Lipschitz spaces of holomorphic and pluriharmonic functions on bounded symmetric domains in C^N (N > 1)

by Josephine Mitchell (Buffalo, N. Y.)

This paper is dedicated to the memory of my friend and teacher Stefan Bergman

Abstract. Let D be a bounded symmetric domain in C^N (N > 1) with Bergman-Silov boundary b, H_p (p > 0) the Hardy space of holomorphic functions on D and B_{pq} $(0 a Lipschitz space with norm <math>(\int\limits_0^1 (1-r)^{Nq(1/p-1/q)-1} M_q^q(r,f) dr)^{1/q}$. B_{pq} is a Banach space. The Szegö kernel shows that H_p is a proper subset of B_{pq} $(q \ge 2)$ for some domains D. Results on fractional derivatives and integrals for the unit disk are generalized to B_{pq} spaces. The corresponding spaces ph_p and b_{pq} of pluriharmonic functions are introduced. Kolmogorov's theorem is generalized for ph_1 and pq is proved to be a self-conjugate space. An example for the polydisk gives a function $F \notin H_p$ but $Re F \in ph_p$.

1. Introduction. Let D be a bounded symmetric domain in the complex vector space C^N (N > 1) in the canonical Harish-Chandra realization. It is known that D is circular and star-shaped with respect to $0 \in D$ and has a Bergman-Silov boundary b, which is circular and measurable. Let Γ be the group of holomorphic automorphisms of D and Γ_0 its isotropy subgroup with respect to 0. The group Γ is transitive on D and the holomorphic automorphisms extend continuously to the topological boundary of D. The group Γ_0 is transitive on D and D has a unique normalized D0-invariant measure D1 is transitive on D2 and D3 is transitive on D4 and D5 has a unique normalized D6-invariant measure D6 is transitive on D7 the euclidean volume of D8 and D9 and D9

The Hardy space H_p (0 is defined on D by

$$H_p \equiv H_p(D) = \{f : f \text{ is holomorphic on } D \text{ and } ||f||_p < \infty\},$$

where

$$M_p(r, f) = \left(\frac{1}{V} \int_b |f(rt)|^p ds_t\right)^{1/p}, \quad \|f\|_p = \sup_{0 < r < 1} M_p(r, f).$$

For $p \ge 1$, H_p is a Banach space and for 0 a complete linear Hausdorff space.

Let B_{pq} (0 be the set of holomorphic functions on D with

(1)
$$||f||_{B_{pq}} = \left(\int_{0}^{1} (1-r)^{Nq(1/p-1/q)-1} M_{q}^{q}(r,f) dr\right)^{1/q} < \infty.$$

Hardy and Littlewood introduced $B^p = B_{p1}$ spaces over the disk in [11], Duren and Shields studied their properties in [1]-[3] and Mitchell and Hahn over bounded symmetric domains in C^N [15]. The spaces B_{pq} form a proper subset of the Lipschitz spaces in [6]. We also study the analogous spaces ph_p and b_{pq} of pluriharmonic functions on D.

On D there exists a complete orthonormal system of complex homogeneous polynomials $\{\varphi_{kv}\}$ $(k=0,1,...;m_k=\binom{N+k-1}{k})$ [13], normalized over b and every holomorphic function f on D has a series expansion

(2)
$$f(z) = \sum a_{kv}(f) \varphi_{kv}(z), \quad a_{kv} = a_{kv}(f) = \lim_{r \to 1} \int_{b} f_{r}(t) \overline{\varphi}_{kv}(t) ds_{t},$$

where the convergence is uniform on compact subsets of D [9]. Here $\sum_{k=0}^{\infty} \sum_{r=1}^{m_k}$ and f_r is the slice function defined by $f_r(z) = f(rz)$ ($z \in \overline{D}$, 0 < r < 1). If f is also integrable on $D \cup b$, it satisfies a maximum principle. If $f \in H_p$ ($1 \le p < \infty$), it has Cauchy and Poisson integral representations [9].

