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On mappings isomorphic to r-adic transformations

by A. LasorA (Krakéw)

Abstract. A class of piecewise continuous transformations on the real line is
shown to have continuous invariant measures. In particular it is proved that for any
continuous, transformation the existence of a periodic point of period three implies
the existence of a contfinuous, ergodic invariant measure.

1. Introduction, The present paper is stimulated by two independent
.results. The first one is due to Misiurewicz [6] who proved the existence
of continuous invariant measures for local homeomorphisms of a circle.
The second is due to Sharkovsky [11], Li and Yorke [4]. They discovered
interesting properties of continuous transformations having a periodic
point of period three. We shall show that the source of both results is
the same. They both occur due to the existence of continuous measures
for so-called pseudo-r-adic transformations.

Section 2 contains basic notations and definitions. In Section 3 we
prove our main result Theorem 1 which agserts the existence of invariant
measures for pseudo-r-adic transformations. The proof is based on ideas
due to Rényi [9] and Parry [8]. Section 4 contains gome resuits concern-
ing the existence of ergodic invariant measures for transformations
with periodic points of period three. Finally Section b is devoted to fune-
tional equations related with the problem of the existence of invariant
measures.

2. Pseudo-r-adic transformations. Throughout the sequel J will
denote a given interval (boundet or not) of the real line. By measure we
mean & probabilistic measure defined on the o-algebra of Borel subsets
of J. A measure u is called continuous if it vanishes on points (in that
case the function F(x) = ul(a, %)) (a eJ) is continuous).

A Borel measurable transformation z: J — J i called pseudo-r-adic
if there exists a sequence J5, ..., J, of open, disjoint, bounded and non-
empty intervals such that the following two conditions hold:

(1) kélT(Jk) > U Jy.

el
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(ii) For each k (k =1, ...,r) v is continuous on J, and may be extend-
ed as continuous function on the closure J, of J,.

We gay pseudo-dyadic instead of pseudo-2-adic. It is eagy to see that
any pseudo-r-adic transformation is pseudo-s-adic¢, if s < 7. The simplest
example of a pseundo-r-adic transformation is the usual r-adic transform-
‘ation :

o{r) =rx(modl), «e[0,1].
A more general example may be given by the formula
©(%) = @(s)(modl), «e[0,1],

where ¢: [0,1]— [0, co) is an arbitrary continunous function such that
@(0) =0and p(1) =7r.
3. Existence of invariant measures. We shall prove the following

TmmorEM 1. For any pseudo-r-adio transformation (r = 2) there 6msts
an ergodic continuous invariant measure.

Proof. Denote by 7, the continuous extension of v from J  onto J.
‘We shall define a family of non-empty, open intervals

(1) [Jkl...kn =@,k 7 Oty
where I; =1, ...,rfort =1,...,nand n =1,2,... When n = 1 family
(1) reduces to a finite sequence J,, ..., J, and we choose the intervals J,

as in the definition of pseudo-r-adlclty Now suppose that Jy, e, BT
given for all m < n. We write

by =Min{z eZ; ;1 7 () # T Gy}

@)
Op.ky, = MAX{D <Dy g ¢ Ty, (¥) = 7k1(0k1.'..kn)}7
where
Tty = {mEJkl dep_qt Tzc, {“/:q i ? Dy Ic,,,}}’
Crpone, = WD Z 4 .

Here {@, b} denotes the set with elements & and b. Using assumptions (i)
and (ii) it is easy to verify (by induction) that the intervals defined by
formulas (1) and (2) satisfy the following conditions

(3) Jlrl...kn < Jkl...k,l_l’
(4) Sipdy Nty =9 for (kyy ooy k) 2 (B, ooy Bg),
(5) T rgetey) = Sty »
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Now let % = (ky, k;,...) be an infiuibe sequence of integers such that
1<k, <r. We write

m J kol

Nl

We shall show that except of a countable number of sequences x»

= (ky, k2, ...) the set J, contains exactly one point. In fact, if J, is not
a one point set, then either the interior of J, is non-empty or the set J,,
is empty. From (4) it follows that for different sequences x, »’ the corre-
sponding sets are disjoint. Thus the set of sequences » for which int.J,# &
is at most countable. On the other hand if J, = @, then there exists an
integer n, such that either

(6) lan":l"'kno+m = akl_";‘.nu fOI‘ m > 0
or
(7) suka!__“kn_ﬁm = b"l"'kvzo for m > 0.

