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On asymptotic development for solutions
of ordinary differential equations

by Cin HvuaA Szu (Peking)

In recent years there have been papers dealing with problem of
asymptotic development for solutions of ordinary differential equations.
This problem was considered by Kamke [4], Bellman [1] and Levinson [3].

For the equation |x|"y’ = f(z,y), where the right-hand member is
a polynomial in ¥ with coefficients possessing an asymptotic development
as £ /'0, Bruijn [2] has shown the existence of a solution y(z) possessing
an asymptotic development as z 70.

The present paper concerns a more general case; namely, we consider
a system of ordinary differential equations whose right-hand members are
not necessarily polynomials but possess an asymptotic development into
a series of several variables.

We shall give a sufficient condition for systems of ordinary differential
equations to possess integrals having an asymptotic devclopment.

We shall compute the coefficients of these asymptotic developments
by the method of undetermined coefficients. Changing variables we
transform this problem into an existence problem for integrals possessing
an asymptotic development with null coefficients. In the proof of existence
for these integrals T. Wazewski’s topological method is applied.

Under certain additional conditions we characterize the set formed
by integrals tending to the origin and possessing an asymptotic develop-

ment at 2 = 0.
§ 1. Notation and definitions.
1. We introduce the following notation:

n . o\ 1/
Y=, W), Y=0ny, ek, YR |¥i=(D4)".
i=0
By On, 0,:1 we denote the origins c¢f R*, R**! respectively.
We shall use nx » matrix B = [b;;].

In the above notation the sytem cof ordinary differential equations

dyildw=2biiyi+¢(m7y1a vy Yn)  (0=1,2,...,n),

i=1
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has the following form:

dy/dw = By-+-g(z,y), where g(z,y)= (¢=,¥),...,9"=,v)).

@
2. DErFINITION 1. We say that the formal series Y w;(Y) i3 of type W
i=0

if uo(Y) = const and, for each positive integer I, %;(Y) is a homogeneous
polynomial of order ! in variables y,, ¥,, ..., ¥a, Damely

u(Y) = const, % (Y)= ay¥ot+a¥1+ ...+ as¥Ys.

The series of one variable Zvl(w), v(z) = const, u(z) = b;at
=0

(I=1,2,..) is a special case of the series of type W.

DEFINITION 2. Let H(Y) be a function defined in a neighbourhood
of point O,;+:. We say that the function H(Y) possesses an asymptotic
development of the type W at point Onyy (Which is written as)

(1.1) H(Y)~ D) w(Y)

=0

if for every non-negative integer m the following relation holds:

y}ig}ﬂﬂ’l_m[H(Y)—j w(¥))=0 (m=0,1,2,.).

i=o
This relation means that there exists a function E,(Y) continuous

at 0,4, which satisfies the condition ¥,,(Or+1) = 0 and that in a neighbour-
hood of point O+, the following equality holds true:

(1.2) H(Y)— 2 u(Y) = |¥["En(Y).

If on a neighbourhood of 0., we have w(Y)=0 (!{=0,1,2,..),
we write relation (1.2) briefly as

(1.3) H(Y)~0

and we say that the function H (Y) possesses a zero asymptotic development
of the type W at point O,4,.

The sequence of asymptotic developments of functions §;(Y)
(i=1,2,..,n) is said to be an asymptotic development of the vector
function S(Y)= (8,(Y), So(¥), ..., 8a(¥)).

Remark 1. Every function F(Y) possesses at most one asymptotic
development of the type W at point O,.,.
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3. Consider the system of ordinary differential equations
(1.4)  dylde= A(z,y), A@,y)=(4z,y),.., 4%=,y)).

Let the function A (z, y) be continuous on an open domain D C E,,.
Suppose that through each point of domain D there passes exactly
one integral of system (1.4). We denote by y = y(x; P) the integral of
system (1.4) passing through the point PeD, P = (py,P1s .-y Pn)y
('P(Po; P) = (pyy ey Pn))-
We put
I(2, P) = (2, y(z; P)).

Let us denote by w a certain domain contained in D an by F the
boundary of the domain @ in D (with respect to D).
By o we mean the set

o= D\(ww F).
Let P e F. If there exists an ¢ > 0 such that

I((po—eypo)’ P)Cws

then P is said to be a point of egress from domain w with respect to
system (1.4) and D [7].

If P is a point of egress from domain  with respect to system (1.4)
(and D) and, moreover, if there exists a number § > 0 such that

I{(po, po+9), P)C &,

then P is said to be a point of strict egress from » with respect to system (1.4)
and D.

Remark 2. It follows from the definition above that the point of
strict egress from a domain « with respect to system (1.4) and D is a point
of egress from domain « with respect to system (1.4) and D.

Let g(x, y) be a real function of real variables z, ¥ on a domain D,
possessing continuous partial derivatives with respect to ¥ and bounded
left-hand and right-hand partial derivatives with respect to .

Let us put

plr) = g(I(x,P)) = g("’ﬂl’(miP)) .

