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Dilability of sesquilinear form-valued kernels

by J. StocHeL (Krakow)

Abstract. In the present paper we investigate the dilatability of sesquilinear form-valued
kernels defined on any semigroup, not necessarily involutory and not necessarily unital. The
main result, Theorem 2.2, gives necessary and sufficient conditions for the dilatability of such
kernels in terms of new ones defined on the Cartesian product of the semigroup by itself. All the
results that follow, concerning the problem of »-dilatability on x-semigroups, are deduced from
the main result. As applications we give new versions of the dilation theorems of Arveson and
Naimark. In the last section we present an example of a kernel which has a dilation, but has no
minimal dilation.

0. Introduction. The general dilation theory of Hilbert space operator
valued functions on unital *-semigroups has been developed by Sz.-Nagy in
[26]. The study of dilations of operator functions in non-Hilbert spaces has
been initiated in probability theory on Banach spaces (cf. {10], [28], [29] for
an exhaustive list of references). Gorniak and Weron (cf. [4], [6]) seem to be
the first to formulate a purely algebraic analogue of Sz.-Nagy’s dilation
theorem for functions with values in the space L(X) of all antilinear
operators from a linear space X to its algebraic dual X’. Within this general
framework they were able to explain the role of the boundedness condition,
which is one of two sufficient conditions for dilatability, in dilation theory.
At that time Szafraniec (cf. [21], [23}-[25]) and Masani (cf. [10], [11]), both
inspired by Arveson’s dilation theorem, found simplified forms of the
boundedness condition.

The study of dilations of Hilbert space operator valued functions on *-
semigroups without unit has been initiated by Mlak and Szymanski in [14]
(cf. also [12]). Complete necessary and sufficient conditions for the dilatability
of such functions have been found by Szafraniec (cf. [22]) and improved
by the author (cf. [17]). Mlak and Weron (cf. [15]) have considered dilations
of Banach space operator valued kernels defined on non-involutary and non-
unital simigroups. Basing on [14] they gave some sufficient conditions for
the dilatability of such kernels.

The purpose of this paper is to obtain necessary and sufficient condi-
tions for a kernel defined on a semigroup S without unit to be dilatable. All
the kernels we take here into consideration are assumed to have values in the
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space of all sesquilinear forms on a vector space X (cf. [13], [19], [25], [27]
for a similar approach). Notice that although there exists a dilatability-
preserving natural one-to-one correspondence between such kernels and
kernels with values in the space L(X) (in other words, a kernel of the first
type is dilatable if and only if its counterpart is), consideration of kernels
of the second type is more natural and interesting from both the probabilistic
and topological point of view (cf. [3], {4], [5], [7], [8]). Motivation for this
general approach can be found in general dilation theory (cf. [13], [25]) as
well as in probability theory (cf. [4], [10], [15], [27], [28]).

Section 2 deals with dilation of kernels defined on non-involutory and
non-unital semigroups. Using the main result of the section (Theorem 2.2) we
essentially simplify the criterion of dilatability given by Mlak and Weron (cf.
[15], Theorem 1). In the next section x-dilations of positive-definite kernels
are investigated (here the semigroup S is assumed to have an involution).
This part of the paper is a continuation of our earlier studies on this kind of
problems (cf. [17]). In particular, Theorem 3.7, which is an adaptation of
Theorem 1 of [17] to our general algebraic setting, is deduced from Theorem
2.2. In Section 4 strictly algebraic versions of the well-known dilation
theorems of Arveson and Naimark are presented. Moreover, we give a full
(and correct) proof of Theorem 37.11 of [2]. In the last section we show that
the minimality condition (15) plays an important role in Theorem 2.2. An
example of an undilatable kernel which does have dilations is given.

In the Appendix we present a stronger version of Theorem 3.7.

1. Preliminaries. Let us fix some preliminaries. In all what follows F
stands for either the real number field R or the complex number field C. Let
X, Y be two vector spaces over F. Denote by:

L(X, Y) the space of all linear operators from X into Y,

F(X) the space of all sesquilinear forms over X with values in F.

If X and Y are topological vector spaces over F, then we denote by:

CL(X, Y) the space of all continuous linear operators from X into Y,

CF (X) the space of all jointly continuous sesquilinear forms over X with
values in F.

For convenience we write L(X) (resp. CL(X)) instead of L(X, X) (resp.
CL(X, X)), and if AeF(X) then we write (Ax, y) instead of the usual
A(x, y) (x, ye X). If {Z,: seS} is a family of subsets of a Hilbert space H
over F, then let we denote by \/{Z: seS} the closure of the linear span of
the union {J {Z,: seS}.

Let T be any non-void set and let X be a vector space over F. By an
F(X)-valued kernel on the set T we mean a function C which maps the
Cartesian product of T by itself into F(X). Interesting examples of F(X)-
valued kernels on *-semigroups have been given by Szafraniec in [25] (for
the case of non-involuntary semigroups see [15]). Here we only mention that,
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similarly to [25], one can construct F(X)-valued kernels on T with the aid of
suitable families of densely defined unbounded (linear) operators in a Hilbert
space H all the domains of whose contain a dense linear submanifold X of
H. Such kernels have values in the set F(X)\CF(X).

An F(X)-valued kernel C on T is said to be positive-definite (PD) if the
following two conditions hold true:

(1 Z (C(tj, ) Xy, x;> =0 for all finite sequences ¢y, ..., t,e T
k=1
and x,, ..., x,€ X,

2) (C(s, t)x, yp={(C(t,s)y, x> forall s,teT and x, yeX.

Notice that if F = C then condition (2) follows from condition (1) and is
therefore redundant. This fact is a consequence of the polarization formula
for sesquilinear forms over a complex vector space.

With every positive-definite F (X)-valued kernel C on T we can associate
in the canonical fashion a Hilbert space H and a family {D(t): te T} of
linear operators from X into H. Namely, we have the following Kolmogorov
—Aronszajn type theorem (cf. [13], KMKA Lemma; [7], Remark, p. 239 3],
Theorem, p. 29).

1.1. THEOREM. Let C be a positive-definite F (X)-valued kernel on T. Then
there exists a Hilbert space H over F and an operator-valued function D: T
— L(X, H) such that

(3) C(s, )%, y>=(DO)x, D($S)y)y (x,yeX;s,teT),

(4) H=\/{D()X: teT}.

Moreover, if some other pair (H', D') consisting of a Hilbert space H' over F
and an operator-valued function D': T — L(X, H') satisfies (3) and (4), then
there exists a unique unitary operator Ue CL(H, H') such that

(5) UD(t)=D'(t) (teT).

Any pair (H, D) satisfying (3) and (4) will be called a minimal factoriza-
tion of C. Thus the second part of Theorem 1.1 may be stated as follows:
minimal factorizations of C are determined up to unitary equivalence. For
the convenience of the reader and to make our exposition self-contained we
sketch the proof of Theorem 1.1. The idea of the proof is similar to that of
[28] (cf. also [7]).

Proof of Theorem 1.1. Denote by A the Cartesian product of the sets
T and X. Define a new scalar kernel ¢ on A4 by

(6) c((s, x), (t, ) =<KC(s, )y, x> (x,yeX, s, teT).
Then it is easy to check that the kernel c¢ is PD. Using the Kolmogorov-
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Aronszajn factorization theorem (cf. [12], Proposition 1, p. 20; [10], The-

orem 2.10, p. 421) we obtain a Hilbert space H over F and a function
d: A — H such that

(7) c(d =W, dD)y (4 ped),
(8) H=\/{d(4): ieA}.
It follows from (6) and (7) that

(d(s, ax+By), d(t, 2)y = (ad(s, x)+Bd(s, y), d(t, 2))y
(s,teT, x,yeX, a, peF)

so, by (8), d(t, -)e L(X, H) for each te T. Denote by D the function from T
into L(X, H) which sends t to d(t, -) for te T Then the pair (H, D) satisfies
conditions (3) and (4).

