ANNALES
POLONICI MATHEMATICI
XXXIX (1981)

Lipschitz spaces of holomorphic and pluriharmonic functions
on bounded symmetric domains in C¥ (N > 1)

by JosepHINE MiTcHELL (Buffalo, N.Y.)

This paper is dedicated to the memory of my friend and teacher
Stefan Bergman

Abstract. Let D be a bounded symmetric domain in CY (N > 1) with Bergman-Silov

boundary b,H, (p > 0) the Hardy space of holomorphic [unctions on D and B,
: ) :

(0 <p<1<gq< ) a Lipschitz space with norm (J (1—r)¥*!/P- V-t M2(r, f)dr)'/3. B,, is
0

a Banach space. The Szegé kernel shows that H, is a proper subset of B, (g > 2) for
some domains D. Results on fractional derivatives and integrals for the unit disk are
generalized to B, spaces. The corresponding spaces ph, and b,, of pluriharmonic functions
are introduced. Kolmogorov’s theorem is generalized for ph; and b, is proved to be a self-
conjugate space. An example for the polydisk gives a function F¢ H, but Re F e ph,,.

1. Introduction. Let D be a bounded symmetric domain in the complex
vector space CV (N > 1) in the canonical Harish-Chandra realization. It is
known that D is circular and star-shaped with respect to O0e D and has
a Bergman-Silov boundary b, which is circular and measurable. Let I' be the
group of holomorphic automorphisms of D and I'y its isotropy subgroup
with respect to 0. The group I' is transitive on D and the holomorphic
automorphisms extend continuously to the topological boundary of D. The
group Iy is transitive on b and b has a unique normalized I,-invariant
measure dy, = V™ 'ds,, V the euclidean volume of b and ds, the euclidean
‘volume element at ¢ [14], [18].

The Hardy space H, (0 < p < o) is defined on D by

H,= H,(D) = {f: f is holomorphic on D and | f|, < o}, -
where
1 1/p
My(r,f)= (7! If(rt)l”dss) . ISl = JSup M, f).

For p> 1, H, i1s a Banach space and for 0 < p < 1 a complete linear
Hausdorfl space.
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Let B,, (0 < p < g < o) be the set of holomorphic functions on D with
1 .
(1) "f”qu = (b[ (l_r)Nq(l/p—llq)—l Mg (r,f)dr)”" < .

Hardy and Littlewood introduced B? = B,, spaces over the disk in [11],
Duren and Shields studied their properties in {1]-[3] and Mitchell and Hahn
over bounded symmetric domains in C" [15]. The spaces B,, form a proper
subset of the Lipschitz spaces in [6]. We also study the analogous spaces ph,
and b,, of pluriharmonic functions on D.

On D there exists a complete orthonormal system of complex homogeneous

polynomials {¢,} (k=0,1,...;m, = (N+£_l)) [13], normalized over b and

every holomorphic function f on D has a series expansion

(2) f(Z) = Z Ay (f) Prv (Z), Ay = Oy (f) = ’l.l_l:l} B[f; (t) q_)kv (I) dS,,

where the convergence is uniform on compact subsets of D [9]. Here
my

Y = kz Y and f, is the slice function defined by f,(z) = f(rz) (ze D,

=0 v=1

0 <r < 1). If f is also integrable on D U b, it satisfies a maximum piinciple.
If feH, (1 < p < o), it has Cauchy and Poisson integral representations [9].

Section 2 considers elementary properties of B, spaces. Theorem 3 gives
examples of functions in- B,, but not in H, for some of the classical
symmetric domains. In Section 3 properties of fractional derivatives and
integrals for functions in B,, are obtained, which generalize results for the
unit disk in [1] (Lemma 1 and Theorem 4). In Section 4 the spaces ph,
and b,, of pluriharmonic functions are considered. Theorem 5 generalizes
Kolmogorov’s theorem and Theorem 6 proves that b,, (0 < p < q) is a self-
conjugate space. An example of a function not in H, for p = 1/(k+1),
k a positive integer, but whose real part is in ph,, is given for the polydisk.
We could also obtain a representation formula for bounded linear functionals
on B, (cf. {15], Theorem 1) but this problem is not considered here.

