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Existence, uniqueness and continuous dependence for a hereditary
nonlinear functional partial differential equation of the first
order *
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Abstract. We consider a class of hereditary equations which contains many functional
differential equations of retarded type.
This hereditary equation is defined as follows:

A z(x, Y =fxy: TV(x, y;2),..0, TV, y5 2)5 2,(x, ), (x, el =[0, a] xR,

where f is a given real function and T® (i =1, 2, ..., r)is a continuous operator with the property
(*%) sup TP, y;2-TO& yiDI<SL sup  |z(& »)—-Z( )
E.el(0.x} x R &.pel0.x) xR

Under condition (=) the operator is of the Volterra type and the equation has a hereditary
structure.

We prove theorems of existence, uniqueness and continuous dependence for the Cauchy
problem of equation (A).
A quantitative estimate on the domain strip of the solution is given.

1. Introduction. Continuing the study begun in [3], in this paper the
following Cauchy problem is considered:
) 2e(x, ) = f(x, y; TV (x, y; 2), ..., T(x, y; 2); 2,(x, y)) on I,
T»
z=40 on Io,

where f and ¢ are given real functions and I, = {(x, y): po < x <0, yeR}
with —00 < po <0, I ={(x,y): 0<x<a, yeR}.

The operators T®: I xC (I, ul) - C°(E,) are continuous functions with
the property
(«) sup |TO¢, y;2-TO¢, y; <L sup |z(& »)—Z(&, )

& »el0,x] xR &.ye(0,x] xR
for every xe[0,a], z,ZzZeC( ), i=1,2,...,r, where E; is a compact
* This resecarch has been carried out within the Gruppo Nazionale per [I'Analisi

Funzionale e le sue Applicazioni del Consiglio Nazionale delle Ricerche.
** Dipartimento di Matematica Universita degli Studi di Perugia, 06100 Perugia, Italy.
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topological space and C(Iow i) is a subspace of C° (with topology of
uniform convergence on compact sets).

Under condition (=) the operators are of the Volterra type and problem
(r) is hereditary since the present behaviour of the system depends in some
way on its past history.

Many authors have studied particular formulations of problem (t) while
conserving its hereditary structure. For ordinary functional equations we
simply cite [6]-[9], while for partial functional equations [2], [3], [10]-[15],
[17], [18] are cited.

The operator T contains as particular case the functional T(x, y; z)
= z(x(x, y), B(x, y)) which has been considered in [2], [3], [10], [11] hence
the unretarded case, a(x, y)=x, f(x,y) =y, which has been widely
studied in the literature. Moreover, the integral operators T(x, y; z)

= [ flx.y.s 1, z(a(s, 1))dsdr (see [14], [15]) and operators with range

H(x,y)
contained in the subspace of C°(E;) made up of constant functions [13] are
particular formulations of the functional T here considered.

In this paper existence, uniqueness and continuous dependence theorems
are given for problem (7).

As in [3] for a particular case, a sequence of Cauchy problems (z,) for
the equation p = f(x, y; q) without functional argument is associated with
problem (7). To resolve each problem (z,) in uniqueness solution hypotheses,
we chose a theorem stated by Baiada [1] from among the numerous
existence theorems available in literature, because it provides a quantitative
estimate on the domain strip of the solution z, in relatively non stringent
hypotheses.

In Section 4, we prove that, definitely with respect to n, the z, surfaces
admit the same domain strip. Considering this, a solution of problem (z) is
determined as surface limit of the sequence (z,),.

Our hypotheses, while continuing to assure continuous dependence and
uniqueness of solution (see n° 5), are less stringent than those given in [10}-
[14] (see n° 6), while the quantitative estimate on the domain strip of the

solution is not generally comparable with the estimates given in the quoted
notes.

2. Assumptions and definition of the problem. Let G be a given topologi-
cal space, and let C°(G) be the space of all continuous real functions on G
endowed with topology of uniform convergence on compact sets.