Right-hand derivative D, ¢(x) (left-hand derivative D_g¢(x)) of the
function ¢(z) at # = p, is said to be the right-hand (left-hand) inclination
of the function g(z, y) at the point P with respect to the system (1.4)
and is denoted by the symbol S, g| p (8-glp)

From (1.4) we infer that

n

849lp=3-9(P)+ D 0PV AP)  (S_glp=350-9(P)+ ) 95(P)A(P)).

j=1 j=1
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Now let us define the sets

w={(®,y)eD: l(z,y) <0, m(z,y) <0},
L= {zy)eD: l(z,y) =0, m(z,y) <0},
M= {(x,y)eD: m(z,y) =0, l(z,y) <0},

where functions l(z, y), m(x,y) are continuous in the domain D and
possess continuous partial derivatives in y and bounded left-hand and
right-hand partial derivatives in a.

The union of sets L, M contains the boundary Frw of the domain w
in D.

Let us consider a point P e M ~ Fro. It is easy to see that if §_m|p <0,
then P is not a point of egress from the domain w with respect to (1.4)
and D. Similarly if P e (L\M) ~ Fro and 8:1|p >0, §_1|p> 0, then P
is a point of strict egress from the domain w with respect to the system (1.4)
and D.

§ 2. Levma 1. If
o q
F(Y)~D ul(Y) (i=1,2,..,9) and F(Y)= ) F(T)b,
1=0 =1
where by, by, ..., by are arbitrary numbers, then

F(Y)~) w(Y),

I=0
q
where u(Y) = D byui(X).
fous

The proof of the lemma is evident.

LEMMA 2. If the function F(Y) possesses a zero asymptotic development
of the type W at the point On;1 and function ®(Z) satisfies the inequality

(2.1) P(Z) < NIZ|, Z = (22 )2n)

on a neighbourhood of On.1, then the function f(Z) = F(P(Z)) possesses
a zero asymptotic development of the type W at the point Opy,.
Proof. We have
(2.2) F(Y)=|Y"En(Y) (m=0,1,2,..),
where functions E,(Y) are continuous at O, and tend to zero a8 Y —>0p 4.
Substituting @(Z) for Y in (2.2) we obtain f(Z)=F(P(Z))
= |®(Z)|"En(®(Z)). Taking into consideration (2.1) we have

If(2)| < CIZ|"|En(®@(Z))] (m=0,1,2,..),
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where C is a certain constant. Hence
/(212 ™ < C|En(®(Z)] (m=0,1,2,..).
Therefore we have
Zlig:ﬂ|zl_m|f(z)| =0 (m=0,1,2,..),

because by (2.1) #(Z) >0 as Z —->0y4,.

Remark 3. If a real function F(Y) of a real variable Y belongs
to the class C* on a neighbourhood of On4;, then it has an asymptotic

development of the type W at On.y, F(Y)~ 2 w(Y), where X u(Y) is
i=0 1=0

the Taylor series of F'(Y) at Ony;.

LEMMA 3. Let u(Y), u,(Y), uy(Y), ... be a sequence of homogeneous
polynomials, where w)(Y) is of order Il (1 =10,1,2,..).

Then there exists a function H(Y) of class C™ on a meighbourhood
of Opyy Such that

H(Y)~) w(Y).

I=0

This lemma follows from Whitney’s theorem [8].
LeMMA 4. Consider the system of ordinary differential equations

(2.3) |z|"dz/de = Az+ 5(z, 2)2+ R*(z, 2) ,

where r 18 an integer, A i3 a n Xn constant matriz and n(w,z) = [yy] 8
n Xn malriz function, where ny;—>0 as /0, 250, (3,j=1,2,..,n).

(The symbol 7”0 means that 0 and x < 0.)

The vector function R*(x,z) possesses a zero asymptotic development
of the type W at the point Opy,.

Let A, A3y ..., An be the characteristic roots of the mairiz A and let
ag =Telq, fe=1imly, ¢=1,2,..,n.

There exists a linear mon-singular transformation G: w = Tz, which
transforms (2.3) into the system

(2.4) @[ dujde = Bu-+y (2, u)u+ B*(z, ),
where B 18 a matriz of order m of the form

B, 0
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B, (p=1,2,..,8) is a square matriz of one of the following forms:

a 6, 0 0 ... O
0 a 6, 0 ... O

0 0 0 0 @
" 4 fp 6, 0 0 0 0 .. O O
—fpa 0 8, 0 00 .. 0 0
0 0 a fp 6, 0 0 ... 0 0O
0 0 0 0 0 00 .. apBp
. 0 0 0 0 0 0 0 ..—f a

dp 18 arbitrary positive number, y(z, u) = [yi(2, u)], yii(z, u) >0 as 70,
u—->0, (4,j=1,2,...,m) and R**(xz,u) possesses a zero asymptotic de-
velopment of the type W at Opyq.

Remark 4. We can easily show that there exists a finite number g,
such that

(2.5) (Bu)u 2> fo|ul®
and there exists a function e(z, ), e(z, u) >0 as 0, -0, such that
(2.6) (v(@, w)u)u = — le(z, w)| [ul*;

moreover, for an arbitrary constant 4, , there is a function ,,(x), {n(2) >0
as z /0, such that

(2.7) B*(z, u)u > — |(m(@)| |w[>m+2
for |u| < Aplz], m i8 an integer, m > 1.

