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Some examples on lifting the commutant of
a subnormal operator

by M. B. ABRAHAMSE* (Charlottesville, Va.)

The commutant of an operator 4 is the algebra of operators which
commute with A and will be denoted by €(4). If S is a subnormal operator
on the Hilbert space s, if N is the minimal normal extension of §, and
if €(N, #) is the algebra of operators in €(N) which leave »# invariant,
then there is a contractive homomorphism

‘

A: €(N, #)->%(8)

defined by setting 4(A4) equal to the restriction of A to . If B is in the
range of A, then B is said to lift to the commutant of N.

It is known that A is always one-to-one (lifts are unique) (8], p. 68,
and that 4 may not be onto (lifts may not exist) [5], Corollary 7.2. In
certain situations A is both isometric and onto, for example, if § is an
isometry [5], Corollary 5.1, if § is e¢yclic [9]), Theorem 3, or if 8 is a bundle
shift [1], Theorem 4. It is not known whether § is isometric or onto when
8 is an analytic Toeplitz operator and this remains an important un-
solved problem.

The purpose of this paper is to study a class of subnormal operators §,
where the commutant of S and the map A can be computed explicitly
and to exhibit ways that A can fail to be isometric and onto. In particular,
there will be examples when A is (1) isometric and not onto, (2) onto and
not isometric, and (3) not bounded below. Note that in the third example,
by the open mapping theorem the range of A is not closed in the operator
norm topology. 7

The class of subnormal operators to be studied consists of those opera-
tors of the form S,@®8,, where each Sz is subnormal and similar to the
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unilateral shift. The analysis makes use of a model for subnormal operators
similar to the shift developed by Clary [3] and it also uses a result due to
Douglas on the intertwining maps between normal operators [5]. In terms
of the Clary model for § = 8,@8,, nécessary and sufficient conditions
are given for A to be onto.

Regarding the aforementioned result of Douglas that A need not be
onto, two comments are in order. First, the example produced by Douglas
is an example of an intertwining map between two subnormal operators
T, and T, which does not lift to an intertwining map between their minimal
normal extensions. It is then a simple matter to produce an operator in
the commutant of 7, ®T, which does not lift to the commutant of the
minimal normal extension of T, T,. (See Section 3 of this paper.) Second,
there is an error in the development of this example which can be corrected
in the following way. The conclusion of Lemma 7.1 in [5] should be changed
to read: “Then a necessary condition that there exist B in £ (J;, ;)
so that N,B = BN; and 4 = B|#, is for N, to be unitarily equivalent
to the restriction of N, to a reducing subspace.” Then, in the proof of
Corollary 7.2, one must add that in the example of Sarason [7], Problem
156, the operators 7', and T, can be chosen so that the spectrum of N,
is larger than the spectrum of N, and therefore N, is not unitarily equi-
valent to the restriction of N, to a reducing subspace.

NotaTIions. In this paper, all Hilbert spaces are complex, all operators
are bounded, and all subspaces are closed. If S is an operator on # and
if T is an operator on ", then the space #(8, T) is the space of operators
B from s into & which intertwine 8 and 7T, that is, which satisfy BS
= TB. If § and T are subnormal with minimal normal extensions M and
N respectively, then the space S, (S, T) is defined to be the set of operators
in #(8, T') which are restrictions of operators in # (M, N). Thus, (S, T)
consists of those intertwining maps between S and 7' which lift to inter-
twining maps between M and N. Observe that €(S) = # (8§, §) and define
%.(8) to be the space S, (8, 8). Thus, ¥.(8) is precisely the range of the
map A discussed above.

1. Intertwining maps between cyclic normal operators. In this paper
the term measure will refer to a finite positive compactly supported Borel
measure on the complex plane. Thus, given a measure u there is a normal
operator W, on L2%(u) defined by the equation W,(f)(z) = 2f(2)du-a.e.
and it is well known that any normal operator with a cyclic vector is
unitarily equivalent to W, for some measure x [4], Theorem 4.58. It is
well known that an operator commutes with W, if and only if it is multi-
plication by y for some y in L®(u) (see for example [7], Problem 115).
It is a result of Douglas that for two measures x and », the space of inter-
twining maps S(W,, W,) is zero if and only if x and » are relatively sin-
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gular [6], Theorem 3. In Theorem 1 below, these two results are combined
to give a description of the space of intertwining maps #(W,, W,) for
arbitrary measures u and ».