If G is a subset of R? let C!(G) = C°(G) be the topological subspace of
all surfaces z(x, y) of class C! in G whose partial derivatives 0z/x, dz/dy, are
bounded and Lipschitzian.

In the following &(G) will denote the set of all classes of functions
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belonging to C' whose derivatives are uniformly bounded, and &;,(G)
denote the subset of £(G) of all classes of surfaces whose derivatives satisfy a
uniform Lipschitz condition.
Given r compact topological spaces E;, i=1, 2, ..., r, and denoted by
=%, 9):0<x<aqa, yeR)}, lo=1{(x,y): pp<x<0, yeR}, —~© <po <0,
let (') T: IxCl(Ioul)—-C°(E), i=1,2,...,r, be r operators satisfying
the condition
(x) for every Xe[0, a], there exists a set H.c(Joul)n((— 0, X] xR)
such that if z; =z, in H, then TY(x, y; z,) = TY(X, y; z,) for every
i=1,2,...,r.

In the present paper we seek a solution z: Ioul — R of class C} of the
following Cauchy problem

;

0
iZ(x, y) =f(x. y; TV(x, y52), ..., T"(x, y; 2); 3-z(x, ») ) on I,
0x oy
(t)
zZ = (D on lo,
where the functions f, ¢ are given.
We denote by Q the set
(x, ¥;21,..,2,;9): 0<x<a, yeR, z;e C°(E), i=1,2,...,r, |gl < S!,
S < 4+, and by f: Q — R a function verifying these two requirements:
(f,) [ is continuous in Q and Lipschitzian in x of constant(®) H;
(f,) the partial derivatives(*) f,,f,: 2—R, f.: Q—CL(C°(E).R), i

=1,2,...,r, are Lipschitzian in y, z =(z, ..., z,), g of constant K,
and bounded by a constant L, in Q, with L, <K,, w=y, z.q.

Moreover, we assume that

(i) the function ¢: Io— R is of class C' in I,; the partial derivatives ¢,,
@, are bounded by constants G, N, respectively, and Lipschitzian in x
of constants C, D and in y of constants D, M, respectively;

(2i)) the operator TYV: I xC}(Ioul)— C%E), i=1,2,...,r is continuous
in I xC'(Ioul), Lipschitzian in x in each class % belonging to

(') We will denote the norm by || in every normed space.

(2) For simplicity’s sake. we suppose f is bounded in by a constant G.

() Given two normed spaces X and Y, we denote by CL(X, Y) the set of all continuous
lincar mappings from X to Y, and by f,: #F - CL(X, Y) (f: # =Y, weX) the Fréchet
derivative.
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&(Ioul) and satisfies the property (%)
(»*)
sup  [TOE, y;z)—TE, y;z)l S L sup  I2,(¢, 1)~z (¢, y)l
5»)el0,x] xR Eel0,xj x K
for every xe[0, a] and z,, z,eC} (I, U I);

(3i) the function T\: (IxCl(Ioul))= CL(R,C°(E)), i=1,2,...,r, is
bounded in every class belonging to &(I,uI) and Lipschitzian in y in
every class belonging to &, (I, ul);

(4i) the following consistency condition is satisfied

0 0
3, 90,9 = f(O, y; TR0, y; 9), ..., T?(0, y, #): 50 (0, y))-
X Y

Remark 1. As we set out, to establish a local existence theorem of problem
(1), it is necessary to define the operator TV¥, i =1, 2, ..., r, in the domain
(JxClUouJ)) for every J =[0,d] xR, 6 <a. With this aim, for every
(x, y:z)e(J xCl (IouJ)) we define T(x,y;z)=T(x,y;Z), where 7 is an
extension of z to the strip I, U [ in class C}. This definition is valid in virtue
of property (*) on the operators.

Moreover, extension operators z — Z exist which map every subset %,

F < \J 4} (I, uJ), made up of surfaces with uniformly bounded derivatives
Jel

in a class belonging to &(I,u I) and which also map every subset of # of
functions whose derivatives satisfy a uniform Lipschitz condition in a class
belonging to &, (Io U ).