Let now (H’, D') be another pair satisfying conditions (3) and (4). Then
for all finite sequences t,, ..., t,e T and x,, ..., x,e6 X we have

|| Y. D(1y) xk”ff = ) (Cl )x, x;) = “ )3 D'(th)kalzi'-
k=1 Jk=1 k=1

Thus, by the minimality condition (4), there exists a unique unitary operator
UeCL(H, H') which sends D(t)x to D'(t)x for teT and xe X. This com-
pletes the proof.

Now let S be a multiplicative semigroup which is not assumed to have a
unit. The following definition originates from the boundedness condition in
the Sz.-Nagy dilation theorem for involutory semigroups (cf. [26]). We say
that an F(X)-valued kernel C on § satisfies the boundedness condition BC if
there exists a non-negative function M: § — R, such that for each reS the
kernel M(t)C —C" is positive-definite, where C' is an F(X)-valued kernel on
S defined by C'(u, v) = C(tu, tv) for u, veS. As will be shown below BC is -
necessary and sufficient for a PD kernel to have a propagator in the sense of
Masani (cf. [10], Definition 3.2, p. 424).

1.2. THEOREM. Let C be a positive-definite F(X)-valued kernel on S which
satisfies the boundedness condition. Then there exists a Hilbert space H over F,
an operator-valued function D: S — L(X, H) and a representation n of S on H,
i.e., a semigroup homomorphism n: S — CL(H), such that

9) (H, D) is a minimal factorization of C,
(10) ‘ n()D(s) = D(ts) (s, teS).

If (H', D', @) is another triple satisfying (9) and (10), then there exists a unique
unitary operator Ue CL(H, H') such that

(1 UD(s) =D'(s) (sef),
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(12) Un(s)=n'(s)U (se¥).

Any triple (.H, D, n) satislying (9) and (10) will be called a minimal
propagator of C.

Proof. Let (H, D) be a minimal factorization of C. Then for all finite
sequences Xx,, ..., x,€X and s, ..., s,, teS we have

n n

“ z D(tsk)xklllzi = Z CC(ts t8) xis x50 < M) Z CC (s 8) Xk, X5

k=1 k=1 jk=1
=M@Y D(s) x|
k=1

Thus by the minimality condition (4), for each te T there exists a unique
bounded operator n(t)e CL(H) which fulfils condition (10).

Now if (H', D', ) 1s another triple which satisfies (9) and (10) then, by
Theorem 1.1, there exists a unitary operator Ue CL(H, H') such that (11)
holds true. Thus Un(f)D(s)x = a'(¢) UD(s) x for all xe X and s, teS. Since
the set {D(s)x: xe X and seS! is linearly dense in H, equality (12) follows.
This completes the proof.

1.3. Remark. A more general algebraic version of Theorem 1.2 can be
found in [13].

2. Dilatability of kernels on semigroups without unit. Through the whole
section, S denotes a semigroup without unit. Unless specified otherwise, X
always stands for a vector space over F.

Modifying slightly the definition of R-dilation in [15] (cf. [12]) we
introduce the notion of minimal dilation. A triple (H, R, n) is said to be a
minimal dilation of a kernel C: S xS — F(X) if

(13)  H 1s a Hilbert space over F, Re L(X, H) and = is a representation of
S on H,

(14) (s, )x, y> =(n()Rx, n()Ry)y (s, €S, x, ye X),

(15) H=\/{n(s)RX: se§}.

Two such minimal dilations (H, R, n) and (H', R, n') are said to be unitary

equivalent if there exists a unitary operator Ue CL(H, H') such that

(16) Un(s)y=a'(s)U (se8),

(17) UR =R'.

"We say that a kernel C is dilatable if it has a minimal dilation.
In this section we try to solve the following two problems:
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1° Find necessary and sufficient conditions for a kernel C: S xS — F(X)
to be dilatable.

2° Are all minimal dilations of C unitary equivalent?

Now we shall sketch an idea of solving problem 1° and we shall explain
why the answer to the question posed in problem 2° is negative in general.
First observe that if (H, R, n) is a minimal dilation of C, then (H, D, n),
where D(s) = n(s)R (seS), is a minimal propagator of C. Conversely, if
(H, D, n) is a minimal propagator of C, then (H, R, n), where R is a solution
of the system of operator equations

(18) .D(s)=n(s)R (se¥8)

is a minimal dilation of C. Briefly speaking, in order to find the answer to
problem 1° we have to solve system (18) for the unknown quantity R. For
this purpose fix a vector ye X and rewrite equality (14) as follows:

(19) (m(sy*D(£)x, Ry)y = (C(s, )x, y> (s,t€8, x, ye X).

Then one€ can try to look at the vector Ry as a bounded linear functional ¢,
on H which fulfils the condition

(20) @, (n(s)*D(Nx) = (C(s.x,y> (s.1€8. xeX).

Denote by H, the Hilbert subspace of H spanned by the vectors
In(s)*h: seS, he H}. Evidently, H,=HON, =\/{n(s)*D(f)x: s, 1€S,
xe X}, where N, is the null space of the representation = (i.e., N, is the set
of all vectors he H such that n(s)h = 0 for each se8). It is easy to see that
all bounded functionals ¢, which satisfy condition (20) coincide on H,. Since
H, does not have to be equal to H in general, it may happen that there exists
more than one such a functional ¢,. This is why the answer to the question
posed in 2° is negative in general (exhaustive solution of problem 2° can be
found in [20]). )

Reverting to equality (20) one can say that the boundedness of all
functionals ‘{cpy],,n: ye X} is a necessary and sufficient condition for system

(18) to have a solution ReL(X, H). An easy calculation shows that the
functional ¢,|y_is bounded (and hence correctly defined) if and only if

inequality (22) below holds true for all finite sequences s, ..., s,€S,
ty, ..., 1,€8 and x,, ..., x,€ X, where C is a new kernel associated with the
former one via the following lemma.

2.1. LemMma. Let C be a positive-definite F(X)-valued kernel on S which
satisfies the boundedness condition. Then there exists a unique positive definite
F (X)-valued kernel C on S xS such that

21 <C((s 1), (@, ) x, y) = (w(@* D () x, n(s)* D(t) Y)u

(s, t,u,ves, x, ye X)
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for each minimal propagator (H, D, m) of C. Moreover, if X is a topological
vector space over F, then C(s,t)e CF(X) for all s ,teS implies that
C(A, weCF(X) for all A, ueS xS.

For the proof let us define C by equality (21). Using the second part of
Theorem 1.2 one can show that the definition of C does not depend on the
choice of a minimal propagator of C (in particular, this means that C is
correctly defined). We leave the details to the reader. The second part of
Lemma 2.1 follows from equality (3).

Now we are able to formulate our main result which solves problem 1°
completely and problem 2° partially.

2.2. THEOREM. Let C be a positive-definite F (X)-valued kernel on S which
satisfies the boundedness condition. Then

(I) The following two conditions are equivalent:

(1) C is dilatable,

(ii) there exists a non-negative function q: X — R, such that for all finite
sequences Sy, ..., S,€S, ty,...,t,€8 and xy, ..., x,, yeX

(22 I Z {C (sks 1) X )’>|2 < q(y)? Z <6((Sj’ t;), (Sk, tk))xk’ xj>-
k=1

k=1

(Il) If (H, R, m) and (H', R', ©') are two minimal dilations of C, then there
exists a unique unitary operator Ue CL(H, H') such that
(23) UPR = PR/,
(24) Un(s)=n'(s)U (se8),
where P (resp. P’) stands for the orthogonal projection of H (resp. H') onto H,
=\/{n(s)*H: seS} (resp. H, =\/{#n'(s)* H": se8§}).

Proof. (I} (i)=(1) Let (H, R, n) be a minimal dilation of C. Then

(H, D, n), where D(s) = n(s) R (seS), is a mimimal propagator of C. Apply-
ing Lemma 2.1 we obtain

Z <C((Sj» £), (i, fk))xu, .xj> = ” Z n(s,)* D(ty) xk“lzl
jk=1 k=1
SO

I3 (Clser %0 YO = | X (e Ry (50 Ry)wf?
k=1 k=1

I(Z (s0)* D(t) X, Ry |

< ”R}’”Izi” Z T (s)* D(lk)xh”.%i
k=1

for all finite sequences s, ..., s,€S, ty, ..., t,eS and x,, ..., X,, yeX.
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(i) = (i) Let (H, D, n) be a minimal propagator of C. Fix-a vector ye X
and denote by H, the space
VAir@)*H: seS} =\/{n(s)*D(t) X: s, teS}.