To state Theorem 1, one needs the notion of an absolutely continuous
support for a pair of measures which is defined as follows. For a Borel
subset ¥ of the complex plane, let uz; be the measure defined by the equa-
tion ug(F) = u(EnF). An absolutely continuous support of a pair of
measures u and » is a Borel subset E of the complex plane such that ug
and »; are mutually absolutely continuous and up and v, are relatively
singular, where ¥ = C\E. Lemma 1.1 establishes the existence and
uniqueness (modulo sets of measure zero) of absolutely continuous sup-
ports. For two sets E and E’, the set E A E’ is the symmetric difference
of ¥ and F’, that is, £ A E' = (E\F')U(E'\E).

LeMMA 1.1. If u and v are measures, then there is an absolutely continuous
support for u and v, If E and E’ are two such supports, then u(E o E') =0
=v(E s E').

Proof. Let u = u,+ u, be the Lebesgue decomposition of u with
respect to », where p, is absolutely continuous with respect to » and pu,
is singular relative to ». Let A be a Borel set with p,(4) = 0 = u,(C\A4),
let » be a Borel measurable function such that du, = hd», and let E
= {& in A: h(zx) > 0}. For any Borel set §

up(8) = p(EnS) = p,(8) = [ hdv = [hdvy
. EnS s

and therefore uy and vz are mutually absolutely continuous. If ¥ = C\E,
then yp = u, and therefore up is singular relative to »5. This proves that
E is an absolutely continuous support for x and ». If E’ is a second absol-
utely continuous support for ¢ and » and if ' = C\E’, then y = u;+
+ ur and u = ug + pp are both Lebesgue decompositions of g with
respect to ». Thus, ugy = uy and up = up and it follows that u(F 2 E')
= 0. Similarly, » = vz +v and v = vz + vz are both Lebesgue decom-
positions of » with respect to u, hence vz = vg. and up = ugp and there-
fore v(E A E') = 0. This proves Lemma 1.1.

For Theorem 1, let £ be an absolutely continuous support for the
measures u and », let F' be the set C\E, let h be the function Vdug/dvg.
and let I(u, ») be the set of functions y on the complex plane such that
(i) v | F = 0 and (ii) there is a constant C such that |y| < Ch du-a.e. It is
easily verified that for v in I(u,») there is an operator A(y, u, ») from
L?(u) into L2(v) defined by the equation A(y, u, »)(f) = ¢f.

_ THEOREM 1. An operator A from L?(u) into L*(v) satisfies AW, = W, A
if and only if A = A(y, u, ) for some p in I(u, »). In this case, the norm
of the operator A is the norm of the function y[h in L™®(u).
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The proof of Theorem 1 follows from the known special cases when
u = v and when z | » and from the following lemma which establishes
an intimate relationship between the intertwining maps between two
direct sums M,PHM, and N,PN, and the intertwining maps between
M, and N,. This idea is well known and seems to go back to Berberian [2].

‘LEMMA 1.2. For i =1 and ¢ = 2, let M, be an operator on. #; and let N,
be an operator on A ;. Let M = M, DOM,, let N = N,®N,, let A be an
operator from #,@DH, inlo X DA ,, and let

be the matrix of A with A;;: #;—>H ;. Then A i8 in S(M, N) if and only
if each A, s in I (M;, N,).

