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On differentiable solutions of the functional equation
o(f(x)) = g(», o(2)) for vector-valued functions

by Z. KrzeszowIAk (Krakow)

1. Introduction. The object of this paper is the problem of the ex-
istence of solutions of the functional equation

(1) o(f(@) = gz, o(@),
which are of class C" in an open interval (a, b). f and g denote the known
functions and ¢ is the unknown function. The functions ¢ and g are vector-
valued functions with ranges contained in R™.

The bold type denotes points of the space R™, where in the sequel
m is fixed, m > 2.

We define the norm of an clement we R™ by

,F ——

e =Y Nt
=1

This paper is based on [1] and [2] (cf. also [4]). In [1] Choczewski
proved a theorem on the existence of infinitelv many " solutions
(0 < r < o) of equation (1) for m = 1. The author supposed that the
sets I, and Q) (the definition is given in Section 3) are identical. In
our paper we assume that the symmetric difference of these sets is at
most countable. For » = 0 the analogous results was obtained in [2].

2. The discussion of C" solution of equation (1) is carried out with
the aid of a certain theorem which is proved by means of some consid-
erations of a topological nature.

THEOREM 1. We assume that:

1. Functions u,(x), n — 1,2, ..., are vector-valued functions defined
in {0,1>, and Vi(u,) < co, where the symbol Vi(w,) denotes the variation
of the fumetion w}, in (0,15, 4 =1,2,..., m.

2. For every xe {0, 1> we have |u,(z)| < K, n = 1,2, ..., where K > 0.

3. The vectors a,e R™ and a,e R™ fulfil the conditions

laoll < K, la,|| < IT,
and, moreover,
w, (0) # a,, u,(l) + a,.
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Then for every two systems of vectors l,, ..., L and ¥, ...,1,, 0 < r < oo,
there exists a vector-valued fumction uye C"(<0,1)>) such that

U, (0) = a,, uy(l) = ay,
u(()k)(o) =1, ugk)(l) Zl;n k=1,2,...,r,
[ug ()| < K for every ze<0,1>,

and
wo(w) # u,(x) for cvery ze 0,15, n =1,2,...

Proof (). We take a function #u(z) such that wu(z)e C"(<0, 1)),
u0) =ay, ul)=a, u®=y, uP1) =y, k=1, 2,001y
it (@) < max(llayll, la,l) = K, for every ze<0,1),

and a function A(z) such that A(z)e C7((0,1)), A®(0) = A®(1) =0,
E=0,1,2,...,7r, 0 <A(z) < (K—K,)/K for ze(0,1) and we consider
the m-parametre family of functions

& = {u(z, t): u(r,t) = u(x)+ti(z), v 0,1), te R™}.

We assume that |[£|| < K. For every ¢, |[t|| < K, the functions of the family
¢ have the following conditions:

u(@, $c 0"(0,1)), |u(z, Hi<K for every ze 0,1y,
u(0,t) =a,, u(d,t)=a,, u®0,t) =u*0)=1,
w1, 8) =uW1) =1,.
If we introduce in & the metric

9(“(-"”, t,), v(z, tz)) = max sup lu;(z, &) — v, (2, L,)l,
1<i<m 0<z<1

the family & becomes a complete metric space.
Now we define the sets:

E, ={u@,t)es: d u(z,t) =u, (@)}, ==1,2,..

xe(0,1)

We shall prove that the E, are nowhere dense sets. In order to attain
this we shall prove that the sets

Z, = lt‘ R": Haoe (0, Hul(r, ) = u,(2), I < -K’ )
are nowhere dense. We have

Zn = U an7
j=3

(?) I should like to express my thanks to Prof. dr A. Plis for his very valuable
remarks concerning the proof of this theorem.
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where
2 = [te R™: H u(x,t) = un(m)}.
xTe€ <%, 1— %)