For given n, the number of sequences satisfying (6) or (7) is less than #"0.
Thus the family of sequences » for which J, = @ is also at most countable.
For any xe(0,1) consider the sequence #(z) = (ky (@), ks(®),...),
where k, (v) is the largest integer less than r¢"~*(2) 4-1 (¢ denotes the r-adic
transformation). Let I’ = (0, 1) be the seti of all irrational numbers such
that J,, contains exactly one point. Since for irrational numbers @ == ¥
implies » (@) ##(y), the set (0,1)\I’ is at most countable. Write

I=0 ).

n=0
The get I is invariant under o (o(I) < I) and (0, 1)\I is also at most
countable. For each # € I the unique point of J, will be denoted by w(2).
The function y: I — J i§ invertible and Borel measurable. In fact » # ¥
(w,y eI) implies »(x) # »(y) and according to (4) J,myNdyey =9-
This proves that y is invertible. In order to prove the 1nea311rab111ty
observe that
y(®) = limy, (z), . where y,(z) = iniJkl(a:)u.kn(x) for weTI.

n~+Co
Any funection v, is.piecewise constant. Namely

: m—1 m
y,(®) = const for weln (._—, =

Wi
pr ), m=1,...,7.

Thus v is Borel meagurable as a limit of Borel measurable functions.
From the definition of the functions k,(#) it follows that %,(o ()}
= K, 41(2). From this and equality (5) we obtain

T (Jkl[ij...lc”(.r)) = J/cl(gkr))...k,,_l(y(.r)) .
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Since J,‘(:,.) c Jkl(m)...k,,,(m)i this implies
- T(Ju(w))‘ c chl(o(a:))...]rn_l(o(.z:))

and consequently
0

(8) “ ) < (ke ot = et

For x eI we lizwe o(x) el and according to the definition of Yy
Tuwy = @@}, Jueey = {9 (e(@)}.
Thus from (8) it follows that

{9) T(p(@)) = y(e(®)) for mel.
Now we define the desired measure x Dy the formula
(10) p(B) =m(y~'(Z)) (B Borel subset of J),

where m denotes the usual Borel measure on (0, 1). Since g preserves
the measure m, we have '

p(E) =m(p ™ B)) =m(g7} (p~ (B)) = m (b7 (v (B)) = w(z(B)).

This proves that x is invariant under 7. The continuity of x follows from
the fact that ¢ is invertible. In order to prove that p is ergodic assume
that 77'(A) = 4. Then y~'{r7'(4)) =y *(4) and according to (9)
e w7 (4)) = »7'(4). Since ¢ is ergodic with respeet to m, this implies
that either m(y~'(4)) =0 or m(p~'(4)) =1. Consequently by the defi-
nition of u either u(A4) =0 or u(4) = 1. This completes the proof of
Theorem- 1.

Remark 1. From (9) and (10) it follows that the system (J, 7, u)
i8 isomorphie to ([0,17, o, m). Thus (J, =, 1) is not only ergodic but also
mixing and exact in the sense of Rochlin {10]. The measure u is supported
on the set

. -D = OIU Jlrl...lan:

where the union is taken over all sequences (%, ..., k,) of the length ».

Remark 2. The measure x in Theorem 1 is not unique. We may
repeat the proof replacing ¢ by a more general transformation

1
Q;p("v) = — (CU— Qk—l) for Q-1 To< ar,
ke
where

]
QI.'=2pi7 % =0,

T=1
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and p = (py, ..., p,) is an arbitrary probability veetor

,
‘ 0<_’P¢<1, ZP.L =.1.
' i=1
In that case the measure x depends upon p. In particular p(Jy i)
=pk1 "'pkn-'

4. Transformations with periodic points. Theorem 1 enables us to
prove the existence of invariant measures for continuous mappings with
periodic points. We say that x, € J is a periodic point of period # for a trans-
formation 7: J —J if "

(@) =2 and () #wm (k=1,...,n—=1).

ProPOSITION 1. Let z:°J —J be a continuous mapping. Then the
existence of a periodic point of period 3 for v implies that =2 is pseudo-dyadic.
Proof. Denote the periodic point by z, and write #, = 7' (2,). From
owr assumptions it follows that z;, # @y, ¥, # @, and zy; = z,. It is also
easy to see that #, # x,. In fact the equality 2, = », implies z, = v ()

= 7(®,) = @, which is impossible. Thus we have three different points
gy @1y ¥, Such that :

T(Z) = &1, T(B) = Doy  T(Xs) = Xp.