Section 2 considers elementary properties of B_{pq} spaces. Theorem 3 gives examples of functions in B_{pq} but not in H_p for some of the classical symmetric domains. In Section 3 properties of fractional derivatives and integrals for functions in B_{pq} are obtained, which generalize results for the unit disk in [1] (Lemma 1 and Theorem 4). In Section 4 the spaces ph_p and b_{pq} of pluriharmonic functions are considered. Theorem 5 generalizes Kolmogorov's theorem and Theorem 6 proves that b_{pq} (0 < p < q) is a self-conjugate space. An example of a function not in H_p for p = 1/(k+1), k a positive integer, but whose real part is in ph_p , is given for the polydisk. We could also obtain a representation formula for bounded linear functionals on B_{pq} (cf. [15], Theorem 1) but this problem is not considered here.

The following are used in proofs of theorems. The formula

(3)
$$\frac{1}{2\pi} \int_{b} ds_{t} \int_{0}^{2\pi} g(e^{i\theta}t) d\theta = \int_{b} g(t) ds_{t} \quad (g \in L_{1}(b))$$

is obtained by using Fubini's theorem, the circularity of b and the circular invariance of the measure ds_i . For $q \ge 1$ Minkowski's inequality in infinite form is

(4)
$$\left(\int_{A} \left| \int_{B} g(z,\xi) d\mu_{\xi} \right|^{q} d\mu_{z} \right)^{1/q} \leq \int_{B} \left(\int_{A} |g(z,\xi)|^{q} d\mu_{z} \right)^{1/q} d\mu_{\xi},$$

where A_{\bullet} and B are measurable sets with positive measures $d\mu_z$, $d\mu_{\xi}$ respectively and g is integrable on $A \times B$ [20].

Notation. C is a constant depending on the indicated parameters but not on the function, which is not necessarily the same at each occurrence; z is a point in D, t in the Bergman-Silov boundary b and w in the unit disk $\Delta = \{w : |w| < 1\}$.

2. Elementary properties of B_{pq} spaces

- 1. The space B_{pq} $(0 is a Banach space with norm (1.1). Let <math>f \in B_{pq}$ and 0 < r < 1. Then
 - (i) $|f(z)| \le C_{pqN} (1-r)^{-N(1/p+1/q+1)} ||f||_{B_{pq}}$
 - (ii) The slice function $f_r \to f$ in B_{pq} norm as $r \to 1$.
 - (iii) H_p is a dense subset of B_{pq} .
- (iv) $||f||_{B_{pq}} \le C_{pqN} ||f||_p$. This follows from [15], Theorem 4, with k=q. The proofs of these properties are similar to those for the space B_{pi} in [15], Theorem 11. The space B_{pq} (0 < p < q < 1) is a complete linear Hausdorff space which satisfies (ii)-(iv) with (i) replaced by $|f(rz)| \le C_{pqN} (1-r)^{-N/P} ||f||_{B_{pq}}$. B_{p2} is a Hilbert space with inner product

$$(f,g) = \int_{0}^{1} \int_{0}^{1} (1-r)^{2N(1/p-1/2)-1} f(rt) \, \overline{g}(rt) \, dr \, ds_{t}.$$

THEOREM 1. The spaces B_{pq} satisfy the inclusion relation $B_{pq} \subset B_{p'q'}$ (0 if <math>1/p' - 1/q' > 1/p - 1/q.

Proof. In the expression $||f||_{B_{p'q'}}^{q'}$ use Hölder's inequality on the integrals $M_{q'}^{q'}(r, f)$ and $\int_{0}^{1} dr$ with exponent $q/q' \ge 1$ in each case. This gives

$$||f||_{B_{p'q'}}^{q'} \leq ||f||_{B_{pq}}^{q'} (\int_{0}^{1} (1-r)^{\alpha} dr)^{q'-1}$$

with
$$\alpha = Nq'q'' \left[\left(\frac{1}{p'} - \frac{1}{p} \right) - \left(\frac{1}{q'} - \frac{1}{q} \right) \right] - 1$$

so that $\int_0^1 (1-r)^x dr$ converges if and only if (1/p'-1/q') > (1/p-1/q).

