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Abstract. Consider the [ollowing boundary value problem for an infinite system of second
order ordinary differential equations:

—D*y+f(x,y,Dy) =0, xe(0, 1),
g((0), Dy(0))= 0 = k(y(1), Dy(1)).

In the above problem y, f, g, b have values in the set of real sequences indexed by a subset J of
the set of integers and D?y, Dy denole, respectively, certain weak second and first derivatives of
y. In this paper some results are obtained on the existence and the monotone approximation of
maximal and minimal solutions to (I) using differential inequality techniques. An example is
presented at the conclusion of the paper in which the results are used to obtain convergence of
the method of lines for elliptic boundary value problems in an unbounded domain.
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lems, maximal-minimal solutions, differential inequalities, elliptic boundary value problems,
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I

1. Introduction. In this paper, we investigate the existence and monotone
approximation of maximal and minimal solutions to boundary value prob-
lems for systems of second order ordinary differential equations of the form

(1.1) —D?y+f(x,y,Dy) =0, xe(0,1),

(1.2) 9(y(0), Dy(0)) =0 = h(y(1), Dy(1)).

In the above problems y, f, g, and h, have values in the set of real sequences
indexed by a set J S Z, where Z is the set of integers. Dy and D?y denote
certain weak first and second derivatives, respectively, of y(x). This system is
infinite dimensional or finite dimensional as the index set is an infinite or
finite subset of Z, respectively.

In some earlier work on solutions to boundary value problems of this
type in the infinite dimensional case, the problem has been formulated in one
of the Banach spaces /?, 1 < p< oo (see for example, reference [14]). These
results have the disadvantages, from the point of view of certain applications,
that the derivative is defined in terms of the norm-topology in the Banach
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space (implying a type of uniform differentiability with respect to the
index i); and second that, in order to apply fixed point theory to show the
existence of solutions, some sort of compactness condition in the form of
a rather restrictive growth condition is required on the functions f(x, y, z),
g(y, z), and h(y, z). One such application which produces problems of the
form (1.1), (1.2) is the approximate solution of elliptic partial differential
equations, using the method of lines. In some recent work on this problem
(see reference [11]), we have shown that, for problems arising in the method
of lines, the formulation in the Banach space P can be avoided by taking
advantage of the fact that the coupling in (1.1), (1.2) arises from numerical
differentiation and is hence local in nature ( f(x, y, z), g(», z), and h(y, z) are
row finite). The existence results in [11] require essentially no growth
condition beyond this row finiteness ; however, in order to obtain uniqueness
of solutions, some growth conditions seem to be needed.

In the last two years a number of results have begun to appear on the
existence of extremal solutions for systems, including some recent results for
infinite systems (see e.g. [1], [2], [3]). In these results the extremal solutions
are obtained iteratively, starting with solutions of certain differential inequal-
ities. A similar technique, sometimes referred to as Chaplygins method has
been used for some time in investigations of monotone methods for initial
value problems for systems of ordinary diflerential equations and parabolic
boundary value problems (see references [7], [8]).

In the present work, we show that if f satisfies a Kamke condition and
a growth condition in Dy, if g and h satisfy a monotonicity condition in y
and Dy, and if certain differential inequalities have solutions, then there exist
monotone sequences of approximate solutions which converge to the ex-
tremal solutions to problem (1.1), (1.2). Our approach was suggested by some
results by Mlak and Olech [8] for initial value problems, however, the
techniques are similar to those used in the results on boundary value
problems mentioned ‘above. :

In Section 2, we present an extension of a minimum principle, appearing
in reference [12], to the case of weak derivatives and nonlinear boundary
conditions. This result gives sufficient conditions for the uniqueness of
solutions to (1.1), (1.2) and gives a comparison principle for solutions to.
diﬂ'e\rentia] inequalities. The next two sections, Sections 3 and 4, contain
some preliminary notation and lemmas used in subsequent sections to
construct the approximate solutions. Section 5 contains the main results on
the existence of extremal solution to (1.1), (1.2). Given results on existence of
maximal and minimal solutions to one dimensional problems our construc-
tion of approximate solutions is an iterative one.

In Section 6, after strengthening the hypotheses on (1.1), (1.2) to
guarantee uniqueness of solutions, we give a construction of approximate
solutions which suggests a method of local error estimation in the solution of
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truncated systems. These results are illustrated on a problem arising in the
method of lines solution of an elliptic boundary value problem in Section 7.

2. A minimum principle. In this section, we present a minimum principle
and a comparison theorem for systems of differential inequalities correspond-
ing to (1.1), (1.2). These results are similar to Theorem 2.1 and Theorem 3.1
of reference [12] differing in that the derivatives here are weak derivatives
and the boundary conditions may be non-linear. The following are some
properties of ordered Banach spaces which are used in the section.

