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Dedicated to the memory of Jacek Szarski

Abstract. Let k& be a positive integer and let ¥,, ..., ¥ be purely k-dimensional
analytic subsets of an open set Q2 < C" In this paper we present certain theorems
on the continuity of the mapping

N: (Vs oot Vi) > V3 0o OV

As simple consequences we obtain the Hurwitz theorem and the theorem on
injectivity of the limit of a sequence of injective holomorphic mappings f,: 2 — C=,

1. Topology of local uniform convergence. Let X be a metric space.
Let # x be the family of all clgsed subsets of X. We endow Fx with the
topology J x generated by the sets

U8, E) ={FeFy: FnK =0, FAU + @ for UeS)

corresponding to all compact subsets K < X and all finite families S of
open subsets of X. We call this topology the topology of local uniform
convergence.

A simple argument shows that if X, Y are metric spaces, then f:
X — Y is a homeomorphism if and only if the mapping Fy> F — f(F)
€ Fy is a homeomorphism.

Now, F, — F will denote that F is the limit of the sequence {F,}
in the above topology. An immediate consequence of the definition is

LevvA 1. If F, F,e Fx, v =1,2, ..., then the following statements
are equivalent:

(1) ¥, > F;

(2) for every x € F there exists a sequence w,eF,, v =1,2, ..., such
that x, — x (in the topology of X) and for every compact subset K = X\F,
F,nK + O for at most finitely many indices v;

(3) for every x € F there exists a sequence x,eF,, v =1,2,..., such
that ¢, — x, and for every x ¢ F there exists a neighbourhood U of x such that
F,nU # O for at most finitely many indices v;
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(4) for every z € F, and for every neighbourhood V of z, F,nV =@
for at most finitely many integers v, and for every x ¢ F there exists a neigh-
bourhood U of x such that F,nU # O for at most finitely many indices ».

COROLLARY 1. Let X, Y be two metric spaces and suppose that mappings
ff,: X =Y, »=1,2,..., are continuous. If the sequence {f,} converges
uniformly to f on compact subsets of X, then f, —f in the topology T xyy -

If X is a compact metric space, then the topology 7 5 can be intro-
duced by the classical Hausdorff metric in & 5 defined by

0 for A =B =0,
dist (4, B) = { max{maxdist (v, B), maxdist(x, 4)} for A #0, B #0,
zed xeB )
diam X +1 in other cases.

In this case & 5 is a metrizable compact space (cf. [3], p. 58).

In general, we have

LEMMA 2. Let X be a locally compact, second-countable metric space.
Then Fx is a metrizable compact space.

Proof. Let Y be a compact metric space and A: X — Y be a mapping
such that h(X) is an open subset of ¥ and h: X — h(X) is a homeomor-
phism. (For example we can take as Y a one-point compactification of
X and for & the identical embedding.) It is easy to see that the mapping

P: Fya3 F b (Fnh(X))eFx is continuous

and that the set o = [FeZy: Fo (Y\h(X))] c #, is compact.
The restriction resp: J# — % y is a continuous bijection defined on a com-
pact space onto the Hausdorff space # x. Hence " and & y are homeomor-
phic. This concludes the proof of Lemma 2.

2. Continuity of intersection. Let 2 be an open subset of C* and let
T o be the topology in &, described in Section 1, fcr X = Q. By &,(9)
we will denote the subset of &, consisting of all purely p-dimensional
analytic subsets of £2. We will suppose that @ e &, (2) for p = 0,1, ..., n.

PrOPOSITION 1. Suppose that L is an affine (n—k)-dimensional
subspace of C*, 0 < k< m, F € F,, 2, 18 an isolated point of F nL. Let U be
an open mneighbourhood of z, such that U < 2, U is compact, UnLnTF
= {%}. Then there exists a neighbourhood Uy € I o of F such that

1< FLnUNnV)< oo

Sfor every purely k-dimensional analytic subset V of 2 belonging to Ug.
Proof. If k¥ = 0, then L = C" and it suffices to take %, = #({U},
oU).
If & = n, then L = {2}, %, = %({2,}, D), where 2, is the component
of £ such that z, € Q,.
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Let us fix 0 < k¥ < n and assume that 2, = 0. Let X be a k-dimensional
vector subspace of C" such that C* = X + L. Obviously, there exist two
open connected neighbourhoods Uy, Uy of 0 in X and L, respectively,
such that (Ux+0U)nF =0, U,nF = {0}, Ux+U,< U. Let us
define

Up:= U{Ux+ U}, ﬁx'*" oUL),
and let p be the restriction of the projection X+ Lsx+y — o € X to the
set Ux+ Uy and let V be a purely k-dimensional analytic subset of €.
If Ve%y, then p|,: V — Ugx is proper. Sinee V n(Ux+ U) is a purely
k-dimensional analytic subset and p|, is a proper mapping to an open,
connected subset of C¥, it follows that
ply: V—>Ux

is a finite-sheeted branched covering of Uy (cf. Chapter ITII, Section B of
[1], especially Theorem 21). Hence
1S H(@@ly)(0) = FLnU,nV)S H(LnTAV).