Let us consider, for example, the extension

z(x,y) if (x, nelauld,
y+(x+8)/2
(@ Z(x, ) =1 4z(6, y+(x—8)y2)+32(6, y—(x=8)/2) + | z.(8, nar

y—(x—4a)/2

if (x, yye[d, a] xR

for every zeCl(IouJ).

3. In the present section we apply Baiada’s existence theorem [1] to the
Cauchy problem for the equation p = f(x, y; zq, ..., 2,, q) and we give a
continuous dependence of solution theorem for it.

THEOREM 1. Let f and ¢ be under the same hypothesis as Section 2, and let
z;: 1 - C°(E;) be r given functions satisfying the conditions:

(%) Property (=+) is more stringent then requirement ().
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(b,) each functions z; (i =1, 2, ..., r) is continuous in I, Lipschitzian in x of
constant P and differentiable with respect to y at every (x, y)el:

(by) for every i=1,2,...,r, the Fréchet derivative &z;/3y: 1 —
CL(R, CO(AEi)) is bounded by a constant F and Lipschitzian in y of
constant W.

Under these hypotheses, there exists a unique solution z of the Cauchy problem

0 . I
*é;Z(X, y) —f(x’ Y zl(x’ y)s IRRE] ‘r(x’ y)’ayZ(x, y)) on I’

()

z=Q on I,.

Through a direct method of approximation taken from E. Baiada [1],
we established that such a solution exists and that it belongs to class C! in a
suitable strip {(x, y): po < x <, 0 <d<a, yeR} that we denote, for
brevity’s sake, again by I,ul.

Considering the substitution

x=mX, y=/.mY,

where 4, m are positive constants, im < 1, and putting
X, Y)y=z(mX, imY)=z(x,y), ¢*(X,Y)=o(mX, imY)=0(x, y),
X, Y)=Zz;(mX, imY)=Z;(x,y) (i=1,2,...,r),

f*(Xa Y’ 219 --'sfr; Q)=mf(mX, imY,zla caey Z,; 1 q)

z —
" Am

we associate with () the problem

i. * —_ 'k . ok * a *
X =1 (X, Yozt (X, ¥), o 2 (X, V), 522 (X, )

(B) on I*={(X,Y): 0< X <a/m, YeR},

z* =(p* on I¥ = {(X, Y). Po/msms XSO& YER}'

Each solution of problem (f) gives a solution of problem () and vice
versa.

As a consequence of the substitution, a function on I§uI* and
constants G*, N*, [}, ... correspond in a natural way to every function on
Iou [ and relative constants G, N, L, ...

Studying problem (f), it is possible to suppose that the following
inequalities hold, by a suitable choice of the constants A and m and by
eventually reducing the constant a and therefore the strip I,
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(1) rIEW* <=4, (1+rF*+ M*+a%) (K2 +rK* F* + K3 (M*+a%) < }.

As shown in [3], under the further Lipschitz condition on the function f
with respect to x with the constant H, the solution z* of problem (p') satisfies
the conditions

IZ: (X! Y)—Z: (X—s ?)I
< [3(M* +a*)+ 3 (I + r I F* + I (M* + a*))+ H* +rI% P*] | X - X|
+[3(M* +a*)+ I+ L% F*+ [ (M* +a%)]|Y- Y],

2) _
123 (X, Y)—z} (X, Y)|
< [M* +a%) + I% + r 1L F* + I (M* +a*)] | X — X|+(M* +a%) |Y- T,
22X, VI <G*,  |z8(X, Y) < N*+a*

for every (X, Y), (X, Del*
The surface z, a solution of problem (f), belongs, theretore, to class

ProrosiTioN 1. Having fixed an integer n, n=0,1, ..., let ¢,: Io— R
ard f,: Qo— R, Qo ={(x,y, 2, q): xe[0, a], y,zeR, |ql <S}, be functions
satisfying conditions (i), (41) and (f), respectively.