Let B be a Banach space with norm |-|. Denote the set of continuous
linear functionals by B* and the unit ball of B* by U*. If K* S U*, then K*
denotes the closure of K* in the weak * topology. A closed subset K EB is
called a cone if: (i) aK S K for every a > 0; (ii) K is convex; and (iii)
K n(—K)=1{0}. An element @ eB* is called a positive linear functional with
respect to K if ¢(u) > O for every ue K. The set K* S B* is said to generate
the cone K < B if K is the intersection of the half-spaces K =\ {ueB: ¢(u)
=0, peK*}. A cone K is said to be solid if int K is non-empty. If ugeint K
and o is a positive linear functional, not identically zero, then ¢ (up) > 0. If K
is a cone and a partial ordering is defined by setting w<v if and only if
u—veK and u<v if and only f w—veint K, then < and < have the usual
properties of the sign of inequality. Let K* S U* be such that K* generates
a solid cone K and suppose there exists a upeint K and a 4 > 0 such that
inf {¢(uy): @eK*} > 6. Define the set of functionals K} by means of the
equation

é
K* =<peB¥|lou) =— u), eK*,ueB}.
: _{p o) =TS VY
This set has the properties: Kj = U*, K generates K; and ¢(ug) =4 for
every o eKg .

A subspace I' S B* is said to be a total space of functionals if ¢(u) =0
for every peI’ implies u =0 (see [5], p. 418). Let I' be a total space of
functionals on B and let u: [0, 1] — B. Du and D?u are called weak first and
second derivatives of u with respect to x in the I'-topology if the following
equations hold for all pel":

lim k™2 ([u(x+h)~2u(x)+u(x—h)]—h>*D*u(x)) = 0,
h~0
lim A~ @ ([u(x+h)—u(x)]—hDu(x)) = 0.
h=0
d
It follows from these equations that ¢{Du(x)) o @ (u(x)) and' ¢ (D*u(x))
2

Suppose K* S B* generates a cone K & B. Let I' = span (K*), then I' is
a total set of functionals on B because of (iii).
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The set C([0, 1], B) denotes the set of (strongly) continuous functions
from [0, 1] into B and CI'*([0, 1], B) the set of functions u: [0, 1] — B such
that ¢(u(x))eC?[0, 1] for each gel.

TueoReM 2.1. Let K be a solid cone in B generated by a subset K*¥ & U*
let ugeint K be such that inf {¢(uo)} = 6 > 0 for some 6 > 0. Let F [0, 1]x
xBxB—B, G: BxB— B and H: B x B— B satisfy the following conditions:

(i) for every (x, u, w), (x, v, z)€[0, 1]><B><B
ek}, o(u—~v) =inf {p(u—v): peK} | <O,
p(w—2) =0=>¢(F(x, u, w) o(F(x, v, 2))

and
peKl, om—1)=inf{p—1): peK}} <0,
s ] oG W) >0 (G, 2),
ow—-z)=0 { (H(u,w))<¢(H(v,z));

(i) F(x,0,0) <0, G(O 0)=>0, and H(0, 0) <
(iii) F(x, u, w) satisfies a Lipschitz condition wnth respect to w on closed
and bounded subsets, of [0, 1]xBxB; and

(V) o(w—2)> O=>{ @(G(u, w)) = ¢(G(u, 2)),
~ 4 2

(H(u, w)) = o (H(u, 2)).
If ueC([0, 1], B) satisfies
(2.1) —~D?u(x)+F(x, u(x), Du(x)) =0, xe(0, 1),
(2.2) G(1(0), Du(0)) < 0 < H(u(1), Du(1)),

then u(x) = 0 for all xe[0, 1].

Proof. Consider first the case in which the expression in (2.1) satisfies
@ (—D*u(x)+ F(x, u(x), Du(x))) >0 for every @eKj . Let us assume
contrary to the conclusion of the theorem that u(x)> 0 fails for some
x€[0, 1]. Define a continuous function @: [0, 1]— R by setting

& (x) = inf {p(u(x): peK}

(note: the continuity of @ follows from that of u). The assumption that
u(x) > 0 does not hold for some xe[0, 1] implies that ®#(x) <0 for
some xe€[0, 1]. By continuity there exists an x,e[0, 1] such that &(x,)
= min {¢(x): xe[0, 1]}.

Suppose xy=0. By Lemma 23 of reference [12] there exists
a WeK} such that y(u(0))=®(0) = min {®#(x): xe[0, 1]} < 0. Define
y(x) =y (u(x)). Since y(0)<y(x) for every xe[0,1], it follows that

0<y(0) -—-% (nﬁ (u(x))) .o = ¥V (Du(0)). We obtain from (2.2) and hypothe-
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ses (i)—(ii) that

0<¥(G(0, 0) <¥(G(u(0), 0) < Y (G(u(0), Du(0)) < 0.