Then by (ii) there exists a unique linear bounded functional ¢, on H_ which
fulfils condition (20). The Riesz representation theorem implies that there
exists a unique vector Rye H, such that ¢,(h) = (h, Ry)y for each he H,. In
particular, we have

(D(t)x, m(s) Ry)y = (n(s)* D(t) x, Ry)y = @, (n(s)* D(t) x)
={C(s, )x,y> (s, teS, xeX).

But we know that

(s, )x,y>=(DW)x, D(s)y)y (s, teS, xeX)
SO

(D(t)x, n(s)Ry—D($s)y)g =0 (s, teS, xe X).
Thus by (4) we obtain

n(s)Ry =D(s)y, seS and yeX
and
H=\/{D(s)X: seS} =\/{n(s) RX: se S}

so (14) and (15) hold true. Since the functional {C(s, ) x, - ) is antilinear for
all s, teS and xe X, the uniqueness part of the Riesz representation theorem
implies the linearity of R. Summing up, (H, R, ) is a minimal dilation of C.

(IT) To prove the second part of Theorem 2.2 let us take two minimal
dilations (H, R, n) and (H’, R’, n') of C. Then the triples (H, D, n) and
(H', D', '), where D(s) =n(s)R and D'(s) =n'(s) R’ for seS, are minimal
propagators of C, so, by Theorem 1.2, there exists a unitary operator
UeCL(H, H') such that conditions (11) and (12) hold true. Notice now that
UH, = H,.. Indeed, it follows from (11) and (12) that

Urn(s*D(t) =UU*n'(s)*UD(t) =n'(s)* D' (t) (s, tes).

From the above we obtain

(UPRx, n'(s)* D' (t) y)y- = (PRx, m(s)* D(t) y)y = (n(s) Rx, D() y)u
= (C(t, ) x, y) =(n' () R'x, ' () R y)yr
(R %, DO = (R x, T DO
=(P'R x, 7' (s)*D'(t) y)u
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for all x,yeX and s, teS, which is equivalent to equality (23). This
completes the proof.

2.3. Remark. Notice that if (H, R, m) is a minimal dilation of the kernel
C, then so is (H, PR, n), where P is the orthogonal projection of H onto H,
(this follows from the equality H = H,®N,). Thus if C is dilatable, then
there always exists a minimal dilation of C, say (H, R, m), such that
Re L(X, H,), and, by Theorem 2.2, all such minimal dilations of C are
unitary equivalent. Moreover, if g, is the minimal function satisfying (22),
then for any minimal dilation (H, R, ) of C such that Re L(X, H,) we
have ¢, (y) = [[Rylly for ye X. '

One can ask whether the space H, is invariant for n (here (H, R, n) is
any dilation of C). The answer is yes if and only if H, = H. Indeed, if H, is
invariant for =, then it reduces = because HOH, = N, is always invariant for
n. Thus Pr(s) = n(s) P for each seS and

H, = PH =\/Pr(S)RX = \/n(S) PRX,

where P denotes the orthogonal projection of H onto H,. Since n(s) PR
= n(s)R for each seS, H=\/n(S)RX = H,.

The above observation and Theorem 3.1 in [20] imply that all minimal
dilations of C are unitary equivalent if and only if for some (equivalently: for
each) minimal dilation (H, R, n) of C, H, is invariant for =.

Notice also that if S has a unit ¢ and C is a PD F(X)-valued kernel on
S which satisfies BC, then for each minimal propagator (H, D, n) of C,
(H, D(e), n) is a minimal dilation of C. Thus condition (ii) of Theorem 2.2
holds with q(y) = ||[D(e)y|| = {C(e, e}y, y>'/?, ye X. Since, in this case, H,
= H for each minimal dilation (H, R, n) of C, all minimal dilations of C are
unitary equivalent. )

Our next theorem reveals how the continuity of the function q: X — R,
appearing in inequality (22) affects the continuity of the forms {C(s, 1):
s, teS!.

2.4. THEOREM. Let X be a topological vector space over F and let C be a
positive-definite F(X)-valued kernel on S which satisfies the boundedness
condition and condition (i) of Theorem 2.2 with some continuous function
q: X— R, such that q(0)=0. Then C(s, )e CF(X) for all s, teS.

For the proof observe that the continuity of ¢ implies the continuity of
g.- Since there exists a minimal dilation (H, R, n) of C such that g, (y)
= [|Ry||ly (veY), the operator R is continuous. In view of equality (14), the
conclusion of Theorem 2.4 follows.

The results we have obtained hitherto can be used to improve the
sufficient condition for the dilatability of Banach space operator valued
functions given in [15] (¢f. Theorem 1).

Let Z be a complex Banach space. Denote by CL(Z) the space of all
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bounded antilinear operators from Z into its topological dual Z*. Associate
with every function 4: S xS — CL(Z) a CF(Z)-valued kernel C, on § via
the formula

(Cyls, )X, p> =(Als, )y)(x)  (x, yeZ).

We say that the function A is positive-definite (PD) (resp. satisfies the
boundedness condition (BC)) if C, is (resp. C, does). It is obvious that our
definitions of positive-definiteness and of boundedness condition for A
coincide with those of [15].

Now the Mlak—Weron theorem can be stated as follows:

25. THEOREM. Let A: S xS — CL(Z) be a positive-definite function which
satisfies the boundedness condition. Assume also that there exists a net {ey} < S
such that

(1) = sgpIIA(ee, eg)ll < + 0,

(if) lim (A (seq, 1) x)(y) = (A(s, ) x)(y) (s, teS, x, yeZ).

Then there exists a complex Hilbert space H, an operator Re CL(Z, H) and a
representation n of S on H such that

(1i1) A, )= R*n(s)*n{) R (s, zeS);
(iv) H=\/{n(s)RZ: seS}.

Proof. We first show that the kernel C, satisfies condition (ii) of
Theorem 2.2. For this purpose fix finite sequences s,, ..., s,€S, t,, ..., t,€S

and x,, ..., x,, yeZ. Let (H, D, m) be any minimal propagator of the kernel
C,4. Then (i) implies that

| Z (A (Sx €o, t,‘)y)(xk)lz = | Z (D([k)xh D (s, eo)}’)H|2
k=1 k=1

n

= (¥ #(s)* D(te) Xk, D(eg) y)ul

k=1

n

< (A (ey, €9 ¥)(¥) kz (7 (s0)* D(ty) xi, m(s;)* D) x;)y
j.k=1

< 7IyliZ Z <CA ((Sja t;), (sk, tk)) Xy xj>

ik=1
for each index 6. Thus, by (ii), we have

| Z CC 4 (5ks 1) X )’>|2 = |kz: (A (Sk» &) y)(xk)|2

= liml Z (A (Sk €p, tk))’)(xk)lz < S 1yll? Z ,<6.4 ((Sj, t;), (si, 1&))’% xj>~

8 k=1 jk=1
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This means that the kernel C, satisfies condition (i1) of Theorem 2.2 with
q(y) = \/(—Silyllz (veZ). In view of Theorem 2.2, C, has a minimal dilation
(H, R, m) such that Re L(Z, H,). Since the function g is continuous, the
operator R is bounded (see Theorem 24). Thus equality (iii) follows from
(14), where X =Z and C =C,.

This completes the proof.