If @,— @o and f, — f, in the topology of uniform convergence on compact
sets, then the sequence (z,),, where z,, n=20, 1, ..., denotes the solution of the
prohlem

‘aa—xZ(x’ y)=f;|(x’ ¥y Z(x, }’),%Z(x,y)) on I’
(@)

z= @, on Iy; zeCl(Iqu D),

converges in I to the function z, in the topology of uniform convergence on
compact sets.

Proposition 1 is a direct application of the well-known Haar’s lemma.
CoroLLARY 1. Under the same hypotheses as Theorem 1, the solution of

problem (B) depends continuously upon the initial function ¢ and upon the
function f.
4. Existence of solutions

4a. Given a function z,: Ioul — R of class C! such that zo = ¢ in I,
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we consider the following Cauchy problem

0 0

a—XZ(x, y) =f(x, y; TV, ¥ zo)s -y TO(x, ¥; 20); a—yZ(x, y))

(t4)
on I,

z=¢ on Iy; zeCl(Iou ).

Let ¢, be a class of functions belonging to &(I, U I) that contains z,.
Connected with %, let (see (2i), (3i))

P, be the Lipschitz constant of the operators TV, i =1, 2, ..., r, with
respect to x;

F, be the boundedness constant of functions TV: (I xCi(Ioul))
—-CL(R,C*(E)), i=1,2,...,r

Moreover, let W, be the Lipschitz constant of Fréchet derivatives T,"
with respect to y in a class of functions belonging to &;,(Io v I), contained
in ¥, and containing the surface z,.

If we put Z;(x, y) = T9(x, y; z0) ( = 1, 2, ..., r) we equate problem (t,)
with problem (B). The functions Z; satisfy, in fact, hypotheses (b) with the
constants P = Py; F =Fy; W= W,.

From Theorem 1, a unique solution z, of problem (t,) exists in a
suitable strip that we denote by Ioul,, where I, = {(x, y): 0 < x<d;, 0
<d, <a, yeR}.

4b. The function z,: I,ul, — R belongs to class C}; the boundedness
and Lipschitz constants of its derivatives follow from (2).

Let Z; be extension (Z) of the function z, (see Remark 1) and let %, be a
class of functions belonging to the class &(J, U I) containing Z,.

Let P,, F, be the constants (analogous to P, and F,) of the operators
TV and T, relative to class %,. Moreover, let W, be the constant
(analogous to W,) corresponding to class 4, which belongs to Eplou), is
contained in 4, and contains the surface Z,.

Given Zi(x,y)=TY(x,y;z,) (i=1,2,...,r), let us consider the
following Cauchy problem

;

0
Ex"z(xv }’) = f(xv ¥y f1 (x) ,V), ERT) z_,(x, }’)§ _a;Z(x, .V))
(t2)

on I,,
z=¢ on Iy; zeCl (I, U I)).

As in problem (t,), we prove the existence of a unique solution z, of
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problem (t;) in a suitable strip, that we denote as I,u/,, with I,
={(x,y): 0<x<9d, 0<6, <6y, yeR}. Moreover, from (2) we deduce
that the functions dz,/0dx, 0z,/dy admit, respectively, the same boundedness
constants as 0z,/0x, 0z,/dy, but il cannot be said that they have the same
Lipschitz constants.

Therefore, put 7, extension (Z) of z,. the function 7, belongs to %, but
not necessarily to %,, so that we can suppose (not being restrictive) P, = P,
and F, = F,. However, there would be loss in generality supposing that W,
= W, (with the obvious meaning of the constant P,, F,, W,).

Let W, then be the Lipschitz constant in y of the functions T° (i
=1,2,...,r), relative to a class @eé“up(loul), contained in %, and
containing Z,.