It follows from this contradiction that x, = 0 is not possible. A similar argu-
ment shows that x, # 1 and therefore x,€(0, 1). The argument that this is
also impossible now follows from the proof of Theorem 2.1 in [12].

In the general case where (2.1) holds, suppose again that the inequality
u(x) = 0 fails at some xel. Let ¢(x) and x, be as above and let ¢ > 0 be
a number such that @(x,) = —4e. Let g(x) be a solution to the scalar
equation ¢” =(L+1)¢" satisfying 0 < g <éeflugl and —1 <o € -y <0 for
some 0 <y <1, where L > 0. Define w(x) = u(x)+¢(x) 4. Then, making use
of (i) and (iv) we have

G(w(0), Dw(0)) = G(u(0)+2(0)uo, Du(0)+¢' (0)u) < G(u(0), Du(0) <0,
and, in a similar way,
H(w(0), Dw(0)) > 0.
Furthermore, if L is the Lipschitz constant for F(x, v, z) corresponding to
the set {(x, y, 2)€[0, 1]xBxB: xe[0, 1], [yl < |lull +&/luol, |z| < ||Dull+1},
then w(x) satisfies the condition, in the first part -of the proof, with respect to

inequality (2.1). It follows that w(x) = 0 on [0, 1]. However, at the point x,
we have !

inf {@(w(xo)): @eK¥ } < P(xo)+inf {@(a(xo)uo): peK¥}< ~3&<0

which contradicts the inequality w(x) > 0. The conclusion follows from this
contradiction. W

THEOREM 2.2. Let f(x, u, w), g(u, w), and h(u, w) satisfy conditions (i),
(iii), and (iv) for F, G, and H, respectively, in Theorem 2.1. If w, v, C([O0, 1], B)
satisfy
(23)  —~D?w(9+f(x, w(x), Dw(x)) < —D?v(x)+f(x, v(x), Do(x),
(24)  g(w(0), Dw(0)) = g(v(0), Dv(0)),  k(w(1), Dw(1)) < h(v(1), Dv(1)),
then w(x) < v(x) for all xe[0, 1].
Proof. Define functions F(x, u, Du), G(u, Du), and H(u, Du) as follows:
F(x, u, Du) .
= —D?w(x)+D*u(x)+£(x, w(x), Dw(x)} +f (x, v(x)—-u, Dv(x)~Du),
G(u, Du)= g(w(0), Dw(0))— g(v(0)—u, Dv(0)—Du),
H(u, Du)= h(w(l), Dw(1))—k(v(1)—u, Dv(1)—Du).
One easily verifies that the F, G, and H defined above satisfy the hypotheses

of Theorem 2.1. The conclusion follows by defining u(x) = v(x)—w(x) and
applying Theorem 2.1. I
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3. Two lemmas. In this section we present two lemmas which we will
refer to repeatedly in the construction of solutions to problem (1.1), (1.2).
The first of these results in a growth condition in Dy which is used to
obtain bounds on the derivative of certain bounded solutions. In particular,
let B be a Banach space, f: [0, 1]xB x B — B, and || represent the norm in
B. For y: [0,1]-—-B let |yl = max |y(x)]. We will say that f satisfies

0<x<1
a Nagumo condition if for every bounded set Y S B, there exists

a non-decreasing continuous function v [0, o) — (0, co) such that
2

. S
(31) sl-l-vn:; m = 4+
and
(32 [f(x, », 2l <y(zl), xe[0,1], ye¥.

The bounds on the derivatives of solutions are obtained from the following
lemma.

Lemma 3.1 (see [107]). Let Y (s) be a positive, non-decreasing, continuous,
real valued function satisfying (3.1) and let R be a positive number. Then there
exists a positive constant M = M, R) such that, if ye C*(I, B) is such that
7l < R and ||y < ¢ (Iy]), then |lyl|<M. B

In some of the results which follow, condition (3.1) can be replaced by
a weaker integral condition on . However, we will use (3.1) throughout
since it applies to systems of equations without further restriction,

The next lemma in this section deals with the existence of extremal
solutions to a scalar equation related to (1.1), (1.2). Consider the boundary
value problem

(3.3) —y'+f(x, »,¥) =0, xe(0,1),
(34) g(y(0), y'(0)) = 0 = h(y(1), y'(1)),

where f: [0, I]xRxR —>R; g, h: RxR—R.
A function a: [0,1]— R, aeC[0, 1] is called a lower solution of (3.3),
(3.4) if for every X€|0, 1], there exists a neighbourhood of (X) of X such that

(3.5) a(x) = max a.(x) (s=s5(X),

1<r<s
where for each 1 <r<s, a,eC*([0, 1]1n7n(%)) and satisfies
(3.6) —o () +f(x, &, (x), % (x)) <0, x€(0, 1),
3.7 g((0), %, (0) = 0 > h(a, (1), a;(1)).