The following are used in proofs of theorems. The formula

2n

3 s, | g(e®)d8 = [g()ds, (gL, ()
2n b 0 b

is obtained by using Fubini’s theorem, the circularity ‘of b and the circular

invariance of the measure ds,. For g > 1 Minkowski’s inequality in infinite
form is

@ ([1] gtz Odueltdin)™ < [([lg(z. O dp)* i,

where A.and B are measurable sets with positive measures du,, du. respec-
tively and g is integrable on 4 x B [20].



Lipschitz spaces 133

Notation. C is a constant depending on the indicated parameters but
not on the function, which is not necessarily the same at each occurrence;

z is a point in D,t in the Bergman-Silov boundary b and w in the unit
disk 4 = {w: |w| < 1}.

2. Elementary properties of B,, spaces

1. The space B,, (0 < p < q,q > 1) is a Banach space with norm (1.1).
Let feB,, and 0 <r < 1. Then

() 1/ < Cpu(1—r) MU0 1

(ii) The slice function f,— f in B,, norm as r— 1.

(i) H, is a dense subset of B,,.

a) I fIl By, < Cpon 1 fl - This follows from [15], Theorem 4, with k = q.

The proofs of these properties are similar to those for the space B,

in [15], Theorem 11. The space B,, (0 < p < g < 1) is a complete linear
Hausdorff space which satisfies (ii)—(iv) with (i) replaced by |f(rz)|
< Cow(=1)"""IIfls,,. B,, is a Hilbert space with inner product
1
(f,9) = H(l—r)”‘”‘"”z"‘f(rt)ﬁ(rt)drdsz-

THEOREM 1. The spaces B,, satisfy the inclusion relation B,, < B,
O<p<q0<p<qg.l<qg<qiflp-1/q>1/p-1/g
Proof. In the expression | f llﬂp,q, use Holder’s inequality on the integrals
1

MZ(r, f) and { dr with exponent g/q' > 1 in each case. This gives
0
’ 7’ l ’
If15,, < IS8, (g (1—rydr)!
1 1 | 1
. P p q q

1
so that {(l—r)"dr converges if and only if (1/p'—1/q') > (1/p—1/g).
o]

THEOREM 2. Let 0 < p < 1. The space B,, has the Schur property, that
is, if {fu} in B,y is a weak Cauchy sequence, then {f,} converges in norm to
some element B,,. The space B,, does not have this property.

Proof. Let T be a bounded linear transformation on B,,. By hypothesis
the sequence of numbers {T(f,)} is a Cauchy sequence. By property (i)
evaluation at each point of D is a bounded linear functional on B, so
that {f,} converges pointwise on D. Since B,, is a subset of Lebesgue
space L,([0, 1]xb), where the measure V™ !(1—r)*¥P"D~14rds, is finite
on L, for 0 < p <_1, the result follows from a general result in L, spaces
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[19], Theorem 5, p. 122. Since B,, is a Hilbert space it does not have the
Schur property [2], p. 261.

2. The Szegé kernel, S(z,t) (ze D, teb), of D is an example of a function
in B,, (for ¢ > 2) that is not in H, for some classical symmetric spaces.
This function is holomorphic on Dx D and S(rz,t) = S(z,rt). Let S; be the
partial function given by S(z,t) = §;(z).

THEOREM 3. The Szegd kernel S; of D belongs to B,, for 0 < p <1,
q = 2. If D is the classical symmetric space R,(2,2) (R;;(2)) [13], S;¢ H,
for y<p<lG<p<).

Proof. Let g > 2. Then ’

1
(1) 18:1%pg < §(1—r)¥at/p=tia=1 max IS (rt, 0)~ 2 M3 (r, S;) dr.
0 ve

By Cauchy’s formula and Theorem 4.5.1 of [13]
(2) Mi(r,S;) = S(@rt,rt) = V(1 —=r})~¥,
and by the maximum principle
3 max IS(re, o) = V- '(1-n)"N.