LEMMA 5. Assume that reld; =aq # 0 (q=1,2,...,7) and let
(2.8) QG2 ..2q>0> a4 > .. 2a,

then there exists a linear mon-singular transformation G: u = Tz, whick

transforms (2.3) into the system
2.9) |z|"dv]de = G'v+ Tz, w)u+ R'(x, u),
. |z]"dw|dx = Fw+ I'(x, u)u+ Rz, u),

where u = (v, W), V= (Uy, Ugy ceey Up)y W = (Ups1y Upyay -.oy Ug), G, G* are
I x1l and (n—1) x (n—1) matrices respectively, having the form

N, 0 Nona 0

N, N,
@ — z.. L @= st2

0o N, 0 N,
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By N, (p=1,2,..,k) we denote a matrix having one of the fol-
lowing forms:

&% B 8 0000 .. 0 0

—Bpa, 0 8000 .. 0 0 G 5 00 .. 0
0 0 a fp 600 .. 0 0 . 5 o 0
0 0 —f, ap 0 6 0 . 0 of; o '
00 00000 .. a B 0000 .09

| 000 0 0000 .. —8, a

Number é can be chosen so as to satisfy the inequality
(2.10) [6] < (2n) 'min(ay, ...y @1, — G141y ooy — an) -

We have I'(z, u) = (I'(z, u), I'*(z, u)) >0 as @ 0, u—>0,, B*(z, u)
= (R(x, u), R¥=, u)) is a vector possessing a zero asymptotic development
of the type W at point O,4;.

Remark 5. With the help of relations (2.8), (2.10) we can easily
show that there exist constants a > 0, f# < 0 such that

(2.11) (G)o > alor, (Gaw)w < Blw]?

and there exists a function e(x, ), e(x, u) >0 as ¢ /0, « -0, such that
I'(@, u)v > — |e(x, u)[ (v + |w]) ,
Iz, w)w < + le(w, u)|(|v[*+ [w]?);

moreover, for an arbitrary constant A4, there is a function yn(x), ym(z) -0
as z /10, such that

(2.12)

(2.13) i i — [ym(@) a2

Rz, w)w < |ym(@)| [@]*™+>
for |u| < Ap|z|™, where m > 1 is an integer.

§ 3. We now give the main results of this paper.
Consider the system of » ordinary differential equations

(3.1) |o|'dy/de = f(z,y), flo,y)= (fl(xa Y)y ey f, y)) 3

where r is an integer.
We shall now formulate the following assumptions.

1) Vector function f(x,y) is continuous on a neighbourhood 2 of
the origin Opi1, f(On+1) = On and possesses an asymptotic development
of the type W at point Op4.,

o

f‘(a”y)"““zu;(ma'y) (1=1,2,..,n)
=0
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where
uf)(my y)=0, u{(wy Y) = @G+ anY ...+ AQinYn

fort=1,2,...,n.

2) Through each point of the domain 2, = OQ\IT (I/ denotes the
plane z = 0) passes exactly one integral of the system (3.1).

3) The real parts of all characteristic roots 4, ..., 4, of » xn matrix
A = [a;;] are different from zero, i.e.
(3.2) relfq=a,#0, ¢g=1,2,...,n.

In order to fix attention we put

Q>0 .ag>0>aqgay>...2a,.

4) Functions f‘(:v, ¥), 1=1,2,..,n, have first partial derivatives
with respect to y,, ..., ¥, in 2, and they have finite limits as z 70, ¥y > On.

We shall study separately the properties of the integrals of (3.1)
in the cases

a) r = 0 (Theorem 1),

b) r =1 (Theorem 2),

¢) r > 2 (Theorems 3, 4, 5, 6, 7).

The case r < 0 reduces trivially to the case r = 0.

THEOREM 1. Assume 1) and suppose that through each point of do-
main Q2 passes exvactly one integral of the system

dylde = f(z, y) .

Then the integral of the system passing through the point Ony, possesses
an asymptotic development at x = 0.

THEOREM 2. For r = 1, under assumptions 1), 2) and under the as-
sumption that

(3.3) Det[4A+mI] # 0

for every mon-negative integer m, the system (3.1) possesses a solution tending
0 On a8 £—>0 and having an asymptotic development at x = 0.

THEOREM 3. Under assumptions 1), 2), 3) the system (3.1) (r > 2)
possesses a solution tending to O, as © /0 and having an asymplotic de-
velopment at z = 0, moreover, if ag are not all positive, there are infinitely
many integrals of (3.1) possessing the same development at © = 0.

THEOREM 4. Under assumptions 1), 2) if
G<L<..<a,<0,

then all integrals of the system (3.1) (r > 2) satisfying |y (z)] < M |x|, where M
i8 a positive constant, on a neighbourhood of the point x = 0 possess the
same asymptotic development at © = 0.
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THEOREM 5. Under assumplions 1), 4) if
aQz>az=.za>0,

then the system (3.1) (r > 2) possesses exactly one integral tending to O,
as /0 and this integral possesses an asymplotic development at z = 0.

THEOREM 6. Under assumptions 1), 3), 4) there exists such a neighbour-
hood N of the origin that the set of points lying on the integrals of (3.1) (r > 2)
remaining in N for x 70 is a Lipschitzian (n—l+1)-dimensional manifold
and each integral of the system (3.1) (r > 2) remaining in N for x 70 possesses
the same asymptotic development at © = 0.

§ 4. Proof of Theorem 1.

1. Let f(x,y)~> w(z,y). In virtue of Lemma 3 for polynomials
I=0

wi(®,y) (i=1,2,..,n) appearing in the system (3.1) (r < 0) there exists
a vector function, H(z,y) = (H'(x,y), ..., H"(z,y)) of class C* defined

on a neighbourhood R of 0, such that H(z, y) ~;Zc,:u§(w, ¥),i=1,2,..,n0

From assumption 1) it is easily seen that
(4.1) H(0p41) =0 (1=1,2,..,n).