Similarly, a function f: [0, 1]—>R, BeC[0, 1] is called an upper solution
of (3.1), (3.2) if, for every Xe[0, 1], there exists a neighbourhood #(%) of %
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such that

(3.83) B(x) ='llzlil<1 B(x) (s =s(x)),

where for each 1 <r<s, $,eC*([0, 11N 7y (X)) and satisfies
(3.9) — By (x) = f(x, B,(x), Br(x)) = 0,

(3.10) g(B,(0), B;(0)) < 0 < h(B,(1), BL(1)).

LemMa 3.2. Let there exist an upper solution B(x) and a lower solution
a(xy of (3.3), (3.4) satisfying a(x)< B(x) for xe[0,1] and let f satisfy
a Nagumo condition. Then problem (3.4), (3.5) has a minimal solution y;, and
a maximal solution y.,, such that for any solution y(x) of (3.4), (3.5) the
inequalities o(X) € Yin (X¥) < Y (%) < Yoy (X) < f(x). W

The above lemma is essentially taken from a recent paper of K. Schmitt
(see reference [9]). Because of the nonlinearities in the boundary conditions
a reference for the proof of this lemma to the result in [9] is a little awkward
since there it is proved for linear boundary conditions. However, making use
of some recent results on problems with non-linear boundary conditions by
Gaines and Mawhin [6], it is not difficult to modify the proof in [9] to
include these boundary conditions as well.

Remark 3.3. In the proof of Lemma 3.2, y,;, is obtained as the in-
fimum of the set of upper solutions w(x) satisfying a(x) < w(x) < f(x);
and y_, is the supremum of the set of lower solutions w(x) satisfying
a(x) < w(x) < B(x).

4. Some notations and definitions. Denote by E = E(J) the linear space of
.real valued sequences indexed by J S Z, where Z is the set of integers. An
element ye E will be denoted y = (y;);e; or simply y = (y;). Let I' denote the
linear span of the set of functionals {¢;: ¢;: E = R, ¢;(z) =2z;}. The set I' is
a total set of functionals on E. ,

A function f: [0, 1]xExE— E will be called I'-continuous il it is
weakly continuous in the following sense:

(4.1) for each ieJ, the limits x — xo, y;— )7, z; = z{,
for each jeJ imply the limit f;(x, y, z) = fi(x, y° 2°).

Similarly g, h: E x E — E will be called I'-continuous if they are I'-continuous
considered as functions defined on [0, 1]xE X E.

Let p be a fixed element of E with p,> 0 for all jeJ and let E, denote
the Banach space of sequences in E with finite norm

|¥l, = sup {p,lyjl: jeJ}.
Let I', = T be the set of linear functionals on E, defined by I', = {(pjel“:
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@;(») =p;y;, Y€E,, jeJ}. By K, we denote the cone in E, generated by the
linear functionals I, that is to say, K, = {yeE,: ¢;(») 20, @;eTl,, jeJ).
This cone determines the natural order relation on E,:

y<z iff y; <z forallieJ.

Furthermore, int K,, the interior of K,, is non-empty and we define:

d
y<z iff y,-+;<z,- for all ieJ and some J > 0;
in other words, z—yeint K,,.

Define the elements e and ¢ by the equations

e=(p "), e = (‘5u),

where §;; is the Kronecker delta. Note that ecint K, and |e|, = 1. Given ieJ,
a point (x, y, z)e[0, 1] xExE, and any real number y, we define (see
reference [14])

fix, Iy: 7], 2 = filx, y+(y—y) €, 2).

The functions g;([y;y], z) and h([y; y], z) are defined similarly. The ex-
pression y+(y—y;) € replaces the i-th component of the sequence y with the
number y. In a similar fashion, if N; € J, we define, for ye E(N,),

fi(x, Iy; v1, 2 = fi(x, y+ 3 (=) &, 2).

jEN..

The expression y+ ) (y;—y;) € replaces entries from the sequence y whose
JeN
indices come from the set N; with corresponding entries from the sequence .

We will say that a function F: [0, 1] xExXE — E satisfies a Kamke
condition on a set £ S [0, 11xExE if the following holds:

(42) .(xa y, Z), (X, J_,3 E)E-):s}’gy, yi=jjl’ ZI=E[
implies f;(x, y, z) = fi(x, ¥, 2).