We may assume that z, < 2, < ,. In the remaining cases the proof is
similar, From the continuity of ¢ it follows the existence of a point Z
€ (24, #,) such that 7(Z) = ;. Thus we have

72 ((%, mz)) =" (1:2(.'172), 12(ﬁ)) = (@, Z,)
and
. 72 (24, E)) > (v2(w,), 72(F)) = (2%, ).
Writing J; = (2., Z) and J, = (%, @,) Wwe obtain
JUd, = (B, 2,) = t2(J1)NT2(J )

which completes the proof.

ProPOSITION 2. Let 7: J —-dJ bé a Borel measurable transformation
and let u be a continuous measure invariant under T for some integer m > 1.
Then the measure

m—1

1
(1) F(B) = > ulr(B)

is continuous end invariant under v. If u is ergodic with vespect to =™, then
the same property has m with respect to .
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Proof. The condition y = ur™™ implies @ = @r~". Thus 7 is invariant
under 7. Now let £ € J be an arbitrary point. We have

78 (1p) < r"””(r’”"“(m)), k=0,..,m—1,
and consequently
ple (@) < p(r™ F (@) = p(*@), *=0,...,m—1.

Since ™ * () is a singlo point and x is continuous, this implies (v~ *(w)) =0
for ¥ =0,...,m—1. Thus g(2) = 0 for each z € J. Now suppose that u
is ergodic and gz is not. Then there exists a set .4 such that

A =171(4), 0<pE(d)<1.

The equality 4 = v7'(4) implies 4 = 77%(4) for all positive mfegers k.
Thus we have '

A =7™(4), p(d)=7pd)e(0,1)

which contradicts to the ergodicity of u (with respect to z™).
Using Propositions 1 and 2 we may prove immediately the following

THEOREM 2. Let 7: J —J be a continuous mapping. Then the exist-
ence of a periodic point of period 3n, for some integer n =1, implics the
existence of an ergodic continuous tnvariant measure.

Proof. From Proposition 1 it follows that ** is pseudo-dyadic.
Thus according to Theorem 1 there exists a continuous ergodic measure x
invariant under +**. Setting m= 2» in formula (11) we obtain a contin-
uous measure u invariant and ergodic with respect to .

Theorem 2 wag proved in [3] by a different method based on the
notion of strictly turbulent trajectories. '

Now we are going to apply Theorem 2 in some special cages. Consider
the mapping 7,(2) = az(l—~«) of the umit interval [0,1] into itself,
(0 < e < 4). This transformation was studed by Ulam [14], Lorenz [5],
Smale and Williams [13]. It is known that for « = 4 there exists an abso-
lutely continnous measure invariant under z,. The problem of the exist-
ence of a non-trivial invariant measure for a< 4 was open (a trivial
measure supported on a fixed point or a periodic orbit always exists).
An elementary computation shows that for each « > 3.83 the equation
73(z) = o admits a solution which is not a fixed point of v, or 2. Thus
for each « e[3.83,4] there exists a continuous measure invariant and-
ergodic with respect to z,.

Now consider the mapping o, () = x*+ 4 of the real line into itself.
The transformation o; was studed by Myrberg [7], Gumowski and Mira [2].
An easy computation shows that for 2 < —1.75 there exists a periodie
point of period 3. This implies the existence of a continuous measure
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ergodic and invariant under o; for A< —1.75. The results concerning =,
and o, are closely related. In fact setting 1 = 4e— }o? and y(2) = }~2/a
we have 7,09 = poo;. Thus, a measure x is ergodic and invariant with
respect to o, if and only if & = py~! is invariant with respect to z,. More-
over, since y i8 linear the measure u is continuous if and only if i is con-
tinuous.