2.6. Remark. The original formulation of the Mlak-Weron theorem
contains the additional assumption

(25)  lim(A(e,, s)x)(y) exists for every seS and every x, yeZ.
0

Below we show how to prove Theorem 2.5 altering slightly the original proof
of Theorem 1 of [15]. Moreover, we relate condition (25) to condition (i) of
Theorem 2.5. '

Let (H, D, n) be a minimal propagator of C,. Then assumption (i) of
Theorem 2.5 implies the boundedness of the net {D(eg)} in CL(Z, H). Since
the unit ball of CL(Z, H) is compact in the weak operator topology, there
exists a subnet {e,} of {e,} such that the net {D(es)} is weakly convergent to
an operator Re CL(Z, H). Now we can continue the proof in the same way
as in [15]. In particular, we have

(26)  lim(4(ey, 9X)0) = m(D(5)y, Dieo)x)u = (D(s), Rx)s

for every seS and every x, yeZ.

In short, condition (i) of Theorem 2.5 implies condition (26) which is weaker
than condition (25). But if H, = H, then conditions (i) and (i1) of Theorem 2.5
yield directly the weak convergence of the net {D{eg)}. Finally, notice that
the first proof of Theorem 2.5 does not appeal to any form of the Tychonov
theorem.

3. Dilatability of kernels on x-semigroups without unit. Let S, be an
involution semigroup (in short: *-semigroup) without unit. Denote by * the
involution of §,. As usual X stands for a vector space over F. This section
deals with those minimal dilations of a given kernel C: S, xS, — F(X) which
“preserve involution” in the sense of the following definition. A triple
(H, R, m) is said to be a minimal »-dilation of a kernel C if it is a minimal
dilation of C and = is a -representation of S, on H (ie, n: S, — CL(H) is
an involution-preserving homomorphism). A kernel C is said to be x-dilatable
if it has a minimal x-dilation.

The aim of the first part of the section is to give necessary and sufficient
conditions for x-dilatability. First observe that if a kernel C is x-dilatable,
then it has the so-called transfer property (cf. [10], p. 430):

(27) Cus,t) = C(s, u*t) (s, t,ues,).
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Masani has pointed out that if S, has a unit then the transfer property
together with the positive-definiteness and the boundedness condition are
sufficient conditions for the *-dilatability of the kernel C (cf. [10], Theorem
4.10). For a non-unital x-semigroup we have only the following

3.1. LeMMma. Let (H, D, n) be a minimal propagator of a kernel C:
Sy XS, — F(X). Then n is a =-representation of S, if and only if C has the
transfer property.

Proof. If n is a x-representation of S,, then for all s, ¢, ueS, and
x, ye X we have

(Cus, )x, y> = (D(t)x, D(us)Y)u = (n(@)* D(t) x, D() )
_ =(D*t)x, D(s) y)y = <C(s, u*t)x, y>.
Conversely, if the kernel C has the transfer property, then we have
(r@*)D(t)x, D(s)y)u = (D(@* 1)x, D(s)y)u = C(s, w*1)x, y>

= (C(us, )x, y> =(D(t)x, D(us)y)y
=(D(t)x, m(u) D(s) y)u
= (n(w*D(1)x, D(s)y)y

for all s,t,ueS, and x,yeX. Since the vectors of the form

{D(s)x: seS,, xe X} generate the Hilbert space H, the equality m(u)*
= n(u*) (ueS,) lollows. This completes the proof.

3.2. CoroLLARY. If an F(X)-valued kernel C on S, is x-dilatable, then each
minimal dilation of C is a minimal -dilation of C.

Now consider a PD F(X)-valued kernel C on S, which satisfies BC and
has the transfer property. Then one can show that the F(X)-valued kernel C
on S, xS, associated with C by Lemma 2.1 has the form

(28) C((s, 1), (u, v)) = C(s*t, u*v) (s, t,u, veS,).

Indeed, if (H, D, ) is any minimal propagator of C, then by Lemma 3.1 we
have

(C((s, 1) (u, 0)x, y) = (m()* D(v) x, T(s)* D(1) y)u
= (n(u*)D(v)x, n(s*)D (1) y)u
= (Dw*v)x, D(s*1)y)g = {C(s*t, u*v)x, y)
(s, t,u, veS,, x, ye.X),

which proves equality (28). Thus, in this case, inequality (22) can be rewritten
as follows:

(29) |Z <C(Ska tk)xkv y>lz < CI(Y)Z Z <C(SJ* tjv Sf tk)xb xj>'
k=1

Jk=1
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Conversely, assuming only inequality (29) one can obtain some of the above-
mentioned properties of the kernel C like the transfer property.

33. LemMa. Let C be an F(X)-valued kernel on S, which satisfies
inequality (29). Then
(i) there exists a function B: S, — F(X) such that

(30) C(s,t) = B(s*t) (s, teS,),
() the kernel C has the transfer property.

Proof. Since (ii) follows directly from (i), we only have to prove (i).
Define the function B: S, — F(X) by the formula

C(s,t) if ueS, S, and u =s*t,

B(")={0 il u¢sS,-S,.

The correctness of the definition of B is an easy consequence of the following
implication:

(31) if u=s¥t, =s%t,, then C(sq, t;) = C(sy, t5).

To verify (31), fix arbitrary two vectors x, ye X and denote by x, (resp. x,)
the vector x (resp. (—x)). Then by (29) we have

2
|<C(Sl’ tl)x’ y>_ <C(32’ IZ)x’ y>|2 = | Z <C(Sk9 tk)xks y>l2
k=1

2 2
< q(y)? ."Zl (C(s¥ty, sEt) X, X0 = q(y)? _kzl Cu, u)x;, x;>=0 A
Jk= Jk=
so (C(sy, t1)x, y> = {C(s;, t;)x, y>. This completes the proof.
Inequality (29) does not in general imply the positive-definiteness of C,
but merely the positive-definiteness of the restricted kernel C|z, .7, , where T,
=S,°'S,. But assuming that C satisfies BC, one can infer the positive-
definiteness of C from (29).

34. Lemma. Let C be an F(X)-valued kernel on S, which satisfies the
boundedness condition and (29). Then the kernel C is positive-definite.
Proof. Let T, (n>=1) be the set of all 2n-tuples 4,

=(S4, ---» Sps Xq, -+, X,) such that s, ..., s,€S, and x,, ..., x,e X. For each
teS, and ye X define the functions 47, 47, 4" T,—= F by

Ly

6?.)'()‘») = I Z <C(t*, sk) Xis y>|2,
k=1

AMA) = Y. (C(ts), ts) Xy XD,

jk=1

4"(4,) = Z {C (s, i) Xi5 X;).

Jk=1
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It follows from (29) that
(32) 0<67,<q(y)*4r (teS,, yeX, n=1).

If g = 0 then, by (32), C =0 and so C is PD. If g # 0 then there exists y,e X
such that g(y,) > 0. Since inequalities (32) hold true for y = y,, 47 > 0 for all
n and t. Now BC yields M(t)4" > M(t)A"— A} >0 for all nand ¢t. If M =0
then 47 =0 for all n, ¢, so by (32), C =0. If M # 0, then there exists t,e S,
such that M(ty) > 0. Since M(ty)4" > 0, A" > 0. This completes the proof.

The following theorem gives necessary and sufficient conditions for x-
dilatability.

3.5. THEOREM. Let C be an F(X)-valued kernel. Then:

(I) If C satisfies the boundedness condition, then the following two
conditions are equivalent:

(i) C is =-dilatable,

(i1) there exists a non-negative function q: X — R, such that inequality
(29) holds true for all finite sequences sy, ..., s,eS,, ty,...,t,€S, and
X, .-y Xp, VEX.

(I1) If the kernel C is x-dilatable, then:

(i) for each minimal dilation (H, R, n) of C, H=H,=\/{n(s)RX:
SES, Syl

(iv) all minimal dilations of C are unitary equivalent.

Proof. In view of Lemmas 3.1, 3.3 and 3.4, the first part of Theorem 3.5
follows from Theorem 2.2. By Remark 2.3, condition (iv) follows from
condition (iii). Therefore we only have to prove condition (iii). Let us fix any
minimal dilation (H, R, n) of C. By Corollary 3.2, (H, R, m) is a minimal
s-dilation of C. Thus the null space N, of n is equal to HO\/ {n(s)RX:
SES, S} )

Let h be an arbitrary vector of N,. Then (h, n(s) Rx) = (n(s*) h, Rx)y4
=0 for all se S, and xe X. In view of the minimality condition (15), & must
be equal to 0. Thus H = H,. This completes the proof.