We will make extensive use of this condition in the results presented in the

sections to follow. It is imporfant to note that if F satisfies a Kamke

condition on Z, then F;(x, y, z) = F/(x, y, z;) on Z, i.e, F; is independent of

z;, j#i If F: ExXE—E, then F is said to satisfy a Kamke condition,

provided it satisfies (4.2) considered as a function defined on [0, 1] xE xE.
If peE, the subspace Ej is defined by

EQ = {uckE,: for every ¢ > 0 there exists a finite subset
N(e) of J such that pjlu| <e for all je J\N(g)}.
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5. Maximal and minimal solutions for (1.1), (1.2).

THEOREM 5.1. Let there exist functions a«, e CI'*([0, 1], E) satisfying
a(x) < B(x) and

(5.1) —D%a(x)+f(x, x(x), Da(x) <0, g(a(0), Dx(0)) > 03> k(x(1), Da(l));
(52) —D*B(x)+f(x, B(), DB(x)) =0, g¢(B(0), DB(0) < 0< h(B(1), DB(1)).

Let f, g, and h be I'-continuous and satisfy a Kamke condition on the set
X ={(x,y,2):xe[0,1], a(x) S y < p(x), zeE}. Let each f; satisfy a Nagumo
condition with Nagumo function yi;(s) on the set X. Suppose further that g;(y, z)
and h(y, 2) are non-decreasing in z; for fixed ycE and each ieJ. Then
there exists an increasing sequence of functions {a"} satisfying (5.1) and
a decreasing sequence {B"(x)} satisfying (5.2) such that lim a"(x) = y,(x)
and lim B"(X) = Yy (%).

Proof. Define L= {weCI*([0, 1], E): (x, w(x), Dw(x))eZ and w
satisfies (5.1)} and similarly U = {weCI'*([0, 1], E): (x, w(x), Dw(x))eZ and
w satisfies (5.2)}. Let we L and consider the sequence of scalar problems:

(5.3) —y +fi(x, [w(¥); ¥1, ) =0, xe(0,1),
: (5-.4) gi([w(0); y(0)], ¥ (0)) = 0 =k ([w(1); y(1)]; y'(1))

for ieJ. One easily verifies that «(x) = w;(x) is a lower solution (x) = §;(x)
1$ an upper solution and that the other hypotheses of Lemma 3.2 are fulfilled
as well. Therefore (5.3), (54) has a minimal solution which we denote j;(x).
The equation Sw = §, where §(x) = (5;(x)) defines a mapping on L. The
image y(x) of this mapping has the following properties: (i) w;(x) < 7;(x)
< B;(x); (i) y,(x) satisfies the inequalities

=¥ () +fi(x, ¥(x), (%) < =5 (x)+f(x, [w(x); 5:(2)], 51 (x)) =
g:(¥(0), 7(0)) = g;([w(0); ;(0)1, y: (0))
h(F(1), 51 (1) < b (Dw(1); 7:(1)1, 7i(D))

and (iii) if y(x) is any solution of (1.1), (1.2), then P;(x) < y;(x). Of these
properties (i) follows from Lemma 3.1, (ii) from the Kamke condition and (iii)
from the fact that y, is an upper solution for (5.3), (5. 4) together with Remark
3.3. It follows that SweL and that w < Sw.

Define a sequence {a"} of elements of L by setting

' =a, a=Sa""1 n=1,2, ..

The properties listed above show that a” is a non-decreasing sequence from
L which is bounded above in the partial ordering of E by B(x). Let i be
a fixed, but otherwise arbitrary, element of J and consider the sequence of

6 — Annales Polonici Mathematici XLI. L.
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real valued functions {af'(x)}. The function o;(x) satisfies the differential
equation

(5.5) — o (x)+1; (x, [o" ™1 (); o7 (%)], o' (x)) =0,
the boundary conditions

(560  gi([e" " (0); &7 (0)], & (0) = 0 = Ay ([a" " (1); &7 (1)], " (1)),
and the inequalities

(5.7) () =) <. <X < HFF) <. < Bi().

Inequalities (5.7) imply that {«]} converges pointwise to a function y;(x).
From (5.5) and the Nagumo condition it follows that the sequence {af(x)} is
bounded by a constant M, which depends only on y; and Z. Hence the
sequence {a(x)} is uniformly convergent to y;(x) and that y,(x) is
continuous.

To show that the sequence [«f'(x)} is also relatively compact, it is
sufficient, in view of equation (5.5), to show that f;(x, y, z;) is bounded on the
set Zp, = {(x, y, 2)€Z: |z} < M;, jeJ}. Suppose to the contrary that this is
not the case. Then there is a sequence {(x",)" z")} in Zj, such that
| fi(x", y", zf)] = c0 as n— co. By the inequalities in the definition of the set
Xy, there exists a subsequence {(x™, y™, z™)} such that x™ —x° yf -y},
and zj*—z) for every jeJ as n,—oo and (x° y° z%)€Zy,. But this
leads to a contradiction, since by [I'-continuity then |f;(x™, y™, z/)|
= [ fi(x% y°, 2{) < co.