THEOREM 2. Let $0 . The space <math>B_{p1}$ has the Schur property, that is, if $\{f_n\}$ in B_{p1} is a weak Cauchy sequence, then $\{f_n\}$ converges in norm to some element B_{p1} . The space B_{p2} does not have this property.

Proof. Let T be a bounded linear transformation on B_{p1} . By hypothesis the sequence of numbers $\{T(f_n)\}$ is a Cauchy sequence. By property (i) evaluation at each point of D is a bounded linear functional on B_{p1} so that $\{f_n\}$ converges pointwise on D. Since B_{p1} is a subset of Lebesgue space $L_1([0,1] \times b)$, where the measure $V^{-1}(1-r)^{N(1/p-1)-1} dr ds_t$ is finite on L_1 for $0 , the result follows from a general result in <math>L_1$ spaces

[19], Theorem 5, p. 122. Since B_{p2} is a Hilbert space it does not have the Schur property [2], p. 261.

2. The Szegö kernel, $S(z, \bar{t})$ $(z \in D, t \in b)$, of D is an example of a function in B_{pq} (for $q \ge 2$) that is not in H_p for some classical symmetric spaces. This function is holomorphic on $D \times \bar{D}$ and $S(rz, \bar{t}) = S(z, r\bar{t})$. Let $S_{\bar{t}}$ be the partial function given by $S(z, \bar{t}) = S_{\bar{t}}(z)$.

THEOREM 3. The Szegö kernel $S_{\bar{t}}$ of D belongs to B_{pq} for $0 , <math>q \ge 2$. If D is the classical symmetric space $R_I(2,2)$ $(R_{II}(2))$ [13], $S_{\bar{t}} \notin H_p$ for $\frac{1}{2} \le p < 1$ $(\frac{2}{3} \le p < 1)$.

Proof. Let $q \ge 2$. Then

(1)
$$||S_{\bar{t}}||_{Bpq}^{q'} \leq \int_{0}^{1} (1-r)^{Nq(1/p-1/q)-1} \max_{v \in b} |S(rt, v)|^{q-2} M_{2}^{2}(r, S_{\bar{t}}) dr.$$

By Cauchy's formula and Theorem 4.5.1 of [13]

(2)
$$M_2^2(r, S_{\bar{t}}) = S(rt, r\bar{t}) = V^{-1}(1-r^2)^{-N}$$

and by the maximum principle

(3)
$$\max_{v \in h} |S(rt, \overline{v})| = V^{-1}(1-r)^{-N}.$$

Note that the bounds in (2) and (3) are sharp. Setting (3) and (2) into (1), gives $||S_t^-||_{B_{pq}} < \infty$. From Theorem 2 of [15] on $R_I(2,2)$ $S_t^- \notin H_p$ for $\frac{1}{2} \le p < 1$ (but $\in H_p$ for $0). Similarly <math>S_t^- \notin H_p$ on $R_{II}(2)$ if $\frac{2}{3} but <math>\in B_{pq}$.

3. Properties of fractional derivatives and integrals for functions of space B_{pq}

Let f be holomorphic on D and $\gamma \geqslant 0$. The γ -th fractional derivative of f is

(1)
$$f^{[\gamma]}(z) = \sum \frac{\Gamma(k+1+\gamma)}{\Gamma(k+1)} a_{k\nu} \varphi_{k\nu}(z),$$

and the y-th fractional integral is

(2)
$$f_{[\gamma]}(z) = \sum \frac{\Gamma(k+1)}{\Gamma(k+1+\gamma)} a_{k\nu} \varphi_{k\nu}(z).$$

(See (1.2) for the series expansion of f.) Since series (1) and (2) converge absolutely and uniformly on compact subsets of D [15] and $\varphi_{k\nu}$ are holomorphic on D, $f^{[\nu]}$ and $f_{[\nu]}$ are holomorphic on D.

Lemma 1 gives a connection between $A_k(t)$ defined by

$$A_k(t) = \sum_{v=1}^{m_k} a_{kv} \varphi_{kv}(t)$$

and B_{pq} . Let $M_{1,q}(r, f_t)$ be the q-th mean of the partial function $f_t(w) = f(wt)$ $(t \in b, w \in the unit disk <math>\Delta$) and $||f_t||_{1,B_{pq}}$ be given by (1.1) with $M_q^q(r, f)$ replaced by $M_{1,q}^q(r, f_t)$.