The sets Z,; are subsets of the projections of the curves

r =8, t:Yn(3)7

w,(8)—u(s) <1 1>
al8) = — oy, e{—y L——),
¥ (8) $ 7 i

on the space R™. From Hypotheses 1 it follows that these are rectifi-
cable curves and consequently their projections onto the space R™ have
finite one-dimensional measure. It follows that they are nowhere dense

where

=]
sets and consequently the sets F, are nowhere dense. Thus () F, is a set
' -] n=1
of first category, so there exists a function w,e &\{J E,.
n=1

3. Let 2 < R™"™" (m == 2) be connected region and suppose that we
are given a function

g: Q2 —>R"
For an arbitrary x we shall denote by £, the x-section of the set £, i.e.

2, ={y: (v, 9y)e 2}.
We assume that {a,d) c {r: 2, +* 0} and we put

r,—=g,2), 2 ={,2): vela,b), zel,}.

We make the following hypotheses:
(I) gl{z,y)e C"(2), 0 < r< oo, and for every ze {a, b>, g is invert-
ible with respect to y.
(ITI) h(z,2)e C"(L2’), where h(x, z) is the inverse function to g(z, y)
with respect to y.
(IXT) f(xz)e C"({a, b)), where a and b are two consecutive roots of
the equation f(x) = x, f'(x) > 0 in {a, b}, and f(x) > x for ze (a, b).

oo (1) oo (7)
(IV) I, = Qyy = Ud{u(@)}v U {v(x)}, where
=1 j=1
(1) (7)
u(w)G Pz\ Qf(:r)’ v(w)G -'Qj(z)\ FZ’
and

@) (5) @) )
u(@)e C°((a, b)), wv(x)eC’(<a,b)), Viyu)< oo, Vi(®)<oo.

(V) There exists a point (x,, #) e 2, zy¢€ (a, b), such that n = g(x,, ).
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We define functions G(z, ¥y, y,, ..., y;) by the recurrent relations

G (x,y,y) = [f (@)]'gz(w, y)+9g,(z, ) y.],

0G, 0G,

(6) G,
G (%, Y, Yyy ooy Ypy) = [ (@] [ t =Yt +_03—li yk+1:|’
k

0x oy
E=1,2,...,r—1.

Similarly we define functions H,(z, y, y,, --., Y,) by the relations

H,(z,y,y,) = h,(z,y)+h, (:v, y)f’(w)yl,

(6 a oH,
Hy, (2,Y,Yys--+3 Y1) = y1+ e 3 Yeri]s
Yy
Ek=1,2,...,r—1.

Here the symbols 0G,/0y, 0G,[oy;, OH [0y, OH_ [0y, k =1,2,...,
¢t =1,2,..., k denote matrices of order m.

From assumptions (I) and (IIT) it follows that the functions
G Yy Yrs---yY)y K =1,2,...,7, are defined and are of class C™% for
(z, y)e £ and arbitrary y,, ..., Y.

Similarly, by assumptions (II) and (I1I), the functions H, (@, Y, Y, ..., Y4),
kE=1,2,...,7, are defined and are of class C"~* for (z, y) ¢ 2’ and arbitrary
Yy ooor Yo

One can easily verify that if ¢(x) is a C" solution of equation (1)
or, equivalently, of the equation

(7) o(@) = h(z, o(f (@),

and if hypotheses (I), (II) and (III) are fulfilled, then the derivatives
o™ (x) satisfy the equations (see [4]):

(8) oM(ax) = Hk($,¢(f($)),¢'(f(m)), ceny W(k)(f(w)))’ k=1,2,...,r.
or

9) oM (f(@) = Gyilz, 0(@), 9" (@), ..., 0% (), * =1,2,...,7

@)
Now we define sequences of functions n(m) and 'vn(a;) We put

@ @ )
uo(m) = u(f—l(w))r vo(x) = 'v(f‘l(a;)),

€)) ¢)]
,,H(w) = h(m, n(f(m») Cua(@) = g(7 (@), va(f (@),
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We shall prove the following

THEOREM 2. If Hypotheses (1) - (V) are fulfilled, then for every ¢ > 0
and for every system of vectors 1, ..., 1, there exists a vector-valued function
o(x) with the following properties:

(10) p(x)e C"((a, b)),

(11) o(x) satisfies equation (1) in (a,b),
(12) le(x) —nll < &  for every me (g, f(zy)>,
(13) oMy =1, k=1,2,...,7r.