Since (FnoU)nL =@, FnoU is compact and L is closed, there exists
an open set G o F noU such that G nL = @. Let us write

% = (0}, (5U\G))

and let ¥V be a purely k-dimensional analytic subset of Q. If V e %%,
then LAU NV = LnUnV.Hence L n U7V is a compact analytic subset
of U. Then it must be a finite subset of U. Therefore, it suffices to take
Uy = Uy Uy -

Now, keeping 2 as before, we shall prove the following

TuEOREM 1. Let us suppose that

(1) F,, ..., F, are closed subsets of 2 and z, is an isolated point of
Fon...nFy

(2) U is an open neighbourhood of z, such that Uc 2, U is compact
and Un(Fin ... nF,) = {2}

Then there exist neighbourhoods Ugys -y Up, (in topology T o) of the
sets F,...,F,, resgectz’vely, such that the condition Vjed,zj(Q)nﬂZIFj,

j=1,..,k and > d; = (k—1)n implies
=1

7

1< HF(Vin...aV,nlU)< oo,

Proof. Straightforward computation with use of Lemma 1 (3) yields
that the mapping

P: FoX oo XFg3(Xy, .., Xp) > XX oo XX €F gy xo

is continuous.
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If we set 4, = {(2,...,2) €(C*)*}, then ze X;n ... n X, < (2, ..., 2)
€(X; X ... xX)nA4,. Since the mapping"

Ot C"32 —>(2,...,2) € 4,

is a homeomorphism, the point (z,, ..., 2,) is an isolated point of (¥, X ...
. XF,)nd, = FnAd,. Let U, be an open neighbourhood of (z,, ..., 2,)
in Q% such that

10 ﬁkc .QX ses X.Q;
2° U, is compact;
30 ﬁknAk = ak(U) and UkhAk = 6k(U)o
Then ﬁk ﬂAk ﬁF - 6k(U) nF = 5k([7ﬁF1ﬁ coe an) = 6k(z0)o
follows from Proposition 1 that there exists a neighbourhood % of F'y X ...
. X F,, (in the topology 7 4 ... xq) such that

for every V e .szi(,,_l)n(!?") N %y . Since the mapping P is conti.nuous, there
exist open neighbourhoods #%p, ..., %y, of Fi; ..., F,, respectively,
such that

P(%FIX “es X%Fk) c O”F.
Let us now suppose that Ve, (Q)nﬂlle for j =1,...,k and

Z d; = (k—1)n.Then V = V,; X ... X ¥V, is a purely (k —1)n-dimensional
j=1
analytic subset of 2 and V € %. Hence

H(Vix oo X V) nd,aTy)

= F(5HVaxX oo XV n T} = #F(Van o0 Vin 67 (Uy)
= %(Vlﬁ---nvan>-

Therefore 1 < F(Vin...nV,nU)< .

Let 2 be an open subset of C" and let F be a closed subset of Q.
Let 2z, e F. We call z, a t-proper point of F, te{0,1, ..., n} if there exists
an affine (n» —t)-dimensional subspace of C" such that z, is an isolated
point of LnF.

THEOREM 2. Let us suppose that

(1) ¥y, ..., B, are closed subsets of £2;

(2) 2, is a t-proper point of () F;, and L is an affine (n —1)-dimensional
j=1
subspace of C™ such that z, is an isolated point of Fyn ... nF, N L;
(3) U 1is an open neighbourhood of z, such that U c 2, U is compact
and UnFin ... nFynl = {z,).
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Then there ewist neighbourhoods %g , ..., Uy, of the sets Fy, ..., Fy,
respectively, such that if V; € .sz/dj(Q) N %Fj for 3 =1, ..., k, then the equality
k .
t = ) d;—(k—1)n implies that

i=1
1< F(Vin...nV,nUnL)< oo.

Proof. Applying Theorem 1 to ¥y, ..., F, Fy,, = Land V,, ..., V,,
V41 = L we get the required result.