Thus it follows that the sequence {af(x)} is uniformly bounded and
equicontinuous and hence has a subsequence which converges to y;(x) and
that y;(x) is continuous. Because of the monotonicity of the sequence {a"(x)},
both subsequences {e/*(x)} and {o;*(x)} converge uniformly to {y,(x)}.
Making use of the I'continuity of f(x, y, z) and the uniform convergence of
the sequences {o(x)} and [a}'(x)} (where we have renumbered n =n,) we
pass the limit in (5.5) and (5.6) and obtain that y(x) = (y;(x)) is a solution to
(1.1), (1.2). That y(x) = Y. (x) follows from property (iii).

The result concerning the sequence {B"(x)! is obtained in a similar
manner by defining a mapping T: U — U using equations (5.5), (5.6). B

Remarks 5.2. (1) If the function f(x, y, z) is row finite, i.e., for each i
the function f;(x, y, z) depends on components of y and z coming from finite
subsets, say N; and N; of the index set J, then f(x, y, z) will be I'-continuous
if each f;(x, y, z) is continuous as a function on [0, 1] xR" x R", where n, is
the number of elements in N; and n;, the number in Nj.

(2) Theorem 5.1 is also true for uncountable index sets J with the one
additional restriction, that there exists a positive constant K; = K;(M;) for
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each i such that
Ij;‘(x: y: Z‘)] S Ki

for all (x, y, z)eZy,. The argument used in the proof of Theorem 5.1 to
show that f;(x, y, z;) is bounded on Zj, cannot be used if the index set is not
countable.

(3) The result in Theorem 5.1 can also be obtained for equation (1'.1)
together with periodic conditions

y(x+w)=y(x)

using some results by Schmitt (see for example reference [9]) and the
argument employed in the proof of Theorem 5.1..

6. Monotone approximation in the case of uniqueness of solutions. From
a computational point of view, the iteration technique used in Section 5 does
not lead to an effective algorithm for approximating solutions to (1.1), (1.2) if
J is infinite because each iteration requires the solution of an infinite number
of one-dimensional boundary value problems. The approximation of so-
lutions to problems like (1.1), (1.2) requires as a first step a truncation to
some type of related finite system. In this section we present another
iteration 'scheme based on truncation for the solution of (1.1), (1.2) which, in
the case where (1.1), (1.2) is uniquely solvable, gives a method for local
estimation of the truncation error.

The uniqueness portion of the results in this section follow from
Theorems 2.1 and 2.2. To satisfy the requirements of the results from Sec-
tion 2 requires some growth conditions on f(x, y, z), g(y, z) and h(y, z) and
on the solutions to the differential inequalities. We will obtain the conditions
by formulating the problem in E, for a suitable sequence p, rather than in E.

The following condition is stronger than the Kamke condition used in
Section 5 and is sufficient to guarantee that hypothesis (i) of Theorem 2.1 is
satisfied. We will say that F: [0, 1]x E,xE, = E, satisfies condition (H) on
a subset 2 S [0, 1]1xE, xE, if

(61)  (x,y 2 (x, 7, DeZ,

pi(yi—7) =inf {p;(y;—7): jeJ} €0, z =%,
implies
(6.2) Fi(x,y, 2) < Fy(x, 7, 9.

Further, we say that F; satisfies condition (H') if strict inequality in (6.1)
implies that strict inequality holds in (6.2).

Let J, be a sequence of finite subsets of J with J, = J,,, and
lim J,=J. Let w(x) be a continuous function w: [0,1]—E, and

n—ow

“consider the sequence of finite dimensional boundary value problems defined
componentwise for ieJ, by
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(63) =y +fi(x, [w(x); ¥, ¥) =0  xe(0, 1),
(64) S(fw(0); y(0)1, ¥:(0)) = 0 = b ([w(1); ¥(1)1, yi(1)).

THEOREM 6.1. Let there exist a, BeC([0, 1], E;))n CI}([0, 1], E,)
satisfying a(x) < B(x) and inequalities (5.1), (5.2). Let f(x,y, z) satisfy
a Nagumo condition with respect to z with Nagumo function (s) on the set
Z={(x,y,2)e[0,11xE,xE,: a(x) <y < B(x)} and satisfy a Lipschitz con-
dition on closed, bounded subsets of X with respect to z. Let f: ¥ - E, and
g, h: 2> E, and be I',~continuous on X.

Let f(x, y, z) satisfy (H) and let —g(y, z) and h(y, z) satisfy (H') on the
set Z and suppose g;(y, z;) and h;(y, z;) are non-decreasing in z; for each yeE,,
ieZ. Finally let f(x,y, 2), g(y, z) and h(y, z) be semicontinuous with respect
to y in the following sense: there exists a continuous function d: R — [0, o0)
such that d(0) =0, d(s) is increasing for s > 0, d(—s) =d(s) and such that

.ﬁ(x: y—aé’ z;)—f,-(x, Y, z:‘) = —d(O’),
(65) gi(.Va z,-)—g,(y—ae‘, Z,-)? —d(O’), .
hi(y—aé, z)—h(y, z)> —d(0)..