LEMMA 1. Let 0 .

(i) If $f \in R_{pq}$, then

$$|A_k(t)| \leq C_{pqN} k^{N(1/p-1/q)} ||f_t||_{1,B_{pq}}$$

for almost all $t \in b$ and $||f_t||_{1,B_{nq}} \in L_q(b)$.

(ii) Let $|A_k(t)| \leq C_{pqN} k^{\alpha} |h(t)|$, where $h \in L_q(b)$. If $1 \leq q \leq 2$ and $\alpha < N(1/p-1/q)-\frac{1}{2}$, then $f \in B_{pq}$. If q > 2 and $\alpha < N(1/p-1/q)-1+1/q$, then $f \in B_{pq}$.

Proof. Let $f(z) = \sum a_{k\nu} \varphi_{k\nu}(z) \in B_{pq}$ and $w \in \Delta$. Then for $t \in b$, $f(wt) = f_t(w) = \sum_{k=0}^{\infty} A_k(t) w^k$ is analytic on Δ with Fourier coefficients

(3)
$$A_k(t) = \frac{1}{2\pi i} \int_{|w|=r} \frac{f_t(w)}{w^{k+1}} dw \quad (r < 1).$$

Using Hölder's inequality on the right of (3) gives

(4)
$$|A_k(t)| \leq r^{-k} M_{1,q}(r, f_i).$$

Form $||f_t||_{1,B_{pq}}^q$, integrate over b, use Fubini's theorem and (1.3) to obtain

(5)
$$\frac{1}{V} \int_{b} \|f_{t}\|_{1,B_{pq}}^{q} ds_{t} = \|f\|_{B_{pq}}^{q} < \infty.$$

Thus $||f_t||_{1,B_{pq}}$ is an integrable function of t and finite for almost all t. Since $|f|^q$ is plurisubharmonic, $|f_t(w)|^q$ is subharmonic in w in every component of the open set $O_t = \{w : wt \in D\}$ [17]. Thus its mean is non-decreasing so that

$$||f_t||_{1,B_{pq}}^q \geqslant M_{1,q}^q(r,f_t) \int_r^1 (1-\varrho)^{Nq(1/p-1/q)-1} d\varrho$$

OГ

(6)
$$M_{1,q}^{q}(r,f_{t}) \leq C_{pqN} (1-r)^{-Nq(1/p-1/q)} \|f\|_{1,B_{pq}}^{q}.$$

Substituting (6) in the right of (4) and setting r = 1 - 1/k gives (i).

(ii) Let $1 \le q \le 2$. By Hölder's inequality and the hypotheses on $A_k(t)$

$$M_{1,q}^{q}(r, f_{t}) \leq M_{1,2}^{q}(r, f_{t}) = \left(\sum_{k=0}^{\infty} |A_{k}(t)|^{2} r^{2k}\right)^{q/2}$$

$$\leq C_{pqN} |h(t)|^{q} \left(\sum_{k=0}^{\infty} k^{2\alpha} r^{2k}\right)^{q/2} = O(|h(t)|^{q} (1-r)^{-(1+2\alpha)q/2}).$$

Hence $||f_t||_{1,B_{pq}}$ is finite for almost all t if $\alpha < N(1/p-1/q)-\frac{1}{2}$. The finiteness of $||f||_{B_{pq}}$ follows from (5) and the hypothesis on h.

For q > 2 we note that the Fourier coefficients of $f_r(z)$ are $a_{kv}r^k$. Hence the Fourier coefficients of $f_{t,r}(w)$ are $A_k(t)r^k$ for $k \ge 0$ and 0 for k < 0. Also $f_{t,r} \in L_q(0, 2\pi)$ for all $t \in b$. Thus the Hausdorff-Young inequality [20] and the hypothesis on $A_k(t)$ in (ii) give

$$M_{1,q}(r, f_t) \leq \left(\sum_{k=0}^{\infty} |A_k(t)r^k|^{q'}\right)^{1/q'} (1/q + 1/q' = 1)$$

$$\leq C\left(\sum_{k=0}^{\infty} k^{\alpha q'} r^{kq'}\right)^{1/q'} |h(t)| = O\left((1-r)^{-1/q'-2} |h(t)|\right).$$

The rest of the proof follows as in the case $1 \le q \le 2$.