Proof. The result is established by carrying out the matrix multi-

plication in the expressions )

A, A M, 0

AM [ 11 12] 1 ]

'A'21 22 0 M2

and )

sa=[relli ]

Proof of Theorem 1. Let

be the matrix for A with respect to the decompositions L?(u) = L%(ug) ®
@ L*(up) and L2(y) = L*(vg) ®L*(vy). With respect to these decom-
positions, W, = W, z®OW,.. Thus, by Lemma. 1.2, the operator A is in
JS(W,, W,)if and only if Au isin £(W,,, W,.), 4y, is in £(W,_, W,,E),
A, is in SH(W,, W,F), and A4,, is in J(W,,F, ,p)- Since each pair of
measures (ug, vg), (#g, vr), a0d (zg, vp) I8 relatively singular, the latter
three spaces contain only the zero operator by the aforementioned result
of Douglas [6], Theorem 3. Thus, the operator A is in S(W,, W,) if and

only if 4,, is in S(W,yp W, ) and 4y, = 4,, = 4, = 0. To cha.racterlze

1244

A,,, observe that there is a umtary operator U in #(W,,, W,.) defined
by the equation U(f) = Vdvg /dyEf Thus, the operator A isin # ( g Wog)

if and only if U4 is in #(W,_, W,.). This occurs if and only if there is
a bounded Borel measurable function 7 on the ecomplex plane such that
n|F = 0 and (UA)(f) = nffor all fin L?(ug), [7], Problem 115. Moreover,
in this case the norm of UA is the norm of 7 in L*®(ug). The theorem now

follows by setting v = k7.
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2. Intertwining maps between two subnormal operators similar to the shift.
For a measure y, let H?(x) be the closure in L%(x) of the polynomials
in z and let U, be the restriction of W, to H2(u). It is an immediate con-
sequence of the Stone-Weierstrass Theorem that W, is the minimal
normal extension of the subnormal operator U,. Furthermore, if D is
the open unit disk, if T denotes the boundary of D, and if m is normalized
linear Lebesgue measure on T, then U,, is a model for the unilateral
shift.

If 1 is a measure such that uy = m, then there is a contractive and
densely ranged operator X, from H?(u) into H2%(m) which maps the equiv-
alence class of a function in H?(u) to the equivalenée class of the same
function in H2(m). It is apparent that X, U, = U, X, and it is a conse-
quence of Carleson’s Theorem [6], Theorem 9.3, that X, is invertible
when u({z: |2] > 1}) = 0 and uj, is a Carleson measure. Thus, if 4 is a meas-
ure such that (1) up = m, (2) u({z: |2/ > 1}) = 0, and (3) up is a Carleson
measure, then X, implements a similarity between U, and the unilateral
shift U,,. Conversely, if 8 is any subnormal operator similar to the uni-
laterial shift, then there is a4 unique measure u satisfying (1), (2), and (3)
such that § is unitarily equivalent to U,. This result is due to Clary [3],
Corollary 6.4, and it provides a model for all subnormal operators similar
to the unilaterial shift. Examples of Carleson measures are measures with
closed support in D, planar Lebesgue measure on D, and linear Lebesgue
measure on (—1, 1).

Let x and » be two measures satisfying (1), (2), and (3) above. It is
the purpose of this section to describe the spaces #(U,, U,)and #,(U,, U,).
To this end, let H* (D) be the space of bounded Borel measurable functions
@ on the complex plane such that ¢|D is analytic and

limg(rz) = ¢(2)
ril

for dm-almost-every z in 7' and, for ¢ in H*(D), let {|D| be the norm of
the equivalence class of ¢ in L*(m). Furthermore, for ¢ in H*(D), let T,
be the analytic Toeplitz operator on H?(m) with symbol ¢, that is, T (f)
= ¢f for f in H2(m) and let B(p, u,») be the operator X;!T,X, from
H2(u) into H2(v). Thus B(p, u, »)(f) = ¢f for all f in H?(u).

LeMmA 2.1. If K = | X, |II|X;"ll, then for all ¢ in HZ(D), |pl<
< |B(p,y p, »)Il < K|D||.

Proof. It is known that |T,| = (D], [7], p. 139, and thus | B(g, 4, »)|

= | X;'T, X ,| < K|®|. Furthermore, for ¢ > 0, there is a polynomial p

such that flp]*dm =1 and flcp[ﬂpﬁdm > ll¢|l2—e Thus, by the bounded
convergence theorem, as n-—>oo

IB(@, 1, (@) = [ lpl212P" |pl2dv— [ lg[2|p["dm > |2 —e
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and f|z|2"{pf2dy-—>f]pl2dm =1.