Having studied the Cauchy problem,

-
¥

¢ ¢
'a—xZ()C, .V) = f(-x, y, T(])(X, .v; 22), ey T‘(r)(xa y’ ZZ); '(r':’j-‘z(xa ,V))
(T3)

on I,,
z=¢ on ly; zeCl (I uly),

its solution zy is defined in a suitable strip I, U I, contained in I, uUl,.

Let 7, be extention (E) of z;.

Such function 7; belongs to class %, because the Lipschitz constants of
the z, derivatives coincide with the Lipschitz constants of the z, derivatives
in that they depend, as shown by (2), only on P,, F, and on the constants of
f and ¢, and do not depend on W,.

Therefore, it is not restrictive to suppose W, = W,, obviously beyond
Py=P,, Fy=F,.

To iterate, let us consider the following sequence of Cauchy problem

c ¢
=-z(x, ) = f(x, v Zi(x, ¥, o 20, ), 5-2(x, y))
(t) . ’ '

onl,_ ,,
z=¢ on Iy; zeCl(I,ul1,_)),

where z,(x, y) = T9(x, y:z,-,) (i=1,2,...,r) and z,_, is the solution of
problem (t,- ;).

Considering the above-stated, as it is not restrictive to suppose P,_,
=P, F,_,=F,, W,_, =W,, n>4, the z, surface is defined in the strip
I, ul; (therefore I, = I;) because the width of the domain strip depends
only on F,_,, W,_, and on the constants of f and ¢, as shown in (1).

Moreover, its extension Z, belongs to the class %, as, in virtue of (2), the
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z, derivatives admit the same boundedness and Lipschitz constants as z,
derivatives.

To sum up, every function of (z,), sequence, where z, is problem (t,)
solution, is,.for n > 4, defined in the same strip I, LU [, and it belongs to the
same class €.

We denote I, ul; with 14U, for brevity’s sake.

With a procedure analogous to Kamont’s used in the linear case in [10],
we prove that the sequence (z,), is uniformly convergent.

Prorosition 2. For every ne N we have
(3) |z,,(x, y)_zn— 1 (Xy y)l < [J(Vx)n/,n! f()i' every (x’ y)EIO U 19
where U = 2G/rL,, V =rL_ Le™*

Proof. Fixed y; in R, let us indicate with T the triangle bounded by the
straight lines x =0, y—y, =L.(x—a), y—yo = —L.(x—a).

Let us prove (3) by induction.

For n =1, taking into account (f), (2) we have

) -23(x, y) = —-go(x, V)
( - D (x. v ¢ ¢
= X, yi.o, T9(x, y:zg), ... -g-z, (x. ¥) J—=—20(x, y)
\ 'y 0x
< . (l) . 5
<ifix,y;...., T (x,y,zo),...;a—yzl(x,y)

. ¢
—f (x, Vieoo TYX, ¥: 20), o0 0l -E;ZO(X, y))l

I, d ) '
+ |f (-", Vi, TO(X, ¥5 20), .5 = Zo(x, .V))"—Zo(x, J")’
I cy Ox

<L, ]Lé;zl (% =5 20, y)[+ 2LG + L, |z, (x, y)—zo(x, y)

for every (x, y)el.
Moreover,

(5) 121(0, ) =200, y)i =0

holds for every yeR. From (4), (5) and Theorem 37.1 of Szarski [17] it
follows that

2106 ) ~20(x, Y S vy (%) for every (x, y)eT,

where v, (x) = 2LG (eL“!—l)/Lz i1s the solution of the following Cauchy
problem du/dx =2LG+L_u; u(0)=0. As e*—1 < x¢* for every x>0, it
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follows that

vy (x) = 2LG (¢ = 1)/L, < 2LGe"** x = U (¥x)/1!.
In this way, we have obtained
(6) |zy (x, Y)—zo(x, Y} < U (¥x)/1! for every (x, y)eT.

Because of the arbitrary choice of y,, (6) holds for every (x, y)el.

Now supposing that (3) is true for n > 1, let us prove that it holds for
n+1.