Then the sequences {p"} and {a"}, defined by the equations

(6.6) ) =B, B =[px;y(¥]
and
(6.7) °(x) =a(x), @'(x)=[a(¥); 7],

where y"(x) is the solution of (6.3-4), with w(x) = B(x) and y"(x) is the
solution of (6.3-4), with w(x) = a(x), converge monotonically from above
and below, respectively, to the unique solution y(x} of (1.1), (1.2) in
C([0, 1], E,)nCIZ([0, 1], E,). _

Proof. Problem (6.3-4), satisfies the hypotheses of Theorem 5.1 with
index set J =J;, B(x) = (f; (X)), and a(x) = (e (x))s,. Therefore (6.3-4),
has solutions y!(x), respectively y!(x), and furthermore the functions *(x)
and «'(x) satisfy inequalities (5.1-2) and a(x) < a'(x)< ' (x) < ().
Problem (6.3-4), satisfies the hypotheses of Theorem 5.1 with index
set J =J,, B(x)=((X))e, and a(x) =(a](x)),. Therefore (6.3-4), has
a solution y?(x), respectively ¥>(x), and furthermore the functions B2(x)
and a’(x) satisfy inequalities (5.1-2) and a'(x) € a?(x) < f?(x) < B* (x). Pro-
ceeding inductively in this manner we generate sequences {a"(x)}, {B"(x)}
satisfying (5.1-2) and the inequalities a(x)< ... <a" (<X < ...
SRS LK B(X).

An argument similar to that used in Theorem 5.1 shows that
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lim &"(x) = y(x) and ‘lim g"(x) = y(x) exist and are solutions in E. To

show that y, yeC([0, 1], ,,)r\CI‘z([O 1], E)), we mnote first that the
inequalities a(x) < y(x) < y(x) < B(x) and the fact that a, B C([0, 1], E?)
imply that y, yeC([0, 1], E)) = C([0, 1], E,). It remains to show that
¥, ¥eCI5([0, 1], E,). It will be sufficient to show that Dy(x) = (yi(x)) and
Dy(x) = (y,(x)) are elements of E, for each xe&(0, 1), since then the
hypothesis that f: [0, 1]1xE,xE, —»E and equation (1. 1) implies D2y (x)
and D?y(x) are elements of E,. For every ieZ, the function p, y; satisfies the
equation

—pi ¥+ fi(x, ¥(%), Yi(%) =

Using the Nagumo function y(s) we obtain

Py (O < Bl i (3, ¥ (), yi ()

£ (x, ¥(x), yi(x) €)—£(x, p(x), 0)], +|f(x, y(»), 0)|,
W (Iyi(x)€l,)+ L |

W (pi |y )+ L = o(pilyi (x)),

where L = sup {|f(x, y(x), 0)),: x€[0, 1], a(x) < y(x) < #(x)}. The function
@ (s) satisfies the properties defining a Nagumo function, therefore there
exists a constant M = M (g, a, f) (in particular M is independent of i) such
that p,|y;(x)] < M. This inequality implies that IDyl, < M, ie., Dy(x)€E, for
each xe(0, 1).

The uniqueness result now follows by applying the result of Theorem 2.2
to y(x) and y(x). In Theorem 2.2 we take B=E, uw,=e, K} =T,
w(x) = y(x) and v(x) = y(x) and conclude ¥(x) < y(x). Since we have already
known that y(x) < y(x) it follows that y(x) = y(x). H

Remark (1) The iteration scheme used in this section can also be used
in the case where solutions are not unique and in cases where the uniqueness
is obtained by means different from the minimum principle used in Theorem
2.1 (see for example [11]). The key restriction in this scheme is that the index
set J must be a countable set. In particular the iteration does not depend on
the growth conditions on f used in this section.

(2) Since the sequences {a”(x)} and {B"(x)} converge monotonically to
the same function y(x) their difference f"(x)—a"(x) provides an estimate on
the difference between the actual solution and either of the approximate
solutions a”(x) or B"(x). Because of the nature of the iteration scheme used to
define a”(x) and B"(x) this observation can be used to give local error
estimates on the truncation error in approximate solution of (1.1), (1.2). We
will illustrate this technique on an application to the method of lines solution
to elliptic boundary value problems in the next section.