The exponent $N(1/p-1/q)-\frac{1}{2}$ is best possible for $1 \le q \le 2$. An example may be constructed similarly as in [1], Theorem 4, which shows that there exists a function $f_0(z) = \sum a_{kv} \varphi_{kv}(z)$ with $A_k(t) = O(k^{N(1/p-1/q)-\frac{1}{2}})$ which $\notin B_{pq}$.

We now prove

Theorem 4. Let $0 , <math>q \ge 1$ and $\beta = N(1/p - 1/p')$.

- (i) If $f \in B_{pq}$, then $f_{[\beta]} \in B_{p'q}$.
- (ii) If $f \in B_{p'q}$, then $f^{[\beta]} \in B_{pq}$.

This generalizes [1], Theorem 5, to bounded symmetric domains and spaces B_{pq} .

Proof. 1° We first prove that if $f = \partial g/\partial w \in B_{pq}$ for |w| < 1, then $g \in B_{p'q}$. (Note that the proof in [1] does not hold for q > 1.) By the fundamental theorem of the calculus

$$|g(tw)| \leq \left| \int_{0}^{r} \frac{\partial g_{t}}{\partial \sigma} (\sigma e^{i\theta}) d\sigma + g(0) \right| \quad (w = re^{i\theta}).$$

Set $\theta = 0$ and form the q-th mean of g:

(7)
$$M_{q}(r,g) = \left\{ \frac{1}{V} \int_{b} ds_{t} \left| \int_{0}^{r} \frac{\partial g_{t}(\sigma)}{\partial \sigma} d\sigma + \frac{1}{r} g(0) \right|^{q} \right\}^{1/q}.$$

Use (1.4) and Minkowski's inequality on the right of (7) to get

$$M_{q}(r,g) \leqslant \int_{0}^{r} M_{q}\left(\sigma, \frac{\partial g}{\partial \sigma}(\cdot)\right) d\sigma + |g(0)|$$

so that by the monotonicity of the mean

(8)
$$M_{q}(r,g) \leq M_{q}\left(r,w\frac{\partial g}{\partial \sigma}\right) + |g(0)|.$$

The function $g^{[1]}(wt) = g(wt) + w\partial g(wt)/\partial w$. Using the inequality $(a+b)^q \le C(a^q + b^q)$, $a, b \ge 0$, and (8) we get

$$M_q^q(r, g^{[1]}) \leq C \left[M_q^q\left(r, w \frac{\partial g}{\partial w}\right) + |g(0)|^q \right].$$

Forming the B_{pq} mean

(9)
$$\|g^{[1]}\|_{B_{pq}} \leqslant C \left[\left\| w \frac{\partial g}{\partial w} \right\|_{B_{pq}} + |g(0)| \right].$$

(Thus $\partial g/\partial w \in B_{pq}$ implies that $g^{[1]} \in B_{pq}$.) We now prove that

(10)
$$\|g\|_{B_{p'q}}^q \leqslant C \|g^{[1]}\|_{B_{pq}}.$$

Theorem 4(i) follows from (9) and (10) if $\beta = 1$. By induction (i) holds for any positive integer m.

To prove (10) we use a weak form of an inequality for Riemann-Liouville integrals. In the integral

$$\|g\|_{B_{p'q}}^q = \int_0^1 (1-R)^{Nq(1/p'-1/q)-1} M_q^q(R,g) dR$$

set $R = r^{q+1}$ and use the monotonicity of the mean and the inequality $(1-r^{q+1})^b \le C(1-r)^b$ to obtain

(11)
$$\|g\|_{B_{p'q}}^q \leqslant C \int_0^1 (1-r)^{Nq(1/p'-1/q)-1} M_q^q(r,g) r^q dr.$$