In the first place, considering hypothesis (2i) relative to the operator T,
i=1,2,...,r, we have

0 0
EZH‘ 1 (x; y)_a}zn(x’ .V)l
=‘f(x V..., T(x, y; z,) iz w1(x, )
b Y M ] ’ b > ’ay n b ]
) 0
_f(x, Vieees TO(x, Vi Zn=1)s ...;a—z,,(x, y))l
y
< lf(x Vi TO(x, 952, .5 —a—zm(x, y))
oy
i) a
—fx,y; ..., TOx, y; z,), ..,;a—z,,(x, y)
'y
+ If (x, Viooos TO(x, v 2,), .. izn(x, y))
dy

. 0
_f (xa Vi -ees ‘T(l)(x’ Y5 Zp- 1), --';Ezn(xa y))‘
y

N
t~

0 0 A .
— —— i) . N o 0)) .
q ayzn+l (X, y) ayza(xa y) +Lz .’=Zl IT( (x’ Vs zn.) T( (xr Y zn—l)l

N
h

0 0
q _zll+l(xs y)——z,,(x, y) +rLzL sup Izu(é, y)_zn—l(é- _V)|
0y 0y & »el0,x] xR

VA
t~

0 0
q a_yle» 1 (x’ y)_a_yzn (xs y) +(rLz LU(VX)"/H')+ Lz Izu+ 1 (x5 y)

—z,,(x, y)'

for every (x, y)el.
On the other hand, |z,,,(0, y)—z,(0, y)l = 0 holds for every yeR.
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In virtue of Szarski’s theorem we deduce
Zas 1 (Xs V)= 2Za(X, Y| < 0,41 (x) for every (x, y)eT,

where v,, , (x) is the solution of the Cauchy problem du/dx = rL, LU (Vx)"/n!
+ L_u; u(0) =0. Since

Dns 1 (X) = FLUV™(e" = 1= L, x/1!— ... —(L. x)"/n!)/L, n
and
E—1—x/1'— ... —x"nl < x"*'e*(n+1)!  for x>0,
it follows that
Uy 1 () < FLUV(L, x)"* ' "/ i+ 1)! = U (V)" Y(n+1)!
and so

(N |zps 1 (6, M=z, (x, VIS U)" Yn+1)!  for every (x, y)eT.
Because of the arbitrary choice of yq, (7) is true for every (x, y)el.

As a consequence of Proposition 2, (z,), is a uniformly Cauchy sequence
in I and therefore it converges uniformly to a surface :.

We appreciate the difference |z —z,|.

In virtue of (3) we have, for every (x, y)el,

®) |z(x, y)—z,.(x,y)KleM(x, -z, M < Y U(Wx)k!

k=n k=n+1
ac

<U@ay*fn+1)! Y (Va)/k! = U(Va)"* ' e"/(n+1)!
k=0

By construction it results that z = ¢ in Ij.

The sequences of partial derivatives (0z,/0x), and (0z,/dy),, being
uniformly bounded and uniformly Lipschitzian whit respect to x and y in I,
satisfy the hypotheses of the well-known Ascoli-Arzeld lemma in each
compact set in I.

Having arbitrarily fixed a point P =(x, y)el, let R < be a rectangle
containing P. In virtue of the Ascoli-Arzela lemma, from each subsequence
(0z,,/0x), [(0z,/0y)], a further subsequence converging in R to dz/0x

[0z/0y] can be extracted. From this, because of the arbitrary choice of
rectangle R, we deduce that the sequences (0z,/dx), and (0z,/dy), uniformly
converge in I to 0z/0x and 0z/dy respectively. Therefore, by passing to the
limit in the first equation (t,) we have

0 Y Dy v 0
6_x-(x1 y)—f(xs Yiooon '11 (xa y’Z),”.,ay(x,y))'

"As shown in the preceding sections it follows that

3 — Annales Polonici Mathematici
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THeEOREM 2. Under hypotheses (f), (i){(4i) there exists a solution belonging
to class C}(Iou 1) of the Cauchy problem (7).