It follows that | B(e, u, )|l = [|9].

LEMMA 2.2, For ¢ and vy in H*(D), the following four assertions are
equivalent: (i) B(p, u,v) = B(y, p,v); (i) ¢ =y dm-a.e.; (ili) ¢ =
y dv-a.e.; (iv) ¢ =y du-a.e.

Proof. The equivalence of (i) and (ii) is immediate from Lemma 2.1.
If ¢ =y dm-a.e., then ¢(2) = y(2) for all 2 in D and the equivalence of
(ii), (iii), and (iv) follows.

Let E be an absolutely continuous support for the measures x and »,
let 2 be the function Vdug/dvg, and let I, (u, ») be the set of functions ¢
in H*(D) such that (i) ¢|F = 0 dv-a.e. and (ii) there is a constant C such
that |p| < Ch dug-a.e. Observe that I(u,v), H®(D), and I.(u,») are all
spaces of functions (not equivalence classes) on the complex plane. The
relationships between these spaces and the operators A(y, x,») and

B(g, u, v) are expressed in the following two lemmas. Let yz denote the
characteristic function of the set E.

LeMMA 2.3. Let ¢ be in I(u,v) and y be in I (u,v). The operator
A(p, 1, v) i8 an extension of B(y, u, v) if and only if ¢ = p dv-a.e.

Proof. If A(p,u,v) extends B(y, u,v), then ¢ = A(p, u, »)(1)
= B(y, u, »)(1) = » dv-a.e. and the converse implication is immediate.

LeMMA 2.4. Let ¢ be a function in H®(D). Then ¢ i8 in I (u, v) if and
only if there is a function y in I(u, v) with ¢ = y dv-a.e. In this case, the
function y can be chosen to be yxp¢.

Proof. Assume that ¢ is in I, (u,») and set y = yx@. Then y is in
I(u,v) and ¢ = (xr+ xg)® = xg9p dv-a.e. because ¢|F = 0 dv-a.e. The
converse assertion is immediate.

THEOREM 2. An operator Bisin #(U,, U,)if and only if B= B(p, u, »)
for some p tn H*(D). For ¢ in H* (D), the operator B(p, u, v)isin S,(U,, U,)
if and only if @ i8 in I (u,v). If @ is in I (u, ), then B(p, u,v) extends
to the operator A(y, u,») in F(W,, W,), where y = yzp.

Proof. An operator B from H*(u) into H%(») is in #(U,, U,) if and
only if X, BX,'is in ¥(U,) and this occurs if and only if X,BX,' =T,
for some ¢ in H*(D), [7], Problem 116. The latter equation says that
B =X,'T,X, = B(p, u, v) which proves the first assertion of the the-
orem. To prove the second assertion, let ¢ be in H*(D). By Theorem 1,
the operator B(p, u,») is in £, (u, v) if and only if there is a function y
in I(u, ») such that 4(y, u, ) extends B(g, 4, ). By Lemmas 2.3 and 2.4
this is equivalent to saying that ¢ is in I (u,»). Also, by Lemma 2.4,
the function y can be chosen to be yp@. This completes the proof of The-
orem 2.
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COROLLARY 2.56. The following three conditions are equivalent:
(i) £,(U,, U,) = #£(U,, U,); (ii) the operator B(l, p,») is in F,(U,, U,);
(iii) the measure v is absolutely continuous with respect to u and the Radon—
Nikodym derivative dv|du is in L*(du).

Proof. That (i) implies (ii) is immediate. Assume (ii), let £ be an
absolutely continuous support for 4 and », and let ¥ = CE. By Theorem 2,
the function ! is in f;(u,») which implies that I|F = 0 dv-a.e. Thus,
v(F) = 0 and so » is absolutely continuous with respect to u. Further-
more, since ! is in Iy (u, v), there is a constant C such that 1<<Ch dug-a.e.,
where b = Vdug/dvy. Thus, dv/du = dvg/duzy = b~ < C~? du-a.e. and this
establishes (iii). Finally, if (iii) is satisfied, then it follows easily that
I, (u,v)= H™(D) and therefore (i) is satisfied by Theorem 2. This com-
pletes the proof of the corollary.