Proof., Let us write

&, =f"(®), n=0,+1, £2,...,
where f"(x,) denotes the n-th iterate of the function f(z), i.e.

fy =z, @) =f(@), @) =1"@),
n=0, +1, £2,...

From hypothesis (II1) and from the lemmas and corollary proved
in [3] it follows that

f(<a’ b>) = <a" b>7
the sequence f"(xz,) is strictly increasing, and

lim f*(2,) = b.

n—00

Similarly, the sequence f~"(x,) is strictly decreasing and

lim f~"(z,) = a.

Thus we may write

(ay8) = U <@y, @)
and Wé have .
f(<mi—-1’ &;)) = {Byy Tyya)-

We consider the interval {z, f(z,)> < (@, b) and we define the sets
(@) ()
F, of all points xe (z,, f(2,)> for which the functions u,(z) are defined
(3)

and the inequalities [[u,(z)—g||< e hold for ¢ =1,2,..., n =0,1,...;

)

and similarly the sets F, of all points @ e {x,, f(#,))> for which the functions
@) )
v, (z) are defined and v, (z) — | < eforj =1,2,...,n = 0,1, ..., where ¢
is a fixed positive number. @ @

From hypotheses (I), (II) and (IV) it follows that wu,(x)e C°(F,),
)] (9) (O )]
v, (x)e C°(F,). There are at most countably many sets ¥,, F,.
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() 6] (@)
Now we form sequences u,, () and v, (x)such that u (m) € 0° (<@g, f(@o))),

(' (€] (%) ()]
v, ()€ C°(<movf wo)>)7 V,(zo)(“n) < 00, Vf(zo)('v ) < oo, J(t) = Uy, ”nl%
n

= %)m n =1,2,... The existence of sequences (1;,,, and g) fulfilling the
above conditions is almost evident, therefore we omit the proof of this
fact.

The vector n is a fixed point of the transformation y = g(x,, y),
since g(«,, 7) = 5. Thus there exists a neighbourhood U, of the point #,
U, < {y, ly—nll < &}, such that

gz, U,) = {y, lly— il < &}.

Since there are only at most countably many values ge U, such
that one of the equalities
() _ (%) _
u,(zy) =1, '“'n(f(-’”o)) = g(xg, 1),
G) B () -
v, (%) = 1, vn(f(mo)) = g(®y, n),
t=12,...,)=1,2,...,n =0,1,2,...
holds, there exists a value g*e U, such that g(x,, #*)e g(z,, U,) and
(t) )
u, (@) #* n*, un(f(mo)) # g (To, 1*),
) Q)
0, (%) # 1% vn(f(wo)) # g (2o, 1*),
i=12..,7j=12..,8n=012..

As the sequence {u,(x)} in Theorem 1 we take the sequence of all
)

functions {u) (#)} and {v,(x)}, as the points (0, a,) and (1, @,) we take
the points (z,, n*) and (f(aco g(zy, n%) ) Since #*e U, , we have |[g* —ni <e
and, similarly, g(®,, 7*)e g(x,, U,) implies |g(x,, #*) — |l < &. Further,
we take an arbitrary system of vectors I,,...,1. and then as the system
l,....,I. we take respectively G,(x,, n%1,), Gu(zy, 1% U, 1), ...,
Gr(a"!)’ 'l*’ l.l? crt lr)‘