From the series expansion of $g_r^{[1]}$ we have

$$g(rt) = 2 \int_{0}^{1} g^{[1]}(r\varrho^{2} t) \varrho d\varrho$$

so that by (1.4)

$$M_q(r,g) \leqslant 2 \int_0^1 M_q(r\varrho^2,g^{[1]}) \varrho d\varrho$$

Set $\sigma = r\varrho^2$ in the integral on the right to get

(12)
$$M_q(r,g) \leqslant \frac{1}{r} \int_0^r M_q(\sigma,g^{[1]}) d\sigma.$$

Using (12) in (11) gives

$$\|g\|_{B_{p'q}}^q \leqslant \int_0^1 (1-r)^{Nq(1/p'-1/q)-1} \left(\int_0^r M_q(\sigma, g^{[1]}) d\sigma\right)^q.$$

By formula (9.2), p. 758 of [5] and the fact that 1 = N(1/p - 1/p') we get

$$\|g\|_{B_{p'q}}^{q} \leq C \int_{0}^{1} (1-r)^{Nq(1/p-1/q)-1} M_{q}^{q}(r,g^{[1]}) dr = C \|g^{[1]}\|_{B_{pq}},$$

which is (10).

2° To prove (ii) use the formula

(13)
$$f^{[\beta]}(r^2t) = \frac{\Gamma(\beta+1)}{2\pi} \int_0^{2\pi} \frac{f(re^{i\theta}t)}{(1-re^{-i\theta})^{\beta+1}} d\theta, \quad r < 1,$$

[15], (5.3). Form the q-th mean on both sides of (13). Then use (1.4), (1.3) and [4], Lemma p. 65, on the right. This gives

$$M_q^q(r^2, f^{[\beta]}) \leqslant C_{pqN} \frac{M_q^q(r, f)}{(1-r)^{\beta q}}.$$

Form $||f^{[\beta]}||_{B_{pq}}$ on the left with r^2 as variable of integration. Since $Nq(1/p-1/q)-1-\beta q=Nq(1/p'-1/q)-1$, we get $||f||_{B_{p'q}}$, which is finite, on the right so that $f^{[\beta]} \in B_{pq}$.

3° The proof of (i) for real positive β is similar to the proof for the unit disk [1], Theorem 5, using (ii), (i) for m a positive integer and both parts of Lemma 1.

4. ph_p and b_{pq} spaces of pluriharmonic functions

1. Definitions and elementary properties. A continuous real function u on D is pluriharmonic if for every holomorphic mapping γ of Δ into D, $u \circ \gamma$ is harmonic in Δ [7]. Since D is simply-connected [12], p. 311, every pluriharmonic function on D is the real part of a holomorphic function [17], p. 44. A pluriharmonic function is plurisubharmonic.

Let ph_p and b_{pq} be the spaces of pluriharmonic functions analogous to the spaces H_p and B_{pq} of holomorphic functions respectively. The space b_{pq} for $q \ge 1$ is a Banach space and properties (i) and (ii) of Section 2 holds as for B_{pq} spaces. However, there is no inequality similar to that in (iv) for pluriharmonic functions if 0 ; for <math>N = 1 a counterexample [2], p. 257 shows that $ph_p \not= b_{p1}$. The inclusion relation of Theorem 1 holds for b_{pq} and the Schur property for b_{p1} .

2. Comparison of ph_p and b_{pq} spaces. Let u be pluriharmonic on D. Then u = Re f, where f = u + iv is holomorphic on D and v is the pluriharmonic conjugate of u. M. Stoll proved that if $u \in ph_q$ $(1 < q < \infty)$, then $v \in ph_q$ [16]. We prove that if $u \in ph_1$, then $v \in ph_p$ for all p < 1, which generalizes Kolmogorov's theorem for the unit disk [4]. If N = 1 and p < 1 a counterexample shows that $u \in ph_p$ does not imply that $v \in ph_q$ for any q > 0 [4], p. 65.

The proof of Theorem 5 is essentially due to my student Pui-Wah Chan. THEOREM 5. If $u \in ph_1$, then $v \in ph_p$ for all p < 1 and $M_p(r, v) \le CM_1(r, u)$, 0 < r < 1.