Note that the bounds in (2) and (3) are sharp. Setting (3) and (2) into (1),
gives ||S;||qu < 0. From Theorem 2 of [15] on R;(2,2) §;¢ H, for < p <1

(but eH, for 0 < p < 4). Similarly S;¢ H, on R, (2) if # < p < 1 but €B,,.

3. Properties of fractional derivatives and integrals for functions of space B,

Let .f be holomorphic on D and y > 0. The y-th fractional derivative
of f is '
F'k+1+47y)

(1 @ = ~rirt

Ay Qi (Z) ’

and the y-th fractional integral is

r'k+1)
r'k+1+y)

(See (1.2) for the series expansion of f.) Since series (1) and (2) converge
absolutely and uniformly on compact subsets of D [15] and ¢,, are
holomorphic on D, /1! and f;,, are holomorphic on D.

Lemma 1 gives a connection between A,(t) defined by

(2) fiy] (z) = Z Ayy Py (Z)

my

A, (t) = 'gl A Piex (t)
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and B,,. Let M, (r, f) be the g-th mean of the partial function f;(w)
= f(wt) (teb, we the unit disk 4) and ||f:||1.np,, be given by (1.1) with
Mj(r, f) replaced by M1 ,(r, f).

LEMMA 1. Let 0 < p<gq,q=> 1.

() If feR,,, then

|4, ()] < CqukN(”p_lIQ) ||ﬁ||1.nm

for almost all teb and | j]lll,,,meLq(b).

(i) Let |A (1) < CoenKk*|h(t)l, where heL,b). If 1<q<2 and «

< N(l/p—1/q9)—4, then feB,. If q>2 and a < N(1/p—1/9)—1+1/q,
then feB,,.

Proof. Let f(z) = Y a,, ¢ (z)€B,, and we 4. Then for teb, f(wr)

= fi(w) = Z A, ()w* is analytic on 4 with Fourier coefficients

k=0
1 Ji(w)
(3) Ak (t) = E 'w[‘;' wk—"']—dw (r < 1).
Using Holder’s inequality on the right of (3) gives
(4) lAk(t)I S r_le,q(r! .f;)'

Form || f,ll'{_,,m, integrafe over b, use Fubini’s theorem and (1.3) to obtain

1
5) 7 1Sl aygds, = 113, < 0.

Thus [ fll, s is an integrable function of ¢t and finite for almost all ¢.
Since |f|? is plurisubharmonic, |f;(w)|? is subharmonic in w in every
component of the open set O, = {w: wte D} [17]. Thus its mean is
non-decreasing so that-

1
1/14.8,, = M40, f) § (1—@)*a/P~ 110~ 1 dg

or
©) MY (7, f) < Cpn (1 =) M2 g,

Pq

Substituting (6) in the right of (4) and setting r = 1—1/k gives (i).
(i) Let 1 < g < 2. By Hélder’s inequality and the hypotheses on A,(f)

ML 1) < M0 1) = (X AOF

< C”N|h (t)lq(kzo k2 rzh)qlz — 0(|h 0P _r)~(1 +2a)q/2).
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Hence || fll,, By is finite for almost all ¢ if « < N(1/p—1/q)—3%. The finiteness
of | fIl Bpg follows from (5) and the hypothesis on h.

For q > 2 we note that the Fourier codfficients of f(z) are a,,r*. Hence
the Fourier coefficients of f,,(w) are A,(r)r* for k > 0 and 0 for k < 0.
Also f,,e€L,(0,2n) for all teb. Thus the Hausdorfl-Young inequality [20]
and the hypothesis on A4, (¢) in (i) give '

Miglr. £) < (3, AOM) g+ 1g < 1)

o)

S C(Y KA h(r) = O((L-r)~ Y|k (0)]).
k=0
The rest of the proof follows as in the case 1 < g < 2.

The exponent N (I/p—1/q)—1% is best possible for 1 < g < 2. An example
may be constructed similarly as in [1], Theorem 4, which shows that there
exists a function f(z) = Y a,, @i, (2) with A4, (t) = O (k¥NV/P~ 19"y which ¢ B,,.

We now prove .