With the aid of functions H(z, y) we may otherwise write (3.1) (r < 0)
in the form
(4.2) dyldz = H(z, y)+g(z, ¥) ,
where g(z,y) = (f(z, y)—H'(2, ), ..., (@, y)— H"(z, y)), g(z,y)~0.
Let y = y(x) be the solution of the system dy/dx = H(x, y) with the
initial condition %(0) = O,.
2. We shall use the transformation

(4.3) n=v—7) (=1,2,..,n).
Then (4.2) takes the form

(4.4) dzjde = H (z, 2+ 5 (2)) + g{z, 2+ F (@) — 7' (2)

or

(4.5) dzjdx = H (z, 2+ F(z))— H (2, §(2)) +g(x, 2+ 7 () .
We have

H(:D, z+§j(w))—H(a:, y(w)) = Hv(‘”’ Zt‘l‘g(w))z )

where 0 <?<1 and H, = [Hf,,(:v, y)] denotes the Jacobian matrix of
H(z, y).
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On the other hand Hf,‘(O,,H):a”, 1,j=1,2,..,n. Hence we
obtain

(5.6) H(m,z+y(m))—H(w,g7(w)) = (A'l"](w:z))z'
From relations (4.5), (4.6) we may write the system (4.4) in the form
(4.4) deldz = Az+n(x, 2)2+ G(z, 2),

where 75(z, 2) = [n;(z, 2)] is a n xn matrix, G(x,2) = gz, 2+ 7 ().

Therefore the system (4.4) is of the same type as (2.3). On the basis
of Lemma 4, a linear non-singular transformation 6 changes (4.4) into
the system

(4.7) du/dz = Bu+ y(z, u)u+ R**(z, u),

where the matrix B and the vectors y(z, «), R**(z, ) have the same mean-
ing as in (2.4).
Transformation (4.3) changes 2 into a domain Q.
" 3. Now we shall construct a sequence of auxiliary sets S, S,, ...
Let us consider a number 4, > 0 and a number &, e (—1, 0) such that
the set Dy(&,, 4,) = {(&, u): = € (&, 0), |u*— Aja* < 0} is contained in .
Consider the expression

%} (lu*— A3z®) = 2%3—:'—2Afa:

for |u|® = A}4®, £ <, where du/dr denotes the right-hand members
of the system (4.7).
Now

20 T 2 4% = 2((Bu)u-+{y (0, w)u) u+ Bz, w)u]— 243 .

Therefore it is easy to see that there exists a number §;: & < & < 0,
that

(4.8) diw (juf—A3z*) >0 for |u’=A4}s", &<z<0

or that the set 8, = {(z,u): & <2 <0, |uf*— Aj2® = 0) has the prop-
erty that (4.8) is satisfied on §,.
Let us take into considerations the set

Sp = {(@,u): n<z<0, |uf— AL 2™ = 0},

where A4,, > 0 is a certain constant, & < &, < 0. Suppose now that
(4.9) ‘% (uf—Ana®™)>0 on S8, (m>=1),

where du/dz is replaced by the right-hand members of (4.7).



Solutions of ordinary differential equations 29

Let &: &, < £ < 0 be an arbitrary fixed number and let us consider
the expression

(I ul*— (An/€) 2™ ")

= 2 (2m+ 2) 42/ ™

= 2[(Bu)u-+(y(x, u)u)u+ R*(z, u)u]— (2m+ 2) (45/&) a"™*",

for |uf® = (4L/E) ™2, t <z <.
We have |u| = (An/|E])|2]™" < Apl2z|™, because |x/f] < 1. Hence
with the aid of inequalities (2.5), (2.6), (2.7) we obtain the inequality

2[(Buyu+(y(z, w)uju+ R*(z, u)u]—(2m+ 2)(A45/6) ™+
< 2[Bolul*— le(@, w)| [ul*— |Ln(@)| 21— (2m + 2) (47 [E") ™™ !
= 2(An/E) "™ || (Bo+ 8m(2) + Am(2) (£]A7)) + (m+1)]

where 6,(x), dn(x) are independent of & and tend to zero as 2 /70.
There is a number &nt1, &m < €ms1 < 0, independent of & such that

|2| (Bo+ 8m(#) + Am(®) (€ Am)) + (m+1) > 0
for Em+1 K< 0.
Finally we have the following inequality
%(|u|2—(A$,,/£2)av‘*’"”) >0 for |u’= (4%, b <2 <0,

where du/dx is replaced by the right-hand membres of (4.7) and & is such
a fixed number that &, < £ < 0.
Therefore, in particular, the following inequality also holds:

(4.10) (|u1 — (An/Emi)@™™F) > 0
for |uf’ = (An/fms1) 8", Enp <2 <0,

where du/dr is replaced by the right-hand members of (4.7).

We introduce the notation A,y = — (An/éns1) (4w > 0).

It can be seen that polynomials A, .,(—x)™"', An(—2)™ have the
same value at ¢ = £,,4;.

With the aid of (4.10) we obtain the inequality

d
7z (4f— 4mi12*"¥2) > 0 on Smi1,

where du/dz is replaced by the right-hand members of the system (4.7).
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We have thus shown that there exists a sequence {{n},

(411) —1<én<0, én<énn(m=0,1,2,..), lim¢ =0

that the inequality (4.9) holds for every natural number m.