Proof. Let $M_{1,1}(r, u_t)$ be the first mean of the partial function u_t $(t \in b)$. By (1.3) $\int_b M_{1,1}(r, u_t) ds_t = M_1(r, u)$. Since |u| is plurisubharmonic on D, $|u_t|$ is subharmonic on Δ for every $t \in b$ [17]. Thus $M_{1,1}(r, u)$ is monotone in r for all $t \in b$ so that by the monotone convergence theorem $V ||u||_1 = \int_b ||u_t||_{1,1} ds_t$. Thus $u \in ph_1(D)$ implies $u_t \in ph_1(\Delta)$ for almost all $t \in b$. Since v_t is the harmonic conjugate of u_t on Δ by Kolmogorov's theorem

(1)
$$M_{1,p}(r,v_t) \leq C_p M_{1,1}(r,u_t),$$

[4], p. 57, for $0 \le r < 1$ and almost all $t \in b$, where C_p is independent of u_t . Raise both sides of (1) to the pth power and integrate over b. This gives $M_p^p(r, v) \le C_p^p V^{-1} \int_b M_{1,1}^p(r, u_t) ds_t$. The result follows by using Hölder's inequality on the right with exponent 1/p > 1.

For b_{pq} spaces we prove much more, generalizing Theorem 1 of [2] for b_{p1} spaces of harmonic functions on the unit disk.

THEOREM 6. Let $0 and <math>p < q < \infty$. Then b_{pq} is a self-conjugate class, that is, if $u \in b_{pq}$, then $v \in b_{pq}$.

Proof. We use partial function techniques and the methods of Duren and Shields in [2]. Since f_t is analytic in Δ for $t \in b$,

$$f_t(w) = \frac{1}{2\pi} \int_0^{2\pi} \frac{\varrho e^{i\theta} + w}{\varrho e^{i\theta} - w} u_t(\varrho e^{i\theta}) d\theta + iC_t,$$

for $|w| < \varrho < 1$, where C_i is independent of w [2], p. 256. Differentiate with respect to w and set $w = re^{i\varphi}$, $\theta - \varphi = \theta'$. This gives

$$\left|\frac{df_t(w)}{dw}\right| \leq \frac{1}{\pi} \int_0^{2\pi} \frac{|u_t(\varrho e^{i(\theta'+\varphi)})| d\theta'}{\varrho^2 + r^2 - 2\varrho r \cos \theta'}.$$

Form the q-th mean on both sides and use (1.4) and (1.3) on the right. This gives

$$M_q(r, \partial f/\partial w) \leq \frac{2M_q(\varrho, u)}{\varrho^2 - r^2}$$

or setting $\varrho = \frac{1}{2}(1+r)$

(2)
$$M_q(r, \partial f/\partial w) \leq 4 \frac{M_q(\varrho, u)}{1-\varrho}.$$

Form $\|\partial f/\partial w\|_{B_{p'q'}}$ on the left of (2), where p' = Np/(p+N). Since

Nq(1/p'-1/q)-1-q=Nq(1/p-1/q)-1, the right-hand side equals $C\|u\|_{b_{pq}}$, where $u\in b_{pq}$, so that $\partial f/\partial w\in B_{p'q}$. By Theorem 4(i) $f\in B_{pq}$. Hence $v\in b_{pq}$.

3. An example. Let k be a positive integer, p = 1/(k+1) and D a polydisk. The function

$$F(z) = e^{i\pi k/2} (1-z_1)^{-k-1}$$

 $\notin H^p$ but Re $f \in ph_p$. This follows since

$$M_p^p(r,f) = \left(\frac{1}{2\pi}\right)^N \int_0^{2\pi} \dots \int_0^{2\pi} |F(z)|^p d\theta_1 \dots d\theta_N = \frac{1}{2\pi} \int_0^{2\pi} \frac{d\theta_1}{|1-z_1|} \sim \log \frac{1}{1-r}$$