3. The commutant of the direct sum of two subnormal operators similar
to the shift. Let § and T be subnormal operators with minimal normal
extensions M and N respectively. By Lemma 1.1, the commutant of
S@T is the matrix algebra

€(8) #(T,8]
S8, T ¢D|

It is easily verified that the minimal normal extension of S®T is M ®N
and that the space %, (S@T) of operators in €(S@T) which lift to
¢(M ®N) is the space
[@L(.S) IS (T, S)]
S8, T)  €L(T)
The following theorem is an immediate consequence of these remarks
and Theorem 2. In this theorem, u and » are measures satisfying conditions

(1), (2), and (3) of Seetion 2. Furthermore, the spaces of operators
{B(p, p, p): ¢ in H*(D)}, {B(p, u,»): ¢ in H*(D)}, {B(p,», u): ¢ in
H*(D)}, and {B(p,7,7): ¢ in H*(D)} shall all be denoted H*(D), the
space {B(p, u,): @ in I;(u, »)} shall be denoted I,(u, »), and the space
{B(p,v,u): ¢ in I (v, u)} shall be denoted I (v, u).

THEOREM 3. The commutant of U,® U, is the matrix algebra
H*(D) H*(D)
[H"“(D) H”(D)]
and the space €, (U,DU,) 18
lH"(D) IL(», B) ]
I(g,») EH™D)|

\
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Furthermore, if

[B(wu,#,ﬂ) B(@1zy 7, 1)
B(pgy, pyv) B(pszg, v,.9)

18 in €,(U,®U,), then A(A) = B, where

4 [A(?’mlh.“) A(xpPres 75 1)
A(xe P21y #y ¥) A (P2ay v, ¥)

and E i3 an absolutely continuous support for u and ».

Two measures x and » are mutually boundedly absolutely continuous
and if du/dv is an invertible function in L*(»). The following corollary is
an immediate consequence of Theorem 3 and Corollary 2.5.

CorOLLARY 3.1. The spaces €,(U,DU,) and ¢(U,DU,) are equal
if and only if the measures u and v are mutually boundedly absolutely con-
tinwous.

Theorem 3 and Corollary 3.1 are now applied to several specific
situations.

ExampLE A. This example is an elaboration of the example of Douglas
[5). Let 8 be a unit point mass at the origin, let u = m, let v = m+ 6,
and let Hy' (D) be the space of functions ¢ in H®(D) such that ¢(0) = 0.
An absolutely continuous support for x and » is any Borel subset E of the
plane which does not contain 0 and thus I (x,») = Hy°(D) and I, (v, u)
= H*(D). Thus,

H*(D) H*(D)
Hy(D) H*(D)

and therefore ¢,(U,® U, #¥(U,®U,).

ExavpPLE B, This example shows that the map A can be isometric
and not onto. Let o be linear Lebesgue measure on ( —1, 1), let = be linear
Lebesgue measure on (—i, i), let u = m-+o0, and let v = m 7. In this
case, I, (u,v) = {0} = I, (», u) and therefore

¢, (U, ®T,) H*(D) 0
R o 'HD)|

¢.(U0U,)= [

For any x and any ¢ in H*(D), it is easily verified that the restriction
of A(p,u,u) to H*(u) is B(p,p,p) and that |A(e,z, u)l = [Pl
Thus, by Lemma 2.1, ||®|| < |B(g, ¢, p)l 4 (9, 4, u)ll = |P| and therefore
IB(p, p, p)ll = llA(p, g, w)|l. It follows that in this particular example A
is isometric and it clearly is not onto.

