym) Um@l gm(f(m;))]}

also contains two points g*(ya), gm( f (my)), where m =1, b = h--1.

The above statements are a direct consequence of Theorem 2.1,
Theorem 2.2, and the following lemma.

Lemma 3.1. Let I, = (yiy Pi41)s Ln= (P4, yi) be terminal segments
and f be as given in (2) of Theorem 2.2. Assume also that f satisfies the con-
ditions of Theorem 2.3. Then either

1) f(®4) € (Pivry g0i41)) and (i) € (94, 9(p0))

(2)  [(041) = Pegr and [(piya) = g(pa), o7

(3)  H(Pis1) = py and (Do) = g(pira)-

Proof. The restriction, f(ys) = v; Lor y; e y(g), justifies the assumption.
that the endpoints of I, and I,, other than y;, are not in y(g). If [ps, Pir1]
= [a, b] we have either (1), (2) or (3). Thus, we will assume that [p¢, Pii1]
# [a, b]. Then either p; or p;.; must belong to E. If neither p; = a nor
Pi+1 = b then both p;, p;41 must belong to X(g). Assume p; and p;y, do
not belong to I, then since (X — F)C E it is clear that f(p;) # p+1 and
J@i41) # pi. But if [(peri) < pi and f(pi) > pis1, there is a y e [py, vi]



Tunctional equation fi(x) = g(x) 133

guch that f(y)= p:y1 and g¢(y) = fAy) < p; which is impossible. If
f(pe) < Diy: and F(Pi41) < pi, then f(p;) ¢ B which is impossible. If
f(Pi41) = P« we have f(piy1) ¢ F which is impossible. Thus, either p; or p;y,
belongs to K. If both p;, p.11 belong to E v a w b then f satisfies (1), (2),
or (3). If only one of p; and p;,, belongs to £ w a U b then { satisfies either
(2) or (3). This completes the proof of Lemma 3.1. :

Denote the terminal segments of g by I,,..., In. Then for each I,
there is an ) eJ (I;) which possesses the same propertles with respect
to I; as x, does with respect to I, in the above discussion. Define

[gM - ml)l gnr(-wg)] for 7 = 11 ey m

If f is a solution of f(x) = g(x), we define
M 1 1
8(f) = vig) v P) v U[d(P@) - g{1(P0))].

We also define the sets: B’ = P(g), B* = B*™' U ¢(P(g)) for k=1, 2, ..;;
Afy= 8(f) ~ o for i=1,..,m; and A(f) = Q AL,

THEOREM 3.1. Let f be a solution of fA(z) = g(x) and A be a fiwile set
of points such that A C CJ oiand A ~ B = @. Let [ be a one to one order

i=1

preserving map of
m . m
[(4 v BY) A L{ o] v y(g) into H orv y(g). :
= =

Assume that (A o BY) ~ o) = Ai(f) and LI[(BY ~ a1) U y(g)] is the iden-
tity map for i =1,...,n. Then there exists a solution f, of f=z)= g(=»)
such that

Aif)=UA By e for i=1,..,m

To aid in the proof of Theorem 3.1 we establish the following lemma.

LeMMA 3.2. Let [hy, hz] ~ B* vk =1, be empty and y = g~ '(h,) be given.
Then there exists a o e g (hy) such that [a, y] ~ B*¥7 is empty.

Proof. Since k, ¢ B* we may assume that y € (p,,p,.H) for some j.
Since [hy, hs] ~ B* is empty, it follows that g '(hy) A (pj, p;+1) contains
a unique point o. If [0, y] n B*7! is not empty, since g(x) is monotone
and continuous on (x;, 4,+1), it follows that [&,, k] = [g(0), gly)] ~ B" ig
not empty. Thus, [o,y] ~ B is empty and our result follows.