 $(z = (re^{i\theta_1}, ..., re^{i\theta_N}))$ but

$$M_p^p(r, \operatorname{Re} F) = \left(\frac{1}{2\pi}\right)^N \int_0^{2\pi} \dots \int_0^{2\pi} |\operatorname{Re} F(z)|^p d\theta_1 \dots d\theta_N$$
$$= \frac{1}{2\pi} \int_0^{2\pi} \left| \operatorname{Re} \left(\frac{e^{ik\pi/2}}{(1-z_1)^{k+1}}\right) \right|^p d\theta_1$$

is bounded independently of r [10], p. 416-417. If N=1, $F \notin B_{p1}$ [2], p. 257, so that by Theorem 6 Re $F \notin b_{p1}$. Also by Theorem 1 $F \notin B_{p_1q_1}$, Re $F \notin b_{p_1q_1}$ for any p_1 , q_1 with $q_1 > 1$ and $q_1 > p_1 > (k+q_1^{-1})^{-1}$.

References

- [1] P. L. Duren, B. W. Romberg and A. L. Shields, Linear functionals on H^p spaces with 0 , J. Reine Angew. Math. 238 (1969), p. 32-60.
- [2] and A. L. Shields, Properties of H^p (0 < p < 1) and its containing Banach space, Trans. Amer. Math. Soc. 141 (1969), p. 255–262.
- [3] and A. L. Shields, Coefficient multipliers of H^p and B^p spaces, Pac. J. Math. 32 (1970), p. 69-78.
- [4] Theory of H^p spaces, Academic Press, New York and London 1970.
- [5] T. M. Flett, The dual of an inequality of Hardy and Littlewood and some related inequalities, J. Math. Anal. Appl. 38 (1972), p. 746--765.
- [6] Lipschitz spaces of functions on the circle and the disc, ibidem 39 (1972), p. 125-158.
- [7] R. C. Gunning and H. Rossi, Analytic functions of several complex variables, Prentice-Hall, Inc., Englewood Cliffs, N. J., 1965.
- [8] Kyong T. Hahn and Josephine Mitchell, H^p spaces on bounded symmetric domains, Trans. Amer. Math. Soc. 146 (1969), p. 521-531.
- [9] H^p spaces on bounded symmetric domains, Ann. Polon. Math. 28 (1973), p. 89-95.
- [10] G. H. Hardy and J. E. Littlewood, Some properties of conjugate functions, J. Reine Angew. Math. 167 (1932), p. 405-423.
- [11] - Some properties of fractional integrals, II, Math. Zeit. 34 (1932), p. 403-439.
- [12] S. Helgason, Differential geometry and symmetric spaces, Academic Press, New York and London 1962.
- [13] L. K. Hua, Harmonic analysis of functions of several complex variables in the classical domains, Transl. Math. Monog. 6, Amer. Math. Soc., Providence, R. I., 1963.

- [14] A. Korányi and J. A. Wolf, Realization of hermitian symmetric spaces as generalized half-planes, Ann. of Math. 81 (1965), p. 265-288.
- [15] Josephine Mitchell and Kyong T. Hahn, Representation of linear functionals in H^p spaces over bounded symmetric domains in C^N , J. Math. Anal. Appl. (56) (1976), p. 379-396.
- [16] M. Stoll, Integral formulae for pluriharmonic functions on bounded symmetric domains, Duke Math. J. 41 (1974), p. 393-404.
- [17] V. S. Vladimirov, Methods of the theory of functions of many complex variables, M. I. T. Press, Cambridge, Mass., 1966.
- [18] J. A. Wolf and A. Korányi, Generalized Cayley transformations of bounded symmetric domains, Amer. J. Math. 87 (1965), p. 899-939.
- [19] K. Yosida, Functional Analysis, Grundlehren der Math. Wissenschaften, 123, Springer-Verlag (1974).
- [20] A. Zygmund, Trigonometric series, Cambridge University Press, 1959.
- [21] Wu-Young Chen, A generalization of a dual theorem of Hardy and Littlewood over bounded symmetric domains, Chinese J. of Math. 5 (1977), p. 183-201.
- [22] -, Lipschitz spaces of holomorphic functions over bounded symmetric domains in C^N , J. Math. Anal. Appl. (to appear).

THE STATE UNIVERSITY OF NEW YORK AT BUFFALO

Reçu par la Rédaction le 14. 11. 1978