For the sequence (4.11) we define a function I(z, {{,}) in the following
way:

Uz, {én)) = (—1)"Apna™ for e Em1,énd (Mm=2,3,..).

It is easy to see that the function I(z, {{,}) is defined, continuous
and possesses a left-hand and a right-hand derivative in the whole interval
(&, 0); moreover,

(4.12) Iz, {Em}) ~0+ 0z 02%4... at 2=0.
4, Let us introduce the notation
L(z, u) = |ufp— Bz, {£n}), m(z,%)="&—7,
3=0n {(z, u): ueR", Tz <0}.
We define the domain D as follows:
D= {x,u)e, L(z,u) <0, m(z,u) <0}.
The boundary of the domain D in £ is formed by the union of sets
80 = {(x,u) e D, L(z,u) =0, m(z, u) <0},
8@ = {(z,u) el , L(z,u) <0, m(z,u) =0}.

From the definition of functions I(z, {{s}), m(x,#) and inequali-
ties (4.9) we have
S_L(x,u)>0, 8;Lz,u)>0 on 8V, S m(z,u)<0 on S,

Hence it follows that points of 8@ are not points of egress from D with
respect to the system (4.7) and to ?), but points which belong to the set
SO\ 8@ are points of strict egress from D with respect to (4.7) and to Q.
Therefore all points of egrees from the domain D with respect to (4.7)
and to & are points of strict egress from the domain D with respect to
the system (4.7) and to D.

Consider a fixed number z,, § < 2, <0 and let Z = { (z,u): z= =,,
|u|2— (@, {&m}) < 0}. It is not difficult to prove that Z C D v (8W\ 8®)
and that Z ~ (S®\ 8®) is not a retract of the set Z, but is a retract of
the set SW\ §®. Hence, on the basis of T. Wazewski’s theorem [7], in
the set Z\(SW\ 8@) there exists at least one such point that the integral
u(z) of (4.7) starting from this point to the right remains in D, i.e.

(4.13) |w(@)| <z, {&n)) (=1,2,..,n) for z<z<O.
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From the property (4.12) of the function I(x, {{,}) and from (4.13)
the following relations follow:

wi(@) ~0+ 08+ 022 +... (i=1,2,..,0).

From the non-singularity of the linear transformation T it follows
that (4.4) possesses an integral z(x) = (2(), ..., 2:(2)) having a zero
asymptotic development at z = 0 or

zi(x)~0+0z+4+022+... (1=1,2,..,m) atxz=0.

With the aid of (4.3) we return to (3.1) and obtain an integral y(z)

= (yl(m), ...,y,,(a:)) of the system (3.1) possessing an asymptotic de-
velopment.

It means that (3.1) has an integral y(z) tending to O, as z 70 and
possessing an asymptotic development at # = 0. We have y(0) = O,.
From the fact that for each point of the neighbourhood £ (3.1) has
exactly one integral it follows that the integral passing through O,
of the system (3.1) (» < 0) possesses an asymptotic development at z = 0.

Remark 6. Theorem 1 is analogous to the Cauchy-Kowalewsky
theorem.

§ 5. Proof of Theorem 3 (r > 2).

1. For the polynomials wj(z,y), i =1, 2, ..., n, appearing in (3.1)
(r > 2) there corresponds (Lemma 3) a vector function H(x,y)

= (H'=,y), ..., H"(z, y)) belonging to class C* in the neighbourhood 2
such that

H(z,y)~D ui@,y) (i=1,2,..,n).

i=o
With the aid of (3.2) we have
(5.1) | 4| = Det[Hy,(, ¥)llwar-0onn # 0.
From assumption 1) and (5.1) we obtain
(5.2) H(Opt1) =0,, H(0,y) # O, for y # O,
With the aid of H(z,y) we may write (3.1) (r > 2) in the form
(5.3) o' dy/dz = H(x, y)+9g(z, ),

where g(z, y)~0.

2. We want to find a vector function ¢(z) = (p\(x), ..., pa(x)) in
class C* on a certain neighbourhood of @ = 0

(5.4) (z, p(2)) e R
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such that the functions ai(x) = |2[¢i(z)—H'(z, ¢(2)), i =1, .., n, have
a zero asymptotic development at 2 = 0, i.e.

(5.5) §™0)=0 for m=0,1,2,. (i=1,2,..,1).

Passing to the limit for a;(x) as x 70, we obtain

a(0) = —H'(0,9(0)) (=1,2,..,n).

From (5.2) we have
(5.6) ¢(0) = Oy

Let ¢™(2) = (¢7"(@), ..., gi()), d™(2) = (a{(), ..., ™(z)) (m =1,
2,..), Holw,y) = (H::(xa Y)y -y Ha(w, y))r and let Hy(z,y)= [H:,,(w, ¥)]
denote the Jacobian matrix of H(z, y).

Differentiation of a;(x) yields

d'(x) = — H(z, p(@))+ (l2") ¢’ (@) + lz["p" () — Hy(z, ¢ () p(2) .

It can be shown that the identities

a™(z) = m(l2]")¢"™ (@) — Hy(z, ¢(2)) o™ () + |2] o™ (z) +
+Wm(wr (@) ..ry ?’(m_l)(w))

hold for every number m, where the vector function Wy(z, ¢(2), ...
vey @™=(z)) is determined by H(x,y) and its partial derivatives up to
mth order.