/A

N A
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7. Approximation of elliptic boundary value problems. In this final section
we present an example in the approximation of solutions to elliptic boundary
value problems in unbounded domains to which the theorem in Section 6
applies. Let 2 = (0, 1) x(0, o) and consider the following boundary value
problem for a perturbation of the Laplace.equation:

(7.9) —du+g(x,y,u) =0, (x,))eQ,
(7.2) u0,y)=¢@(), ul,y»)=v0), ye(0, ),
(7.3) u(x, 0) = f(x), xe[0,1].

Approximate solutions to (7.1), (7.2), (7.3) can be obtained from the solution
of the related infinite system of second order ordinary differential equations

(74) _Ahui+g(x,'yia ui) = 07 XE(O, l)s iEZ+,
(7.5) w(0)=o0m), wl)=y), ieZ*,
(7.6) ug(x) = f(x), xe[0, 1],

where h >0, y, = ih, —4,u; = —u; —62u,, and 8%u; = h™*(u_y —2u;+u; ),
icZ*. (See reference [11], where this approach is used to investigate
existence, uniqueness, and approximation of a problem similar to (7.1), (7.2),
(7.3).) The numerical procedure known as the method of lines consists in
solving (7.4—6) numerically and using the result as approximate solution to
(7.1-3). A discussion of the convergence of this method for non-linear elliptic
problems appears in reference [13].
Let F, denote the set of functions

F, ={h(x, y): |h(x, y)) < Ce®, y20,C>0, (x, y)e}.

In order to satisfy the hypotheses of Theorem 6.1, let us assume in (7.1-3)
that @, yeC(0, ©)nF, for some y,>0, that g,g,eC(QxR),
g(x, y, 0eF, and g,(x, y, u) > A > y3—n2 Under these conditions it is not
difficult to show that for » > O sufficiently small, and A4 sufficiently large the
functions B(x) = (B;(x)) and a(x) = (x;(x)) defined by f;(x) =4 sin (r, x) x
x cosh (yoy:), m = m/(1+2), ¢ > 0, and «;(x) = — f;(x) satisfy the hypotheses
of Theorem 6.1 (see reference [10]). Moreover, if we assumc that
g(x, ¥, u) eF, for (x,y,u(x, y)eF, for some y, >0 and that 1> y*>yZ+
+y5—n? for some y >0, then the function f(x, u, w) defined by the equation

Sic, uy Wy = —h72(u_y — 2up+ g )+ g (X, yp 1)

satisfies the hypotheses of Theorem 6.1 with respect to the space E, for h > 0
sufficiently small, where p is the element of E, defined by p; = e

We first note that a(x) and p(x) satisfy the hypotheses
a, peC([0,1], E)). Moreover, to see that f satisfies (H), let
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(x, w), (x, We[0, 11X E, be such that p,(y, —&). = inf {p;(u;—u;): jeZ*} < 0. Then
we have

Pl'(j;(xs ﬁ)'—'fl:(x’ ll)) = pi(—az(ii —ul)+g(x’ Yis Ei) _g(x: Yis ui))
= p[— 0% —w) +g.(x, yi, ) @ —u)]

> pily—5) [h‘z (;‘-"—+—”‘—-2)-A] >0
i-1 Pi+1
for h> 0 sufficiently small. The last inequality follows since |
h? (p—p‘—+—‘i—2)=h~2(ev"+e-v"—2)->y2.

-1 DPi+1
The remaining hypotheses of Theorem 6.1 are easily verified.

To apply the procedure outlined in Section 6 to problem (7.4-6) we fix
he(0, hy) so that a, B, and f fulfil the conditions in Theorem 6.1 and
consider the sequence of sets {J,}, where J,={1,2,...,n}. In this case
problem (6.3-4), consists of (74-6) for j=1, ..., n—1 and, for i = n, (6.3)
becomes

_u:_h-z(un—l —-2u,,+w,,+1(x))+g(x, Ym un) =0.

Let u" denote the solution to (6.3—4), obtained by setting w(x) = a(x) and »"
the solution corresponding to w(x) = f(x) and extend these solutions to
infinite sequences «” and B" be defining oaf = 4! and B! =" for i <n and
of =a;, B = B; for i > n. Then from Theorem 6.1 we obtain the following
error estimates.

THEOREM 7.1. Let (7.1—3) satisfy the condition listed above. Then for
h>0 sufficiently small (74-6) has a unique solution & with a(x) <#(x) < B(x).
Moreover, for each icZ™* the inequalities

0 < i; (%) —af (x) < B (x)— o' (x) = ] (x)

are satisfied and e!(x) 4+ 0 monotonically as n— 0 and this convergence is
uniform in x at each fixed i. W

Remarks (1) In order to simplify presentation of this example we have
not included gradient terms in the function g. However, since the results in
Section 6 permit some Dy dependence it is possible to obtain similar results
in cases where g does contain gradient terms.

(2) The results presented here also hold for the boundary value problem
considered in reference [11].
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