From Theorem 1 it follows that there exists a vector-valued function

(13") C u(@)e O (<o, f(@o)))
such that
(14') w(zy) = 1%, w(f(ze)) = gl 1),

(15") u®(z) =1, u(k)(f(mo)) = G (@, 1% by, .. 1), kK =1,2,...,7,
@) (9)
(16") wu(x) 5 u,(z), u(@) # v,(),
t=1,2,...,j=1,2,...,»n=0,1,2,...,
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and

17) lu(z) —g|l < e for every we {(xy, f(x,)>-
Thus the function u(x) fulfils the following conditions:

(13) u(@)e C7 (<o, f(@0))),

(14) u(f(xo)) = g (%o, w(@o)),

(15) u® (f(mo)) = Gk(wm u(x,), W (T, ..., u* (370)),
E=1,2,..,7, 0<r< oo.
(t) (7}
(16)  u(x) £u,(z) ux) #ov,(x),
1 =1,2,...,j=1,2,..., n =0,1,2,...
(17) lw(x) —gll < e for every we {z,, f(%o)).

Now we can define the function ¢(2), the existence of which is asserted
by the present theorem. We put

u(x) for xe (w,y, 2,),
(18) plz) = g(f_l(m)y ‘P(f—l(w))) for xe &y, Tpp)ym=1,2,...,
h(’”)?(f(x))) for we (w_py 2 _np)yn =1,2,...

From the theorem proved in [2] it follows that the function ¢(x)
defined by (18) is a continuous solution of equation (1).

We shall prove that under hypotheses of the present theorem formula
(18) defines a function of class C” in the interval (a, b).

First we shall prove that the function ¢(z) is of class C" in the interval
(%4, x,) for every n. For n = 1 it is true on account of (18) and (13). If
n = 2, then ¢(x) is of class C" in (z,, x;) U(x,, ;) on account of (18) and
(13) and by assumptions (I) and (I1I).

Further, from (9) it follows that

0P (@) = Gi(f (@), u(f (@), w (f (@), ..., u® (f(2)))
for we (x,, z,).

As ¢ - 2,40, f'(z) - x,+0, then by the continuity of thefunctions G,
and by (15) we have

(19) im ¢®(z) = lim Gi(f(2), u(f (@), ..., u® (f(x)))

T—x1+0 z—zy+0
= G, (mm U(2o), U (2o), ..., u® (-7"0)) = u(k)(f(wo))v
(20) lim ¢®(x) = lim u®(z) = u®(x,) = u®(f(x,)).
a:—m:l—o r—z1—0
From (19) and (20) it follows that the derivatives ¢ (x), ¥ = 1,2,...,7

exist and are continuous at the point x,, thus (x)e C"((@,, €)).
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Now we suppose ¢(x)e C'(z,, x,) for a certain index = > 2. For

Ze(Tpy Tpy1)@(@) = g(f“(w), ¢(f‘1(m))) is evidently of class ¢”. Further
we have for ze(z,, z,) V(2,, T, ;)

P (x) = Gk(fCI(w)’ u(f_l(x))7 u’ (f—l(w))a crey u'® (f—l(m)))a
k=1,2,...,r,

and since all the derivatives ¢, ¢, ..., ¢!¥ exist and are continuous at
the point w,_,, there exist the limits lim ¢® (z). Thus ¢(@)eC™((@y, Tni1))

T,

and, by induction, we see that ¢(z)e C’(Zxo, z,)) for every n. It is known
that limz, = b, thus ¢(x)e C7 ({2, b)).

n—oo
Further we prove that ¢(z)e C"((a, #,)). According to formulas (7)
and (8) we have

(21) . u(wO) = h(w07 u(f@”ﬂ)))’
u(k)("”o) = Hk(ww u(f(wo))’ u’ (f(mo))y ceey u® (f(mo)))’ E=1,2,...,r.

Similarly we prove, with use of (18) and (21) and of assumptions (II)
and (III) that ¢(z) is of class C" in every interval (x_,, #,). Thus finally
o(z)e C"((a, b)).
Properties (12) and (13) results immediately from (15) and (17).
This completes the proof.
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