5. Uniqueness and continuous dependence

THEOREM 3. Under the hypotheses of Theorem 2, the solution of problem
(1) is unique.

Proof. Let z; and z, be two solutions of problem (1) belonging to class
C! (I, u ). In virtue of hypotheses (f) and (x*) we have

0 0
9 gzl(x, y)—5;22(x, y)
<L, i lT‘“(x, y; 21)—71"(3‘, y; Zz)|+Lq }E% (x, Y)—izz(X, }’)~
i=1 cy dy

<rL, L sup |z;(E, ) -z I+ L,
&»el0.x} x R

5, 0
a—yzl(x’ )’)'a—yzz(x, Y)l-

Being z,, z,e C} (Iou ), there exists a constant M such that

sup |z, (x, y)—z2(x, y)| < M.

(x.y)el
In virtue of the well-known Haar lemma it follows that
(10) |z, (x, y)—z5(x, y)| <rL,MLx for every xe[O0, a], yeR,

from which

(11) sup |z, (&, y)—z5(¢, y)| <rL,MLa for every xe[O0, a].
(& Me(0.x} xR

In virtue of (11) and applying the Haar lemma again, we deduce
(10) |z5(x, y)=2z5(x, )| < M(rL, L)>ax < M(rL, La)*  for (x, y)el.
By iterating we shown that

(10,) |21 (x, )—z2(x, I S M(rL. La)", neN, (x, y)el,

and so the theorérn is proved.

THEOREM 4. Under the hypotheses of Theorem 2, the solution of problem (1)
depends continuously upon the initial function @ as well as upon the function f.

Proof. Let (¢,), and (f,), (n=0, 1, ...) be two sequences of functions
with properties (i), (41) and (f), respectively, and such that ¢, — ¢, uniformly
in compact sets in I, and f,— f, uniformly in compact sets in Q.

Moreover, let z,o: Ioul — R, ne N, a sequence of functions belonging
to a class %, contained in &u,(Iow ) such that z,,— 25, uniformly in
compact sets in Ioul and z,o =@, In I,.
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Fixed n=0,1, ..., let z,, be the solution of the problem

0 0
a—Z(x, y) = f..(x, y; TO(x, y; 2y o) ---» TO(X, y; z,,o);a—Z(x, y))
(tn 1) * y

on I,
z2 =g, on Iy; zeCl(Iou )

whose existence derives from Theorem 1.

Given f,1(x, y; @) = fulx, y; T"(x, y; Zp0), .-, T (X, y; 2p0); g), and
having arbitrarily fixed a compact set H — I and a real positive constant
S, <8, it follows that

max | fo1 (X, ¥ @—Jfo 1 (X, y; @ = 1fo1 (X, ¥; D —Jo,1 (X, ¥; D)

(x,y)eH,|gl < S
s If,,()_c, P; secy T.m(f, y’ zn.O)’ ey q)_f;l(i’ i’ seey T(l)(iv y’ z0,0)a cees ‘T)I
+|f;,(f, ya T Tﬁ)(i> y; 20.0), eees 6)_f0(i’ .v’ SRR T“)(ia }_’, 20.0)9 cens q)l

<L, Y ITOR, 7; zp0)— TO(X, 75 20,0l
i=1
(% Vi TR, V5 20,0)s -5 @) —So(X, 75 ..., TOUX, 7, 20,0)s --- 3 )|
with X, y, g suitably chosen.
Consequently, considering the hypotheses on the sequences (z,,), and
(). and the continuity of the operators T, it follows from Proposition 1

that the sequence (z, ,), converges to z, ; uniformly in compact sets in Iy U I.
For every ke N, let z,, be the solution of the problem

0 0 )
EZ(x, y) =1 (x, Vs TX, Y5 Zag—1)s --os TO(X, V5 Zpi-1); 5;2()6, y))
(Tn.h)

on 1,
z =@, on I,; zeCl(gu ).