3.6. Remark. Notice that using the standard induction procedure one
can show that if the kernel C is *-dilatable, then for each minimal dilation
(H, R, ) of C and for each natural number n we have

H=\/{n(s)RX: seS1},

where the sets {S,} are defined by induction as follows: S, =S,, S;'
=8,'8,, n=0.

It follows from the second part of Theorem 3.5 that if g, is the minimal
function satisfying (29), then for any minimal dilation (H, R, n) of C,
d,(») = ||Ry|| for each ye X (compare with Remark 2.3).
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Lemma 3.3 justifies the following definition. We say that a function
B: S, — F(X) is positive-definite (PD) (resp. satisfies the boundedness condi-
tion (BC)) if the kernel Cy defined by

(33) Cp(s. t) = B(s*t) (s, teS,)

is positive-definite (resp. satisfies the boundedness condition). A triple
(H, R, m) is said to be a minimal x-dilation of B if H is a Hilbert space over
F, ReL(X, H), m 1s a s-representation of S, on H and

(34) (mr(s)Rx, Ry)y = <B(s)x, y> (se€S,, x, yeX),
(35) H=\/{n(s)RX: seS,).

It follows from the definition that each minimal *-dilation of B is automati-
cally a minimal x-dilation of Cpz, but’ not conversely. A function B:
S, — F(X) is said to be *-dilatable if it has a minimal *-dilation.

The following theorem gives necessary and sufficient conditions for a
function B: S, — F(X) to be =-dilatable.

3.7. THEOREM. Let B be an F(X)-valued function on S,. Then:

(I) If B satisfies the boundedness condition, then the following two condi-
tions are equivalent:

(1) B is x-dilatable,

(i) there exists a function q: X — R, such that for all finite sequences
Sty .or S,€S, and xq, ..., x,, ye X

n

(36) |2 Bls)x, WP <q)? Y <Blsksdx, x)).

k=1 Jk=1
(ID) If B is *-dilatable, then:
(i) for each minimal *-dilation of B the null space N, of = is trivial

(N, = {0}).

(iv) all minimal *-dilations of B are unitary equivalent.

Proof In view of Theorem 3.5 we only have to prove the first part of
Theorem 3.7.

(i) = (i) Let (H, R, m) be a minimal *-dilation of B. Then

| Y. (Bls)xi, y)* = (X mls) Rxi, Ry)ul® < IRyl Y, <B(s} s, x;>
k=1 1

k= k=1
for all finite sequences s, ..., s,eS, and x,, ..., x,, yeX.

(i1) = (1) Observe that (36) implies (29) (put C = Cg). Thus, in virtue of
Theorem 3.5, the kernel Cy has a minimal x-dilation (H, R, =) such that H
= H,. In particular, we have

{B(s)x, y> =(n(s)Rx, Ry)y (seSi, x, yeX).
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To prove equality (34), fix ¢ >0, seS, and x, ye X. Since H = H,, there
exist finite sequences sy, ..., s,€5,°S, and x;, ..., x,,€ X such that

m

A=|n(s)Rx—hl| <e, where h= ) n(s)Rx,.

k=1
Put s,.; =5 and x,,, = —x. It follows from (36) that

m+1

(m(s) Rx, Ry)y—<B(s)x, yd| <|(m(s)Rx--h, Ry)u|+| Y. <(B(s)xi, ¥
k=1

mt1

<€”R}’“H+Q(J’)( Z <B(S_rsk)xks xj>)1/2

Jk=1
m+ 1

=¢l|Rlu+aW || ¥ n(s) Rxy||u
k=1

=c||[Ryllu+q() A < e(|Ryllg+g ().

Since ¢ is an arbitrary positive real number, equality (34) follows. Thus all we
have just proved can be stated as follows: if the function B satisfies BC and
. (36), then each minimal *-dilation of Cpg is a minimal *-dilation of B. This
completes the proof. '

38. Remark. A careful examination of the proof of Theorem 3.7 shows
that condition (ii) of the theorem can be replaced by the following one: there
exists a function g: X — R, for which inequality (36) holds true for all finite
sequences X, ..., X,, V€ X, §y, ..., S,-1€5,-S, and s,eS,, where n > 2 (see
Appendix for a more general version of Theorem 3.7). '

39. Remark. Notice that if ¢®: X — R, is the minimal function
satisfying (36), then for each minimal *-dilation (H, R, =) of B, q2(y) = ||Ry||x
(ye X). Moreover, if g, stands for the minimal function g which satisfies (29)
with C = Cy, then g = q®. Thus Theorem 1 of [17] follows from Theorem
3.7.

The next result extends Theorem 3.7 to a little more general algebraic
context.

3.10. THEOREM. Let J be a subsemigroup of S, such that J* =J. Let
B: S, — F(X) be a positive-definite function which satisfies the boundedness
condition. Then:

(I) The following two conditions are equivalent:
(i) there exists a Hilbert space H ever F, a function D: S, — L(X, H), a
x-representation n of S, on H and an operator Re L(X, H) such that

(37) (H, D, m) is a minimal propagator of Cg,
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(38) D(s)=n(s)R (seJ),

(39) (B(s)x, y> =(n(s)Rx, Ry)y (seJ, x, ye X);

(ii) there exists a function q: X — R, such that for all finite sequences
Sy, ---»S,€J and x,, ..., x,, ye X we have

(40) | Y (Bs)x, Y < q0) kZl (B(S} 51 Xi» X5
k=1 Jk=

(1) If (H, D, =, R) and (H', D', n’, R’) are two quadruples which satisfy
conditions (37), (38), and (39), then there exists a unique unitary operator
UeCL(H, H') which fulfils conditions (11), (12) and
(41) UL R = PR,
where P (resp. P’) is the orthogonal projection of H (resp. H') onto H,
=\/{D(s)X: seJ} (resp. Hy =\/{D'(s) X: seJ}).

Using arguments similar to those utilized in the proof of Lemma 3.4 one
can show the following: '

If J is a =-ideal of S, (ie, JS, =J and J* =J) and a function B: S,
— F(X) satisfies condition (ii) of Theorem 3.10 as well as the boundedness
condition with a scalar function M not identically vanishing on J, then B is
positive-definite.

Proof of Theorem 3.10. (I) The proof of the implication (i) = (ii) is
similar to that of Theorem 3.7, so we only have to prove the converse
implication.

(i) = (1) It follows from Theorem 1.2 that the kernel Cz has a minimal
propagator (H, D, n). By Lemma 3.1, n is a *-representation of S,. Since J
= J* is a subsemigroup of S, the space H; = \/ {D(s) X: seJ!} reduces all
the operators {n(s): seJ}. This implies that the function =n,: J — CL(H,)
defined by

n;(s)h=n(s)h (seJ, he H))

is a =-representation of J on H,. In the sequel D, stands for the function
from J into L(X, H,) defined by

D;(s)x =D(s)x (seJ, xeX).

Applying the first part of Theorem 3.7 to the restrictiou B, of B to J, we
obtain a minimal =-dilation (H’, R’,n’) of B,. Since (H', D', n’) and
(H;, D;, m,) are minimal propagators of Cg, (D'(s) = n'(s)R’, s€J), Theorem
1.2 gives a unitary operator Ue CL(H’, H,) such that UD’(s) = D,(s) and
Un'(s) = n;(s)U for each seJ. Denpte by R the operator from X into H,

2 — Annales Polonici Muth. XLVIILI
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defined by Rx = UR'x, xe X. Then we have
(B(s)x, v> = (By(s)x, 3> =(n"(s)R'x, R"y)y = (Un'(s) R x, UR’y)H',
= (my () UR x, Ry)y, = (n(s)Rx, Ry)y  (seJ, x, yeX).

Similarly we show that condition (38) is fulfilled.

Notice that the implication (i1) = (1) of Theorem 3.10 can also be proved
in the way we have used to solve problem 1° of Section 2 (define the
functional ¢, on H, by ¢,(D(s)x) = <(B(s)x, y), seJ, xe X).