Using (5.6) and letting o™(x) pass to the limit as # 70 we obtain

(5.7)  a™(0) = — Hy(0n+1)¢™(0) + W (0, ¢(0), ..., ¢™~1(0)) = 0

for every natural m.

From (5.1) it follows that we can solve the system of linear equa-
tions (5.7) and let (Ymijy ey Ymn) = ¥m = ¢'™(0) be the solution of (5.7)
for m =1,2, ..

In this way we obtain a sequence of vectors

(5.8) On = Yoy Y15 Y2y -

Using Lemma 3 we obtain for the sequence (5.8) a vector function
7(#) = (7u(%), ..., Yn(w)) which is defined and belongs to class C* on
a certain neighbourhood of # = 0 and is such that

(5.9) Y(@)~0+ 2+ 7.2+ ...

It is easy to see that for 7(r) the required conditions (5.4), (5.5)
are satisfied.
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3. Let us introduce the change of variables

(5.10) z=y—9y(x).
Under this change, the system (5.3) takes the form
(5.11) |z"dz/de = H (z, 2+ §(2)) + g (=, 2+ 7 (2)) — |27 ().

With the aid of the properties of H(z, y), ¥(z) and using the mean-
value theorem we can write (5.11) in the form

(5.12) |z["dz/de = Az+y(z, 2)2+ Rz, 2) ,

where functions 5(z,2), R*(x,2) are of the same type as in (2.3).
In virtue of Lemma 5, a linear non-singular transformation G chan-
ges (5.12) into the system

|z|" dv/de = G'v +I'(z, v, w)u+ R'(z, v, w),
\@|" dw/dr = G*w+ I(x, v, w)u-+ Rz, v, w),

where matrices G, G%, I'(z,v,w), I'*(x,v,w) and vector functions
RY(z, v, w), B*z, v, w) have the same meaning as in system (2.9). Trans-
formation G changes the domain £ into a domain £.

4. Now we shall construct two sequences of auxiliary sets S, S,, ...
and Z,, Z,, ...

For a given positive constant 4, we choose a number &,, —1 < &, < 0,
such that the domain D,(&,, 4,) = {(z, v, w): & <z < 0, |v]"— ATa” < 0,
lw>*— Aa® < 0} together with its boundary in £, is contained entirely
in Q,.

Consider the expression

(5.13)

ol 2 (o'~ 420%) = 2[af'n 52 — 20 4% jol

for |vf* = A3s®, |w|® < Al4’, where |o°dv/dz is replaced by right-hand
members of (5.13).
We have

|m|'d% (o] — 4ia®) = 2[(G'v)v+ (I(z, v, w)u)v+ R'(z, v, w)v] — 20 AL |z[ .

Since |v]® = Al2% |w|* < Als®, we have
(5.14) |u] < 24,|2| .

By virtue of inequalities (2.11), (2.12), (2.13) appearing in Remark 5,
we obtain

2[(Gv)o+ (I(x, v, w)u) o+ Bz, v, w)v]— 20 A] ||
> 24127 a— |e(2, u)| — [n:(@)] — |="27'],

where e(z, u)—>0 as @ /0, u—>0y,, 7,(z)>0 as z,70.
Annales Polonicl Mathematici XX 3
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From (5.14) for r > 2, a > 0 there exists a ?,, & <t, < 0 such that

a—le(@, w)|— In@)|—|zz7 = a/2 for {<x<O0.

Therefore we have
1”"7.%;(!1212— 4ia")>0 for |off = Aia®, [w < 4id®, 4, <z <0.

Similarly we can show the existence of a constant ¢, £ < ¢, <0,
such that

|w|’d%(lw12— 1) <0 for |off < Ald", |wf’ = 4]d", <2 <0,

Let & = max(t,, q,); we see that

%(W—Aimz) >0 on4g,,
d 2 2 2
%(le—Alm)<0 on Z,,

where
8, ={(x,v,w): & <x <0, o= A12", |w* < A]a"},
2 2 2 R 2 2
Z, = {z,v,w): <z <0, [u’= 412", |v]* < 412"}

and |z|"dv/dx, |@|"dw/dz are replaced by the right-hand members of sys-
tem (5.13).

As in § 4, one can show that there exists a sequence of numbers {£,,}
such that

(6.15) —1<én<énu<0 (m=0,1,2,.), lim¢, =0,

and the inequalities

d
%(Ivlz— A a™™) >0

(5.16) on 8, = {(z,v,w): ze(fm,0), [v]* = Ana™ , |Jw® < Afm’D?m} ’

d
%(l’wlz—ﬁfnwm) <0
on Zn = {(z,v,w): T (ém,0), |w]* = An ™ y Joff < Ana™™}
hold for every natural number m, where |z|" dv/dz, |z|"dw/dz are replaced

by the right-hand members of (5.13).
For sequence (5.15), we define a function I(z, {{n}) as in § 4.
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It is easy to see that function l(r, {£,}) is defined and continuous
in the whole interval (§;, 0); moreover, it possesses left-hand and right-
hand derivatives bounded in the interval <{£,, 0) and the relation

(5.17) l(z, {£n}) ~0+ 02+ 0224 ...
holds at z = 0.
5. Let us introduce the notation
L(z, v, w) = [v*— Bz, {£n}) ,
m(z, v, w) = |w—0&=, {{.}), m¥z,v,w)=§—2.
We define
D = {(z,v,w): (z,v,w) ‘515 L(z,v,w) <0, m'(z,v,w) <0,
m¥x, v, w) < 0}.
The boundary of D is formed by the union of sets
80 = {(z, v, w) € 2, L(x,v,w) =0, m(x,v,w) <0, mz,v,w) <0},
<

0},
8O = {(z, v, w) 551; Lz, v, w) <0, mY(z,v,w) <0, m¥z,v,w) = 0}.