THEOREM 4. Let 0 < p<p <q,q=1and B = N(1/p—1/p).

() If feB,, then fiz€B,,.

(i) If feB,,, then fPeB,.

This generalizes [1], Theorem 5, to bounded symmetric domains and
spaces B,,. .

Proof. 1° We first prove that if f = dg/ow e B,, for [w| < 1, then g€ B,,,.

(Note that the proof in [1] does not ’hold for g > 1) By-the fundamental
theorem of the calculus

r g . .
lg (tw)] < ga—i(ae'e) do +g(0)\ (w = re®).

q} 1/q

Use (1.4) and Minkowski’s inequality on the right of (7) to get

Set # = 0 and form the g-th mean of g:

{ 09,(0)
g do

1 1
) M,(r,g) = {7 f ds, do+—g(0)

4 0
M,(r, ) < jM.,(a,a—“’( )) da-+1g (0)
h g

so that by the monotonicity qf the mean

dg

(8) Mq(r,g) < Mq(r,wE

)+I9 (0)].
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The function g''!(wt) = g(wt)+wdg(wt)/ow. Using the inequality (a+ b)?
< C(@+b%, a, b > 0, and (8) we get

0
Mir.g") < C [Mz (r, W%)HQ(O)I“}

Forming the B,, mean

B

og
[1]
9 lg*lls,, < C[”w =

+lg (0)I:|-
P4

(Thus dg/ow € B,, implies that ¢'eB,,) We now prove that

(10) lglia, , < Clig"lis,,-

Theorem 4(i) follows from (9) and (10) if § = 1. By induction (i) holds
for any positive integer m.

To prove (10) we use a weak form of an inequality for Riemann-Liouville
integrals. In the integral

1
lgls,, = (5) (1—RY*@/P=10~1 M{(R, g)dR

set R = r**! and use the monotonicity of the mean and the inequality
(1-r1*Y < C(1—-r) to obtain

1
(11) gl < C [ (1—ptatP ==t Ma(r, g)rdr.
’ 0

From the series expansion of gl we have

grt) =2 g g (ro? 1) odg

so that by (1.4)

1
M,(r,g) <2 g M, (re% ¢'")edo.

Set ¢ = rpo? in the integral on the right to get

1 r
(12) M,(r,9) < - My (o,9")do.
0
Using (12) in (11) gives

1 ' r
”g”%p’q < g (l_r)Nq(llp’—I/q)—l (6" Mq(a, g“])da)q.
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By formula (9.2), p. 758 of [5] and the fact that 1 = N(1/p—1/p’) we get

1
Ilglll.p,q <C g (L —rpietip=10-1 pMa(r gl gy = C ilg“lllnm,

which is (10).
2 To prove (it) use the formula

r+1) zf f(re?)
2n 5 (1—re 0P+

[15], (5.3). Form the g-th mean on both sides of (13). Then use (1.4), (1.3)
and [4], Lemma p. 65, on the right. This gives

M. f)
(1—-rpe
Form | f s,, On the left with r? as variable of integration. Since
Nq(1/p—1/g)—1—~Bq = Nq(1/p'—1/q)—1, we get | flly, ., Which is finite,
on the right so that f#e B,,.

3° The proof of (i) for real positive B is similar to the proof for the

unit disk [1], Theorem 5, using (ii), (i) for m a positive integer and both
parts of Lemma 1.

(13) B2y = g, r<1,

M3, fP) < Cpon

4. ph, and b,, spaces of pluriharmonic functions

1. Definitions and elementary properties. A continuous real function u on
D is pluriharmonic if for every holomorphic mapping y of 4 into D, uoy
is harmonic in 4 [7]. Since D is simply-connected [12], p. 311, every pluri-
harmonic function on D is the real part of a holomorphic function [17], p. 44.
A pluriharmonic function is plurisubharmonic.