The second part of Theorem 3.10 follows from the second part of
Theorem 3.7 via Theorem 1.2. We leave the details to the reader. This
completes the proof.

Observe now that using Lemma 3.3(1), Lemma 3.4 and Proposition 5.5
one can directly deduce Theorem 3.5 from Theorem 3.10 (put J =S, -S,),
without appealing to Theorem 2.2 (recall that Theorem 2.2 is not utilized in
the proof of condition (ii1) of Theorem 3.5). Summing up, Theorems 3.5, 3.7
and 3.10 are logically equivalent.

In the second part of this section we shall make some comments on the
kernel C canonically associated with a given F(X)-valued kernel defined on
an arbitrary semigroup S without unit. To make our considerations more
pellucid we shall replace the kernel C by a new one C; defined on a
supersemigroup T of S. As in Lemma 2.1, C is a PD kernel which satisfies
BC. Denote by S, the unitization of S (i.e, S; =Su {l},s'1 =1-s=s5, seS,
and 1-1 =1). Then the set T =S, xS, with the multiplication

(s, )(u, v) = (us, tv) (s, t, u,veS,)
and the involution
(S, t)* = (t, S) (S, teSl)

become a *-semigroup with the unit (1.1). Moreover, the map (—): S— T
defined by

(42) 5=(1,5) (seS)

is an injective semigroup homomorphism. Now let us fix a minimal propaga-
tor (H, D, n) of C and put n(1) = the identity operator on H and D(1)
= D(s,), where s, is an arbitrary element of S. Then we define a new kernel
Cr: TxT— F(X) by the same formula as in Lemma 2.1:
(Cr((s, 1), (u, V)X, y) = (m(* D(v)x, (s)* D(1) y)u
(s, t,u,ves,, x, ye X).

It follows from the definition that Cy is a PD kernel which has the following
two properties:

43) C(s,)=Cr(5, 0 (s,1tel),
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(44) Cr(as, 1) = Cr(5, u*1) (s, t,uef).

Notice that condition (44) is the restriction of the transfer property of
Cr to the subsemigroup § of T.

The existence of a PD kernel C; which satisfies conditions (43) and (44)
is closely related to the problem of the existence of closed densely defined
propagators. Namely, we have the following generalization of the Masani
theorem (cf. [10], Theorem 4.7, p. 430).

3.11. THEOREM. Let (H, D) be a minimal factorization of a positive-definite
F (X)-valued kernel C on S. Then the following two conditions are equivalent:
(i) there exists a family {n(s): seS} of closed densely defined operators in
H which satisfies the following two conditions:
(45)  the set | ) {D(s)X: seS} is contained in the domain of each operator of
the family {n(s): seS}u {rn(t)*: 1eS},

(46) n(s)D(ryx =D(st)x (s, teS, xe X);

(11) there exists a x-semigroup T, an injective semigroup homomorphism
(—=): S— T and a positive-definite F(X)-valued kernel C; on T which fulfils
conditions (43) and (44).

Proof. We only have to prove the implication (i1) = (1). Our prool is an
adaptation of the proof of the Proposition from [25], p. 253. For each se§
we define an operator 7, (s) on the linear span of the set {J {D(¢) X: re S} by

To(s) Y, D(t)x = Y. D(st)x,  (ty, ..., t,€8, Xy, ..., X,€ X).
k=1 k=1 :

All we have to prove now is the correctness of the definition of 7y (s) and the
validity of condition (45). Let (Hy, Dy) be a minimal factorization of Cy.
Denote by H' the Hilbert space \/ {D;(5) X: se S} and by D'(s) the operator
from X into H' which maps the vector x to D;(5)x for se S and xe X. Then
by (43), (H', D) is a minimal factorization of C. It follows from Theorem 1.1
that there exists a unitary operator Ue CL(H, H’) which (ulfils condition (5).
Thus by (43) and (44) we have

@) (Y Dstdx Y Dw)y)u=Y 3 <Cluy, sto)xe. v,
k=1 =1

k=1 j=1

n m

= Z Z <CT(~§*ﬁj: 1) X, J’j>=(z Dy (1) xy, Z Dr(g*ﬁj)yj')ur
k=1 i=1

k=1 j=1

=(X D'(tx, Pul Y Dp(s* ) y,))u
k=1 =1

=(i D(t) x,, U* Pu'(z Dr(5* ) y,)y

j=
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for all finite sequences ty,...,,eS, 4y, ..., UneS, X, ..., x,€X and
Vi, .-, Ym€ X, where Py stands for the orthogonal projection of Hy onto H'.
Now it-is easy to see that both the correctness of the definition of n,(s) and
condition (45) follows from equalities (47) and the minimality condition (4).
In particular, we have

"n(s)*D()x = U* Py Dy(s*t)x (s, teS, xeX),
where 7(s) stands for the closure of my(s). This completes the proof.

4. Applications. This section is complementary to the previous one. As
usual, through the whole section X stands for a vector space over F. We
start with the following generalization of the Arveson theorem (cf. [21],
Corollary, p. 880; [17], Corollary 1, p. 151).

4.1. THEOREM. Let S, be a x-semigroup without unit and let B be an
F(X)-valued function on S, which satisfies condition (i1} of Theorem 3.7. If
there exists a function p: X — R, such that

(B(s*s)x, x> < p(x)* (xeX, se8,),

then B is x-dilatable.
Proof. In virtue of Theorem 3.7 we only have to show that B satisfies
BC. Observe that

lim inf (B(t*(s* 2 )x, xD < liminfp(x)2 “<1 (s, teS,, xeX).

k—~ k—o

2-(k+1)

Thus BC follows from Theorem 1 (iii) of [19]. This completes the proof.

Representation theory of star algebras is the next area of our applica-
tions. First, recall some indispensable notions and definitions. Let </ be a
Banach star algebra without unit. A linear functional ¢ on &/ is said to be
positive if

p@*a)>0 for each ae «.

A non-zero linear functional ¢ on &/ is said to be representable if there exists
a complex Hilbert space H, a *-representation © of .& on H and a vector
he H such that

(48) ¢(a)=(n(@h, h)y (ae ),
(49) H=\/{n(a)h: ae }.

The following theorem gives necessary and sufficient conditions for
linear functionals on .o/ to be representable.

4.2. THEOREM. A non-zero linear functional ¢ on a Banach star algebra </
without unit is representable if and only if there exists 6 > 0 such that

(50) lp(@)*> < dp(a*a) (ac o).
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Theorem 4.2 can be found in the book of Bonsall and Duncan [2] (cf.

Theorem 37.11, p. 199). In their proof, the authors make essential use of the
self-adjointness of the functional ¢, ie.,

(51) oa*) =g (aco)

without any substantiation of that fact. Our proof, contrary to theirs, does
not utilize equality (51) at all. In other words, to prove the implication
(50)=(51) we must use Theorem 4.2 (condition (51) then follows directly
from the definition of the representability of ¢). As will be shown below, the
automatic validity of BC for positive linear functionals on Banach star
algebras guarantees the truthfulness of Theorem 4.2 and the implication
(50) = (51). Unfortunately, we do not know any direct proof of the implica-
tion (50) =(51).

Proof of Theorem 4.2. Let ¢ be a linear functional on &/ which
satisfies inequality (50). Then the functional ¢ is positive and, by Lemma 37.6
(iv) of [2], p. 197, fulfils

(52) ¢(b*a*ab) < r((a*a)’)'? (b*b) (a, be %),

where r(a) stands for the spectral radius of ae.&/. Now treating &/ as
a multiplicative *-semigroup and ¢ as a linear function from .« into F one
can infer condition (ii) of Theorem 3.7 and BC [rom inequalities (50) and (52),
respectively. Thus, in virtue of Theorem 3.7 (or Theorem 1 of [17], p. 150),
there exists a minimal x-dilation (H, R, =) of ¢. It follows from the Sz.-Nagy
dilation theorem (cf. [26]; [12], Proposition 2 (a), p. 29) that = is a linear
map. Take h = R1. Then the triple (H, h, n) satisfies conditions (48) and (49).
The converse implication is obvious. This completes the proof.