80 = {(z, v, w) e 2,, L(z,v,w) <0, m(z,v,w) =0, m¥z, v, w)

In virtue of (5.16) it is easy to see that

S_L{zx,v,w)>0, S;L(zr,v,w) >0 on 8W,
S_mY(z,v,w)<0, Simi(z,v,w)<0 on S®,

S_m¥x,v,w)<0, S;im¥z,v,w)<<0 on S®,

It follows that the points which belong to the set S® o 8® are not
points of egress from the domain D with respect to (5.13) and to £,, but
the points which belong to set SM\ (8@ o §@) are points of strict egress
from the domain D with respect to system (5.13) and to 2,. Therefore
all points of egress from the domain D with respect to (5.13) and to !31
are points of strict egress with respect to the system (5.13) and to £,.

Let us consider an arbitrary fixed number , and a vector
Wo = (UT41y -, Un) SUCh that & < T,<0, [we|2 <&y, {£n}). Let Z = {(z, v, w):
z = Zyy |V]P—B(y, {Ea}) <0, w = wy}.

It is not difficult to prove that Z C D u (SW\(8® U 8§®)) and that
Z ~ (SO\ (8® U 8®)) is not a retract of the set Z, but it is a retract of
the set (S“)\(S(z) v S(a))).

Hence with the aid of T. Wazewski’s theorem [7] there exists at
least one point which possesses the property that the integral (v (), w(x))
of (5.13) starting from that point to the right remains in the domain D.

3%
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Therefore we have
(5.18) ui@)] < Uz, {&n}).  (6=1,2,..,m).

By virtue of (5.18) and the property (5.17) of the function I(z, {£,})
it follows that wu(z)~0+0z+0z2+.. (¢=1,2,..,n). By the non-
singularity of the linear transformation G, we infer that (5.12) possesses
an integral z(z) = (zl(m), ey z,,(w)) having a zero asymptotic development
at r =0, i.e. 2(x)~04+0x4+022+... (¢ =1,2,..,n).

We return to system (3.1) (r > 2) by relation (5.10) and we obtain
an integral y (z) = (y,(2), ..., ¥a(2)) of (3.1) (r > 2) possessing an asymptotic
development. It means that the system (3.1) (r > 2) has an integral
tending to O, as # /70 and possessing an asymptotic development at z = 0.

Since the wector w, is taken arbitrarily, there are infinitely many
integrals of system (3.1) (r > 2) (except for the case a, > a, > ... > ap > 0)
tending to O, as # 70 and possessing the same asymptotic development
at 2 = 0.

§ 6. Proof of Theorem 2. If »r =1, then the system (3.1) has
the form

(6.1) |z|dyjdx = f(z,y), flz,y)= (fl(w’ Y)s ooy [, ?/)) .
1. We may write (6.1) in the form
(6.2) |2|dy/de = H (x,y)+9(z,¥),

where H'(z,y) (i = 1, 2, ..., n) are functions of class ™ in the neighbour-
hood 2 and are such that

H{(w;y)""zu:(wﬂy) (t=1,2,..,n)
=0

and the vector function g(x, y) possesses a zero asymptotic development
of the type W at O,+., or g(z, y)~0.

2. We want to find a vector function ¢(x) = (y(«), ..., p(x)) which

is defined and belongs to class C™ on a neighbourhood of point z = 0,
#(0) = Oq.
(6.3) (@, () e R

and is such that the vector function a(x) = |#|¢'(w)— H (z, p(x)) possesses
a zero asymptotic development at # = 0, or

(6.4) ai(z) ~0+40x+0224+... (¢1=1,2,..,m).
Passing to the limit with a;(z) we obtain
(6.5) a(0) = H(0, ¢(0)) = Oy .
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From (6.5) with the aid of assumption (3.3), we can show that ¢(0) = O,.
Let y, = ¢(0).

Differentiation of a(x) yields:

a'(x) = |z]@"(x) + (l2])'¢’ (@) — Hy(x, ¢ (#)) ¢'(2)— Ho(z, ¢(@)) -
Passing to the limit with o'(z) we obtain
(6.6) Hy(0n41)9'(0)+¢'(0) = — Hz(On+1) .

It is a linear non-homogeneous system for ¢’(0). From the assump-
tion (3.3) we obtain |H,(0,11)+ I| # 0; therefore (6.6) has one and only
one solution ¢’'(0) = y,.

It can be shown that the identity

a™(z) = |z|gm+ N z) +m(|z]) g™ (2)— Hy(z, ¢ () g™ (z) +
+ Wm(‘”y (@), .ny q’(m_l)(“’))
holds for every natural m, where Wy(z, ¢(2), ..., ¢™=1(x)) is determined
by the function H (m, @(z)) and their partial derivatives up to mth order.