Proof of Theorem 3.1. For every p; e P(g) there is an integer

i(j), i(j)+1<2M, such that f(p;) and f"(p) e C) A(f) or

1% (py) e y(g). We define fi(p)) = ¢ (f(py) for I=1i(j), i(j)+1. Now
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let % be odd and k = 4(j) or 'e(y y+1. If py eJ(I;) for some ¢, then either
1*(ps) « BY or 1*(py) ¢BM If f*(p;) ¢ BY then [f(ps), fi(ps)] ~ Bm is empty.
By repeated apphcad:mn of Lemma 3.2 we deflne fi(ps) in such a way
that [11(ps), f (ps)] ~ B'is empty, where l= (n—1)/2, n = k—2, k—4, ..., 1.
If ]"‘(’p;)eB then 7“™'(ps)e BM*', since lc is odd and f‘“ p,)— q"(p,)
for any =m. In this case we define fi(ps) = f(ps). If f* (p,) = 1€ p(g)
we define f(ps) = f(ps). Finally, we define fy(y:) = f(y:) =y for all
yi € y(g). Tt now remains to show that f, satisfies conditions B1, B2 and B3
of Theorem 2.3. That f, satisfies B3 is an immediate consequence of the
fact that B3 holds for f, ¢ is a one to one order preserving map, and g¢|f;
is s.m. for all 7. That f, satisfies Bl iz an immediate consequence of the
definition of 7, and the fact that f satisfies B1. To facilitate the proof of
the fact that f, satisfies B2, we establish the following lemma.
LemMMA 3.3. The correspondence f(py)—>fips) and [(yy)—>filys) for
all 1, j defines a one to one order preserving map o of S(f) onto S(f,).
Proof. The one to one nature of the map follows from the finite
nature of §(f), §(f,) and the fact that for any &, 1, 4, j, f1(g"(ps)) = fi(g"(p1)
if and only if f(g"(pi)) = f(gl(p;)). Since ¢ is s.m. on each I; and the map
has the desired property on each oy, it follows that the map restricted
to. I; is order preserving. To, see that the map is order preserving on the
complement of the terminal segments we first observe that it is the iden-
tity on y(g). Thus it will suffice to show for any u, v ¢ B™ ~ S(f) ~

~ [Complement of L’jj L], f(u) # fi(u), J(v) # fu(v), that it f(v) e (f(u),

H(w)) then fl(u)e(f(v),f,(v)). However, from the definition of f, and

Lemma 3.2 it follows that there exists a k such that g" defines a homeo-
morphism of [f(u), fy(»)] and [f(v), f1(v)] onto subintervals of ¢; for some j
Since ¢ is order preserving on o; it follows that

gk‘f,(’w)) — fl(g (u)) € (g f(’D)); g (fl('v))) .

Thus fi(u) € (f,(v), f(v)). This completes the proof of Lemma 3.3.

To complete the proof of Theorem 3.1 it remains to establish that f,
satisfies B2. Since fi(p;) = g(ps) # g(Psr1) = f{pira), it follows that f,(p;)
# f1(p41) for all 4. Sinee the mapping o is order preserving it follows
that the set I is the same for f, and f. Since f satisfies B2 and o is order
preserving, it now follows that f, also satisfies B2. This completes the
proof of Theorem 3.1.

We first observe that the set 4 as described in Theorem 3.1 may
contain at most n points, where n is the number of partition points
in P(g). It may contain less. Also the number of points in 4 ~ o; is equal
to or less than the number of points in J(I;). Thus, the number of pos-
sible orderings for the sets (4 w B¥) ~ oy, for all possible choices of 4,
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is finite. Given a’' function g one may determine B and the o;. Thus,
one may select a finite collection of sets A(k), k=1, ..., r, which realize
every possible ordering for the sets (4 v B¥) ~ 04,1 =1, ..., m. Theorem 3.1
thus has the following corollary.

COoROLLARY 3.1. The equation f¥x)= g(x) possesses a solution as
described in Theorem 3.3 if and only if for some ke[1,...,n], A(k)= A(f),
where f is a solution of fA(z) = g(x) as described in Theorem 2.3.

There remains the problem of determining if 4 (k) = A(f) for some
solution f of fiz) = g(x). However, if A(f) = A(k) then it is clear that

4N CDA®) = ¢ ([4t) v ( [ (B ~ o) v r9)]).-

Since g € M[a, ], the set D(A(k)) is finite. Thus, the number of possible
choices of f(P(g)) such that f(P(g)) C D(A(k)) is finite.

CorOLLARY 3.2. The equation fx) = g(x) possesses a solution as
described in Theorem 2.3 if and only if for some ke[1, ..., n] the finite
set D(A (k) contains a subset f(P(g)) v y(g) such that the extension of f by
iteration satisfies the conditions of Theorem 2.3.
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