The next theorem is related to the Naimark dilation theorem (cf. [1];
[12], Theorem 4, p. 30; [16]; [29], Proposition 3; see also [4]; [5]; [13],
Proposition 2.1 and [8], Theorem 3.4). Here we consider set functions which
are defined on rings of sets. Recall that a ring # of subsets of a set  is not
assumed to contain Q (for the definitions of all related notions see [9]).

4.3. THEOREM. Let A be a ring of subsets of a set Q and let G: # — F (X)
be a set function which satisfies the following condition:

(53) for each xe X, {G(')x, x) is a finitely additive (resp. a-additive} non-
negative set function.
Then the following two conditions are equivalent:

(1) there exists a Hilbert space H over F, an orthogonal projection-valued
function E: #— CL(H) and an operator Re L(X, H) such that

(54) for each he H, (E(*)h, h)y is a finitely additive (resp. a o-additive) set
function,
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(55) E(AnB)=E(A)E(B) (A, Be®),
(56) (G()x,y>=(E(")Rx, Ry)y (x, ye X),
(57) H=\/{E(ARX: Ae %},

(11) there exists a function q: X — R, such that
G()x, x)<q(x)*  (xeX).

Proof. (i) =(ii) Since for each Ae R, E(A) is an orthogonal projection,
we can write

(G(A)x, x> =(E(A)Rx, Rx)g < ||[Rx|l (xe X).

(1) = (i) # with intersection as semigroup operation and the identity map-
ping as involution becomes a *-semigroup. Condition (53) implies that G is a
PD function (cf. [26]; [10], Lemma 5.6, p. 442; [12], p. 30), so it has a
minimal factorization (H, D). Now it is plain that for all finite sequences
Ay, ..., Ape® and x,, ..., x,, y¢ X we have

IZ (G (Ay) x, .V>|2 = | Z (G(ANA)x, ,V>|2 = |( Z D(Ay) xy, D(A)}’)H|2
k=1 k=1 k=1

<G(A)y, y> Y (G(4;n A) X, x>

Jk=1
n

<q? Y G(A;nA) X, x;D,

jk=1
where A = |J A,. Moreover, for all A, Be # and xe X
k=1

(G(BNANB)x, x)<{G(BNnB)x, x>.

Thus, by Theorem 1 (ii) of [25] (cf. also [19], Theorem 1 (ii)), G satisfies BC.
Now Theorem 3.7 implies that there is a minimal =-dilation (H, R, E) of G.
It is easy to see that E satisfies (55), (56) and (57). Condition (54) follows from
(53) via (57) (for this see [12], Proposition 2 (b), p. 29; [6], Theorem 2). This
completes the proof.

Notice that Theorem 4.3 can also be deduced from the Naimark dilation
theorem by extending the measure G to a new one defined on a suitable
algebra of sets (cf. [1], Theorem 1, p. 172).

5. Comments on minimality conditions. In this section we try to construct
minimal-dilation-type objects (such as factorizations, propagators and so on)
from those which are not assumed to satisfy a suitable minimality condition
(such as (4) or (15)). First we explain what we mean by factorization,
propagator and so on. Since all these notions come from the corresponding
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former ones simply by dropping the minimality condition, we shall present
only the definition of dilation. By a dilation of a kernel C: S xS — F(X), S
being a semigroup without unit, we mean a triple (H, R, n) which satisfies all
the requirements of the definition of minimal dilation except the minimality
condition (15).

The following proposition shows how to obtain minimal factorizations
and minimal propagators from given factorizations and propagators, re-
spectively.

5.1. ProrosiTiON. (I) Let (H, D) be a factorization of a kernel C: TxT
— F(X) defined on a set T. Denote by H, the Hilbert space \/ |D(t)X: te T|
and by Do: T— L(X, Hy) the function defined by Dy(t)x = D(t)x for teT
and xe X. Then (H,, Do) is a minimal factorization of C.

(II) Let (H, D, n) be a propagator of a kernel C: S xS — F(X). Denote by
mo: S — CL(H) the representation of S defined by my(s)h =n(s)h for seS
and he Hy. Then (Hy, Do, ny) is a minimal propagator of C.

Suppose we are given a kernel C: S xS — F(X). Let (H, R, n) be a
dilation of C which is not minimal. Then (H, D, n), where D(s) = n(s)R for
se S, is a propagator of C, and (H,, Dy, ny) defined in the same way as in
Proposition 5.1 is a minimal propagator of C. Denote by H, and H,, the
Hilbert spaces \/ {n(s)* Ho: se S} and \/ {no(s)* Ho: se S}, respectively. In
the sequel Py, P, and P, stand for the orthogonal projections of H onto
H,, H, and H, , respectively. Observe now that if there exists an operator

Re L(X, H,) which satisfies
(58) no(s)Rx =n(s)Rx  (seS, xeX),

then (Ho, R, m,) is a minimal dilation of C and so C is dilatable. The natural
question arises whether a kernel C which has a dilation is always dilatable.
The answer is negative in general (see Example 5.4).

Suppose now that a kernel C is dilatable. Then (see the proof of
Theorem 2.2) there exists a unique operator Roe L(X, H, ) such that

(59) (ﬂo(S)*n(f) RX, RO y)H"O = <C(S> t) X, y> (Sa IESa X, yEX)
and
(60) To(S) Rox = Dy(s)x =n(s)Rx (se§, xe X).

This means that in this case there always exists an operator R« L(X, Hg)
which fulfils condition (58).

The next proposition gives necessary and sufficient conditions for an
operator Re L(X, Hy) to satisfy equalities (58).

5.2. PROPOSITION. Suppose that a kernel C is dilatable. If Re L(X, H,),
then the following three conditions are equivalent:
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(1) the equality (58) holds true,

(i) P, Rx = P, Rx (xe X),

(iii) P, Rx = Rox (xeX).

Proof. (i) = (ii) Condition (58) implies that
(P, Rx— P, Rx, n(s)* m(1) Ry)u,

= (Rx, m(s)* m(t) Ry)y — (Rx, m(s)y* m(t) Ry)y
= (mo(s) Rx, m() Ry)y, — (n(s) Rx, m(t) Ry)y = 0
for all s,teS and x, ye X. This means that (i1) holds true.
(i) = (i) Condition (i) yields
(61) (mo(s)* m() Rx, Pog Ry}, = (mo(s)* m(t) Rx, Ry)y,
= (Pom(s)* n(2) Rx, Ry)ﬂo
= (m(s)* n(t) Rx, ﬁy),,
= (n(s)* n(t) Rx, Ry)y = {C(s, )x, y>

for all s,teS and x, ye X. Comparing equations (61) and (59), we obtain
condition (i1i).
(1) = (1) Since the null space of the representation m, is equal to
H,©H,,, conditions (60) and (ii1) yield
no(s) Rx = 7o (8) Pay Rx =mo(s)Rox = n(s)Rx  (seS$, xe X).

This completes the proof.
Proposition 5.2 can be rewritten in a slightly modified version.

53. ProrosiTioN. Let (H, R, n) be a dilation of C. Then the following
three conditions are equivalent:

(i) there is Re L(X, Hy) such that equality (58) holds,
(i) there is Re L(X, Hy) such that P,R = P_R,
(i) C is dilatable.
Proof. We only have to prove (ii) = (iii). It follows from (i1), via (61),
that '

’

(62)  <C(s, )%, y> = (Mo (s)* Do (1) X, Py Ry)u, (5. 1€, x, ye X).
Since (Hy, Do, mo) is @ minimal propagator of C, one can show that equality
(62) implies inequality (22) with q(y) = ||P,, Ryll, ye X. In virtue of Theorem
2.2 the kernel C is dilatable. This completes the proof.

Now we give an example of a non-dilatable kernel which has a dilation.