Our last example is the transformation

T,(2) = ;rqsinm(modﬁ)

of the interval [0, =] into itself. Bunimovié [1] has shown that for each
integer q # 0 there exists an absolutely continuous measure invariant
with respect to r,. Observe that for each real ¢ guch that |g > 1 the trans-
formation 7, is pseudo-dyadic. In fact setting

1 1
Ji= (0 arcsin—) Jy = (n—a,rcsi.n'— r:)
1 ’ |q| ) 2 IQ| ?

we have
Tq(Jl)mTq(Jz) = (0, TC) D‘JIUJz-

For each ¢ satisfying the ineilusblity 1> |q| = 0.94 the mapping 7, is con-
tinuous and admits a periodic point of period 3. Thus, according.to The-
orem 1 and 2, for |g| > 0.94 there exists a continuous meagure invariant
and ergodic with respect to 7,

5. Functional equations. The problem of the existence of invariant
measures for piecewise monotonic transformations may be easily formu-
lated in terms of functional equations. Let 0 = g, < ... < @, = 1 be a par-
tition of the unit interval and let ¢;: [@;_,, a;] = [0, 1] be a given sequence
of continuous invertible functions. Assume that any mapping ¢; is onto.
Define the transformation v,: [0,1]- [0, 1] by the formulas

sz(w) = Q”l(m) fOI' ai—l < r < ai! Tw(l) = @y (1)'

PROPOSITION 3. A continuous measure u 8 invariant under v, if
and only if the function F(z) = u((0, %)) satisfies the functional equation

(12) (@) = D | (pi (=) — F (p;* (0))].
{=1

The proof of Proposition 3 is obvious, since the right-hand side of
the functional equation (12) is equal to u(z,*(0, %))
We shall consider a more general equation

(13) F(w) = )|F (p:(a) — F (v:(0)],

i=1

7 — Annalés Poloniel Mathematiel XXXV z. 3
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where v, are arbitrary mappings from the unit interval [0, 1] into itself.
We have the following
' THEOREM 3. Assume that infy, ; =>supy;, (¢ =1,...,n—1) and
that at least two functions p; are continuous and invertible. Then there exists
a continuous inoreasing solution I of equation (13) such that F(0) =0,
F(1) =1. '

Proof. Let y,,..., v, be a subsequence of continuous one-to-one
mappings. Write Ji = 1,0,( (0, , 1)) and

_ fvi/ (@) for med,,
7(2) _{m for @ ¢ U J,.

The transformation 7 is pscudo-r-adic and according to Theorem 1 there
exists a continnous measure u invariant under v. Since u is supported
on (JJ; tho function F(z) = ©((0, 2)) is constant on each subinterval
of [0,1]N\{JJ;. Thus

F(')—-,u(O m))—,u(t (0, ) = p(r~Y0 wﬁUJ)

= 2|F(1PA-,»( (’Whi | —2|P(% )““ (%(0 )l
vl
which finishes the proof.
A special case of equation (12) corresponding to the transformation
@
1—-_?5, o<,
l—2

—, ¥<o<y

(14) () = l

wag studed by Small [12]. Since we are interested in solutions sa.tisiying
condition F(0) = 0, the equation may by written in the form

1
142
From Theorem 3 it follows the existence of a continuous increasing so-
lution F of (15) satisfying conditions F(0) = 0 and F(1) = 1. We claim
that there is no solution of (15) which are absolutely continuous on [0, 1]

except the trivial one F' = const. In fact suppose that I' is absolutely
continuous solution of (15). Then f = dF/dv satisfies the equation

i 2 1 -
I R T [f(l+m)+f(1—_,;5)] s, in [0, 1].

Denote the right-hand side of (16) by Pf. An elementary computation
shows that the sequence of functions f,(#) = P"1 converges to zero uni-

(15) E(m)=F(T%),'%-1F(1)—F( ), <<,
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formly on each subinterval [e,1](e> 0) of [0, 1]. Given & > 0 choose &
‘constant ¢ > 0 such that

[l @=0 +(~ @ ~0)|as <.,

where f* = max(0,f) and f~ = max(0, —f). We have

-

1 I 1 ' ! '
[1P*fldz = [P+ do+ [P f~dw <20 [P*1da+ [PMf*—0) do+

1 ) 1 ) 14 .
+ [P (f~ =0t dw = 20 [P 1+ [ (¥ — Oyrdo+ [ (f~—C)* do
0 . . 0 3
and consequently

fllP”f]dm <20 f1P"1+s.

Since P™1 converges on [¢, 1] uniformly to zero, this implies that the
sequence P"f converges in measure to zero. Thus the unique solution of
equation (16) is f = 0. This finishes the proof of the claim.

The anthor would, like to express his appreciation for the suggestions
associated with the results contained in Section 4 which came forth from
his discussion with Dr. G. Pianigiani. /
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