ExamprLE C. In this example, A is onto and not isometric. Let &
be a unit point mass at the origin, let 4 = m4 6, and let v = m+234.
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Since x4 and » are mutually boundedly absolutely continuous, it follows

from Corollary 3.1 that A is onto. Since h = yp+ X0 it follows from

1
vz
Theorem 1 that |4 (1, #, »)| = V2. Forn =1, 2, ..., let ¢, be the function
¢,(2z) = 2". The space H?(u) has an orthonormal basis {1 /1/5, €1y €3y ...}

the space H2(») has an orthonormal basis {1/l/3, 614 64, ...}, and with
respect to these bases, the operator B(1, u,») is diagonal with entries
along the diagonal (V3/2,1,1,...). Thus, |B(1, g, )| = V3/2. There-
fore, if A is the operator

a0 o
4 = ’
A1, p,v) 0

then ||A} = V2 and |A(A)| = V3/2.

ExAMPLE D. In this example, A4 is not bounded below. To produce
such an example, it is sufficient to produce u and » with absolutely con-
tinuous support F and functions ¢, in I;(u,») such that |®,[ <2 and
A (xE P, i, v)| diverges to infinity. For given such u, », and ¢,, set

[A(x59n 1y ) 0]

Then the sequence {||4,l} diverges to infinity and by Theorem 3 and
Lemma 2.1 (A(4,)| = B(@a, #, || < 2| X,IIX;|. These facts imply
that A is not bounded below. To produce g, », and ¢,, let = be linear Le-
besgue measure on the interval (}, 1), let g be the function on (4, 1) defined
by the equation g(z) = [—log(l—=)]"% let ¢ be the measure do(z)
= g(z)dr(x), let 4 = m-+o, let » = m+ 7, and let ¢,(2) = (1 —2)"" de-
fined with branch cut [1, o0). Then clearly ||®,| < 2. Since the measures
u and » are mutually absolutely continuous, the entire plane is an absol-
utely contmuous support for x and ». Thus, the function ¢, is in I (u, »)

if and only if there is a constant C such that lg,(z)| < O’Vg(m) dz-a.e.
Setting ¥y = 1/(1 —x) and observing that both ¢, and g are continuous
on (4, 1), this inequality becomes h~""logy < C for y > 2. Since y~/*logy
converges to zero as y converges to oo, the existence of the constant C
is established and thus ¢, is in S, (u, »). Applying Theorem 1 and using
again the continuity of ¢, and ¢ on (},1), one obtains |4 (¢,, #, »)I
> sup {lgn ()| g(2)"*: § <@ <1}=sup{y "logy: y > 2} > (¢")""log(e")
= n/e and thus the sequence {||A(g,, u,v)|} diverges to infinity.

4. Comments and problems. Let S be a subnormal operator on »#
with minimal normal extension N and let A: €(N, #)—>%(S) be defined

as in the introductory paragraph of this paper. The examples in Section 3
of A failing to be onto or failing to be isometric occur when 8§ is the direct
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sum of two non-zero subnormal operators. This suggests the following
problem.

ProBLEM 1. If § is an irreducible subnormal operator, must A be
isometric and onto?

For an operator A, the second commutant of A is the algebra of opera-
tors which commute with every operator in the commutant of 4. Problem 2
inquires into the possibility of a lifting theorem for operators in the second
commutant of a subnormal operator. This problem arose in 2 conversation
between the author and C. Berger.

ProBLEM 2. If B is in the second commutant of S, must there be an
operator A in (N, »#) such that A(A) = B and ||4| = |B|.

It § = U,® U, as in Section 3, then by using Theorem 3 the second
commutant of S can be shown to be the space {B(p, #, u)®B(p, v, ?): ¢

in H*(D)} and an affirmative answer to Problem 2 is obtained for this
case.

Finally, the examples in Section 3 of the failure of commutant lifting
are all examples involving pure subnormal operators (no normal part).
However, if 4 and » are chosen as in Example A and if B is the operator
B(1, u, ») followed by the injection of H2(v) in L?(»), then B is an operator
in #(U,, W,) which does not lift to an intertwining map in S(W,, W,).
Thus, even though ¢,(U,) = ¢(U,) and W, is normal, the commutant
of U,®W, does not lift to the commutant of W,®W,.
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