54. ExaMpPLE. Let S be the additive semigroup of all natural numbers n
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> 1. Let H be an inifinite-dimensional separable complex Hilbert space with
an orthogonal bases {h,}< ;. Denote by V the unilateral shift of multiplicity
one on H related to {h,}>, (i.e, Vh, = h,,, for n > 1). Now let us define an
F (C)-valued kernel C on §, an operator Re L(C, H) and a representation =
of S on H by

fn#m

i (m, neS, a, BeC),
if n=m

(Cln, mya, By = {:B

Ra =ah; (aeC), =n(n)=V" (nel).

Then (H, R, m) is a dilation of C (C is a PD kernel which satisfies BC). Since
V*¥h,,y =h, for n>1 and V*h; =0, we obtain H, = H,, = HOCh, and
H, = H. Therefore P,, = P, and P, = the identity operator on H. Suppose
for a while that the kernel C is dilatable. Then there exists an operator
Re L(C, Hy) which fulfils condition (58) with X = C. Thus, by Proposition
5.2 (i), h, = R1 = R1e H,, which contradicts the condmons h, 1L H, and
||h4]l = 1. This means that C is not dilatable.

Let (H, R, n) be a dilation of an F(X)-valued kernel C on S. Denote by
% the class of all operators Re L(X, H,) which fulfil condition (58). The
next proposition describes that class with the aid of the space
L(X, Hy©H,,).

55. ProrosITION. Suppose that Z,#®. Then the function
Y: L(X, Ho©OH, ) — 2, which maps an operator W to Ro+W for
WeL(X, Ho©H,y) is correctly defined, one-tozone and onto.

Proof. We first show that ¥ is correctly defined. Indeed, since
H,©oH,, L H,, we have for each We L(X, HoOH,,)

P,(Rox+Wx)=P,Rox=P,Rx (xeX).

In virtue of Proposition 5.2, y(W)e 2, for each We L(X, H,©H,).

It is plain that ¥ is one-to-one. To prove that ¥ is onto, take Re 2,.
Then, by Proposition 5.2, we have

Rx =P, Rx+P,Rx=Rox+P,Rx (xeX),

where P, is the orthogonal projection of H onto HOH,,. Thus R=y W)
with a suitable We L(X, Ho©OH, ).
This completes the proof.

In general, Propositions 5.2 and 5.5 do not give any simple method of
constructing operators of class 2,. In the sequel we shall consider the
following two cases when these propositions allow us to describe 2, with the
aid of the operators R and P,.

(a) S has a unit e and n(e) = the identity operator on H.
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(b) S is a *-semigroup (with or without unit) and = is a x-representation
(equivalently, (H, R, m) is a =-dilation of C).

Notice that in both these case the kernel C is dilatable and so %, # Q.
It is obvious that in the first case H,, = H, = H,, hence ¥, =R. In the
second case H, = H, < Hy. Since Hy = \/ in(s)RX: seS,], one can show
that Hy =\/ {n(s)RX: seS,} = H, (see the proof of condition (iii) of The-
orem 3.5). Thus by Proposition 5.2, 2, = {PoR}.

The next proposition can also be proved independently on Proposition
5.2 (cf. [18], Proposition 1).

5.6. ProposiTION. Let (H, R, n) be a *-dilation of an F (X)-valued function
B deﬁlted on a x-semigroup S, without unit. Then the space H, reduces m and
(Hgo, Ry, mp) is a minimal x-dilation of B, where R, is defined by Ry x = Py Rx
for xe X.

We can sum up the results of Section 5 as follows:

1° If a kernel has a factorization (resp. propagator, *-dilation), then it
always has a minimal factorization (resp. minimal propagator, minimal
x-dilation).

2° If a function has a =-dilation, then it always has a minimal x-dilation.

3° Unlike 1° and 2°, there exist non-dilatable kernels which have dila-
tions.

AppENDIX. We state here a version of Theorem 3.7 whose the generaliz-
ation of (I) has been done in Remark 3.8.

THEOREM A. Let B be an F(X)-valued function defined on a *-semigroup
S,. Suppose that B satisfies BC. Then for each N =1 the following two
conditions are equivalent:

(i) B is *-dilatable,

(i)y there is a function q: X — R, such that inequality (36) holds for each
nz2 and for all finite sequences xy, ..., X,, ye€X, Sy, ..., S,-1€8Y and
Sn€ Sa \(S3).

In order to prove Theorem A we need two lemmas.

LEMMA A. Let (H, D, n, R) be a system which satisfies conditions (37),
(38) and (39) of Theorem 3.10 with J:=S;. If RX c H;:=\/D(J) X, then

@) H=\/n(S,)RX = H,,

(i) D(s) = n(s)R (seS,).

Proof. It follows from Lemma 3.1 that = is a x-representation of S,.
Therefore the Hilbert spaces H,:= \/=n(S,)RX and H, reduce m to the *-
representations m,: S, = CL(Ho) and =n': S, — CL(H,), respectively. This
and equality (38) imply H, =\/{D(st)X: s,teS,} =\ \n(st) RX:
s,teS,) ©Hy. Since RX < H, and H; reduces n, H,=)\/n(S,)RX
< Hy. Thus
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(63) Ho = HJ.
Denote by D’ the [unction from S, into L(X, H;) defined by
(64) D'(s)=n(s)R (seS,).

It follows from (39) and (63) that (H,, D’) is a minimal factorization of Cjg.
Since (H, D) is another minimal factorization of Cp, Theorem 1.1 implies the
existence of a unitary operator Ue CL(H,, H) such that

-(65) UD'(s)=D(s) (se8,).
Using (38), (64) and (65) we obtain
(66) UD(Gs) =Un(s)R=UD'(s) =D(s) (seJ).

Since the set {D(s)x: seJ, xe X} is total in H,, equalities (66) give Uf = f
for each fe H,. Thus H=UH,; = H; and so U = Iy = the identity operator
on H. In particular, (64) and (65) imply (11). This completes the proof.
LEmMMA B. For each N = 1, if B satisfies BC and (ii)y, then B is positive-
definite.
Prool. It follows from (i1)y that

(67) [<B(s)x, y)I* < q(»)* <B(s*s)x, x)  (seS$,, x, ye X).

Thus if g =0 then B = 0. If g # 0 then there is yoe X such that q(y,) > 0.
Substituting y = y, into (ii)y, one can show that the restriction By of B to S¥
is PD. Let M be the scalar function appearing in the definition of BC. If M
=0 then (B(s*s)x, x> <0 for all seS. and xe X. Thus, by (67), B(s) =0
for each se SZ. Using again (67) we infer B = 0. If M # 0 then there is to€ S,
such that M(t,) > 0 and

M(lo)z (B(s§ s) xp, x, >— Z (B(sgt8tos) x;, x,» =0
k.1 Py

for all finite sequences s,, ..., s,€S, and x,, ..., x,€ X. The above inequality
can be used to obtain the following implication:

(68) If B,, is PD then B,_, is PD (m > 2).

Since By is PD, an application of (68) gives the positive-definiteness of B
= B,. This completes the proof.

Proof of Theorem A. In virtue of Lemma B we can assume that B is
PD. Let N, := 2" for m > 0. It is enough to prove the implication (ii)y_ = (i)
for each m > 0. The case m =0 is covered by Theorem 3.7. Suppose now
that the implication (ii)y,, = (i) holds for every PD function which satisfies
BC. We have to prove the implication (ii)y_, , =(i). Let B be a PD function

which satisfies BC and condition (ii)y,,, ,. Denote by J the *-ideale,‘ Then
B satisfies inequality (40) for all finite sequences x,...,x,, yelX,
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S1y ooy Spot eJ"™ and s,eJ. Applying the implication (i)y =(i) to the
restriction B, of B to J we infer the x-dilatability of B,. Now we can use
Theorem 3.10 to obtain a system (H, D, n, R) which satisfies all the assump-
tions of Lemma A (the operator R constructed in the proof of Theorem 3.10
always satisfies the condition RX < H,). Thus (H, R, ) is a minimal *-
dilation of Cgz. To prove equality (34) we can proceed in the same way as in
the proof of the implication (ii) = (i) of Theorem 3.7. But now we have to use

the equality H = \/n(S:"'“)RX and condition (ii)y_ . This completes the
proof.
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