Let ph, and b,, be the spaces of pluriharmonic functions analogous to
the spaces H, and B,, of holomorphic functions respectively. The space b,
for ¢ > 1 is a Banach space and properties (1) and (ii) of Section 2 holds
as for B,, spaces. However, there is no inequality similar to that in (iv) for
pluriharmonic functions if 0 < p < 1; for N = 1 a counterexample [2], p. 257
shows that ph, ¢ b,,. The inclusion relation of Theorem 1 holds for b,, and
the Schur property for b,,. )

2. Comparison of ph, and b, spaces. Let u be pluriharmonic on D.
Then u = Ref, where f = u+iv is holomorphic on D and v is the pluri-
harmonic conjugate of u. M. Stoll proved that if ueph, (1 < g < ), then
ve ph, [16]. We prove that if ueph,, then veph, for all p < 1, which
generalizes Kolmogorov’s theorem for the unit disk [4]. If N =1 and
p <1 a counterexample shows that ueph, does not imply that ve ph,
for any q > 0 [4], p. 65.
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The proof of Theorem 5 is essentially due to my student Pui-Wah Chan.
THEOREM 5. If ueph,, then veph, for all p<1 and My(r,v)
<CM,(r,u),0<r<l.
Proof. Let M, {(r, u,) be the first mean of the partial function u, (teb).
By (1.3) _[M 1,1(r,u)ds, = M(r, u). Since [u| is plurisubharmonic on D, |u]
b

is subharmonic on 4 for every teb [17]. Thus M ,(r, u) is monotone in r

for all teb so that by the monotone convergence theorem V|u,

= [ llull,,, ds,. Thus ue ph, (D) implies u, € ph,(4) for almost all teb. Since
b

v, is the harmonic conjugate of u, on 4 by Kolmogorov’s theorem
(1) M, ,(r,v) < C, M,y ,(r,u),

[4], p. 57, for 0 < r < 1 and almost all te b, where C, is independent of u,.
Raise both sides of (1) to the pth power and integrate over b. This gives
ME(r,v) < CBV ! i.‘ M§%  (r,u)ds,. The result follows by using Holder’s

inequality on the right with exponent I/p > 1.
For b,, spaces we prove much more, generalizing Theorem 1 of [2]
for b,, spaces of harmonic functions on the unit disk.

THEOREM 6. Let 0 < p <'l and p < q < . Then b,, is a self-conjugate
class, that is, if ueb,,, then veb,,.

Proof. We use partial function techniques and the methods of Duren
and Shields in [2]. Since f; is analytic in 4 for teb,
1' 2n Qei0+w

fiw) = o=

n o pel—w

u, (0e®)do +iC,,

for w| < ¢ < 1, where C, is independent of w [2], p. 256. Differentiate
with respect to w and set w = re*’, 6—¢ = 6. This gives

dfw) | _ 1 Zf lu, (0e'® * M| a6’
dw | mg o*4+r*—2orcosf

Form the g-th mean on both sides and use (1.4) and (1.3) on the right.
This gives

M, (r, offow) < 2@ ¥).
o°—r
or setting ¢ = $(1+7r)
@ M, (r,0fjow) < 4 _M;(_Q_Qu)

Form || df/ow| By OD the left of (2), where p’ = Np/(p+N). Since
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Nq(1/p'—1/q9)—1—q = Nq(1/p—1/q)—1, the right-hand side equals C ||u||,,m,
where ueb,,, so that déf/owe B,,. By Theorem 4(i) feB,,. Hence veb,,.

3. An example. Let k& be a positive integer, p= 1/(k+1) and D
a polydisk. The function

F(Z) — eink/Z(l _zl)—k—l

¢ H? but Re feph,. This follows since

M3 1) = (=) £ I @Pdo, . doy = TP g
I =) L T TP R g

(z = (re®, ..., re’N)) but

1 N 2n 2n
ME(r,ReF) = (———) [ ... | IRe F(z)|?do, ... dOy
0

2n 0
1 2r el'k’l/Z p
= — (|Rel—o—
BTN e((l—z,)"“) 46,

is bounded independently of r [10], p. 416-417. If N =1, F¢B,, (2],
p. 257, so that by Theorem 6 Re F¢b,,. Also by Theorem 1 F¢B

pP141°
Re F¢b, ,, for any p,, q, with g, > 1 and g, > p, > (k+¢; )7 "
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