Given  fou(x, ¥; @) = fulx, ¥s TV(x, y5 Zag—1)s ooos TOUX, y5 Z0p- 1) q) it
results that, as in case k = 1,

max | ok (X, ¥; q) —fo,k (x, y; 9l
(x,y)eH,|q] €8

= Ij;l.h (i’ y’ ‘T)—fo.h (ia y; q)l

<L, Z |T“)(5f, y, Zn.k—l)—Tm(f, V5 zow- 1)l
i=1
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+|fn(g’ Vieeos Tm(f, ¥, Zo,k-1), sees q)_fo(i, Vi, Tm(f. Vs Zo,k—l)a cees q)l
for X, y, q suitably chosen.

In virtue of Proposition 1 it follows that the sequence (z,,), converges to
Zo'k.

On the other hand, for every fixed n, the sequence (z,,) converges
uniformly in I, U to a function z, which is the solution of the following
Cauchy problem

iZ(Jc, »=r (x, y; TO(x, y52), ..., T"(x, y; 2), EZ(x, y))
) ox oy

on I,
z=¢, on Iy; zeCi(Iou D).

This is a result of what is proved in Section 4b.

From (8) of Section 4b it follows that the convergence of (z,;), to z, is
uniform also in respect to n.

Moreover, we can suppose that all functions z,,, with n, ke N, have a
common domain which we indicate again with I, U l. In fact, fixed n, in
virtue of the proof given in Section 4, the functions z,,, for every k
=0, 1, ..., are defined in the same strip. Moreover, this strip is independent
from n because its width depends, by virtue of (1), only on the constants
relative to ¢,, f, and z, o (which are, by hypothesis, invariable with respect to
n).

Fixed ¢ > 0 and a compact set H = I and given |u|y = max |u(x, )| for

(x,y)eH
every ue C°(H), let k = k(e, H) be a integer for which it follows that
(12) |zpx—Zoly <€/3 for every n=0,1, ...

Finally, let n = n(e, k, H) = fi(¢, H) be an integer such that for every n> n
we have

(13) |Znx — Zoudn < €/3.
From (12) and (13) it follows, then, that
12— 2ol < |zp— Znidu +12ak —Zoula +1Zox— Zoln <,

which provides the theorem, by the arbitrariness of H.
The following diagram therefore exists

((Pm fn) Znk g Zp
I I |n

(P0, Jo)  Zox = Zo
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6. Problem (1) is reduced to the problem studied by Kamont in [13],
whenever the range of the operator 7' is contained in the subspace of the
constant functions of C°(E,).

We show that our hypotheses on the operator T are less restrictive
then Kamont’s, in particular the hypothesis which gives a hereditary structure
to the problem.

Fixed a point yeR, we consider the operator T: I xCl(Ioul)— R
defined by T(x, z) = max z(&, y).

fe[0,x
This operator verif%esihypotheses (21), (3i) (as is easily proved) but does

not satisfy the following condition (cf. [13]):

(&) there exist two real functions a, f of class C' in I and a constant L
with the properties

(&0) Po < a(x, }’) S X,

(&l, |T(x: Z)_ T(xa E)I < le(a('xt y)v ﬁ(x’ 7))-5(& (x’ .V): ﬂ(x7 y))l

for every z,zeC}(IouI) and for every xe[0, a].

Having arbitrarily fixed a function « and a point x€]0, a], let z be a
surface of class C} (I, I) such that

Z(G(J_C, .)7)’ P)+i_a(i’ }7) #* ;n:(e)lxx]Z(é’ y)
Given z(x, y) = z(a(x, y), )+ x—a(X, y), it follows that z(x(X, ), B(X, )
—z(a(X, ), B(X, y)) = 0 for every function B, while

IT(X, 2)—T(%, 2)| = | max z(, y)— max z(¢, y)|
£e10.51 tel0.9)

is strictly positive. This proves that operator T does not satisfy condition (&j.
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