Now we state the theorem on the continuity of intersection.

THEOREM 3. Let Vye oA,(2), WoedA (Q) and p+q=n. If VinW,
€ Ay q-n(2), then the mapping

Nn: Ay ()X A ()3 (V, W) >V aWeF,

8 continuous at the point (Vy, W,).

Proof. Let V, e, (2), W,e«,(2) be two sequences such that
V,—>V, and W, —> W,. It has to be proved that V,nW, -V ,nW,.

Letusfixz ¢ VonW,. Then 2 ¢ V,or v ¢ W,. By Lemma 1 (4) there
exists an open neighbourhood U of # such that V,nU # Q3 or W,nU # @
for at most finitely many indices ».

Then (V,nW,)n U #* @ for at most finitely many indices ».

If xe VonW,, then it follows from the local analysis of analytic
sets (see e.g. [1], [4]) that z is a (p + ¢ —n)-proper point of Von'W,. Let
U be an open neighbourhood of z. It follows from Theorem 2 that there
exists v, such that UnV, AW, # @ for every » > v,. |

Therefore by Lemma 1 (4) we get V, AW, - V,nW,.

As an immediate consequence of Theorem 3 we obtain

COROLLARY 2. Let W be a purely q-dimensional analytic subset of

Q.If Voed,(2), ptag=n and VoW e, 4 ,(82), then the mapping

Ay(2)3V >V aWeFy,

s continuous at the point V,.

TIIEOREM 4. Let T be a topological space and let 2 be an open subset
of C". If t, €T and

g: Tx Q3 (t,2) >g(t,2) =g eC" (m<n)

18 a continuous mapping such that

(1) for every teT, g,: 2 — C™ is holomorphic,

(2) 951(0) € (),
then the mapping T 3t — g;7'(0) € F, is continuous at the point t,.

Proof. It is casy to sce that the mapping ¢: Tst—>gte.¢gxcwn
is continuous.
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By Corollary 2 the mapping
v: A (2XC™)3V >V n(R2X{0})eFau = Fo
is continuous at the point g, . Therefore ypogp: Tat—>g;'(0) e #, is
continuous at the point i,. .

Let us end with three corollaries.

COROLLARY 3. Let T be a topological space and let 2 be an open subset
of Ct. If tyeTya,e RQand g: T X 23 (t,2) > g,(2) eC™ (m < n) is a con-
tinuous mapping such that

(1) for every t e T, g, is holomorphic in 2,

(2) gt-ol (gto (ao)) € dn—m(g)y
then the mapping T x 25 (t, a) — g;*(g,(a)) is continuous at (ty, a,).

Proof. To prove this let us define the mapping

(Tx Q)x 22 ((t, a), 2) > g,(2) —gi(a) e C™
and observe that all assumptions of Theorem 4 are satisfied.

COROLLARY 4 (Hurwitz). Let 2 be an open subset of C". Suppose that
. f: 2-C" (m<n), v=1,2,..., are holomorphic mappings. If the
sequence {f,} converges to f, uniformly on compact subsets of 2, and if {~*(0)
€ Lpm(R), then f,7(0) - f71(0).

Proof. If we set ' = {0}u U {1/»} and
y=1

g: Tx Q> (t,2) > e fort=1fy,
f(z) fort =0,
then we see at once that Corollary 4 is a simple consequence of The-
orem 4.

COROLLARY 5. Let 2 be a domain in C". Let {f,} be a sequence of holo-
morphic injective mappings. Suppose that f converges uniformly on compact
subsets of 2 to a holomorphic mapping f: 2 — C™. Then the following three
properties are equivalent:

(1) f 18 imjective;

(2) f is open;

(3) Intf(£2) #= 9.

Proof. (1) = (2) = (3). Obvious.

(3) = (1). By Sard’s theorem, there exists 2z, € 2 such that detf’(z,)
# 0. Since f, are injective for » = 1, 2, ..., then by Osgood’s theorem
detf,(z) # 0 for all » and all z € 2. Hence, using Corollary 4 (see also [2],
p. 80), we obtain that detf’(z) # 0 for all z € 2. Therefore f~ (f(a)) € #,(L2)
for all @ € 2. This enables us to use Corollary 4.

Let us suppose that there exist two points a, b € 2, @ -+ b, such that
fla) = f(b). Applying Corollary 4 to the sequence {f, —f(a)} we get that
f, is not injective for sufficiently large ». This contradicts our assumption.
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