Passing to the limit with a™(z) we have
(Hy(0n+l)+7n1) ¢"™(0) = Wm(07 @(0), ..., ‘P(m—l)(o)) .
Hence with the aid of assumption (3.3) we can obtain ¢/™(0) = yp.
Therefore we obtain a sequence of vectors
(6.7) On = Yoy Y15 Y2y -

Using Lemma 3, we obtain a function ¢(2) which is defined and
belongs to class C* on a certain neighbourhood of # = 0 and is such that
@)~y + 72T+ Y22+ ...

It is easy to prove that the required conditions (6.3), (6.4) are satisfied
for p(2).

Introduce the change of variables
(6.8) z=1y—p().

With the help of the linear non-singular transformation G: % = Tz,
|T| # 0 system (6.2) can be replaced by the system

|#|du/dr = Bu+y(z, u)utR*(z, ),

where matrices B, y(z, ) and vector R**(z,u) are of the same type as
in (2.4). The proof can be completed analogously to the proof of Theorem 3.

§ 7. Proof of Theorem 4 (g, <a,< ... <an<0). Let us take
into consideration a certain integral u(z) of (6.13) satisfying

(7.1) lu(2)| < Mlz]

in a neighbourhood of # = 0, where M is a certain positive constant.
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Consider now the set D defined in § 5 with &, corresponding to 4, > M
and such that (7.1) is satisfied for z = £,. In virtue of (7.1) integral «(z)
belongs to D for z = £, and by (5.16) (S, being empty) for & <z < 0.
Therefore u(x) has the asymptotic development defined by (5.9) and
the proof of Theorem 4 is complete.

§ 8. Proof of Theorem 5 (r>2, a,> a,> ... > az > 0). Theo-
rem 3 implies the existence of an integral of (3.1) tending to O, as z 0.

Suppose that the system (3.1) (r > 2) possesses two integrals y'(z),
y*(x) such that

(8.1) y(z)>0n, Y(x)>0, as z/0.
In a certain neighbourhood of £ = 0 we have the identities
o] dy'(@)/de = f(z, ¥'(2)), |a|"dy*(2)/dz = f(z, y*(z))
from which we obtain

8.2) jal" 2 (8(@)—97(2)) = f{z, (&)~ F{z, ¥¥(0)) -
Let z(z) = y'(x)— y*(x). We see that
(8.3) 2(x)>0, as /0.

Since y(z), y*(z) are not identical in a certain neighbourhood of
z = 0, there exists a point #, belonging to that neighbourhood such that
|2(x,)]? > 0, but from the uniqueness of (3.1) (r > 2) we obtain

(8.4) 2(z)2>0 for zedlx,0).

With the help of the mean-value theorem and by assumption 4)
and (8.3) we obtain the relation

fle, (@) —f(z, y*(@) = (4 +e(2))2(a)

where &(2) = [eiy(2)), &(2)—> 0 as 2 70, ¢,j =1,2,...,n. Therefore the
identity (8.2) takes the form

0" dz(z)/de = (4 + ¢ () 2(x) .

It means that the function z(z) possessing property (8.3) is the solu-
tion of the following system of differential equations:

(8.5) |z|"dz|de = (A +e(x))2 .

Consider system (8.5) in the domain {(z, 2): z (b, 0), z¢e R"}, b < x,.
With the aid of transformation G: » = T2, |T| # 0, (8.5) is
transformed into

(8.6) |z|"du/dz = Gu+-¢e(z)u ,

where g(x) = [&(2)], &ij(z)—> 0 as z /0.
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Let u(z) = Tz(x). From (8.4) we obtain
(8.7) lu(z)2>0 for xedx,0).

From the fact that u(z) satisfies (8.6) by virtue of inequalities (2.11),
(2.12) appearing in Remark 5, we obtain

(8.8) ol & (u(@)f) > Blu (@) —le@ (@)

where z(z) >0 as x 70, f> 0. B
There exists a number x, such that |e(z)] < /2 for 2, <z, <z < 0.
By the inequality (8.8) we have lwl'%(iu(w)lz) > (B/2)lu(@)* in (x,, 0).
Let us consider the ordinary differential equation
(8.9) dk|dx = |z|"(B/2)% .
The function

k(2) = koexp|(B2) [ 1s17ds], 2 €<, 0)

.
is an integral of (8.9) passing through the wpoint (=,,%,, where

ko = |u(z;)2 > 0.
Hence we obtain

k(z) > Nexp|[(B/(2r—2))(—a) "], @ elm,,0),

where N i3 a positive constant, r > 2, > 0.
Hence we obtain

(8.10) k(x)>+oc0 as z/70.
From the theorem of ordinary differential inequalities [8] we obtain
|u(z)]? > k(x) for xedx,,0).

From (8.10) we have [u(2)]*>—>-+oco as /0. From this property
a contradiction can easily be obtained.

§ 9. Proof of Theorem 6. Consider system (5.13) and denote
its right-hand sides by h¥(z, v, w), ¥z, v, w). It can be shown that the
system

dvjdz = || "R\ (@, v, w), dw/de = |z| Kz, v, w)

satisfies on certain neighbourhood N of the origin, for z < 0 or 2 > 0,
the assumptions of a theorem of A. Pli§ [5]. Therefore the set of points
lying on the integrals of (5.13) remaining in N is a graph of a single-valued
function defined on a certain (n—1!41)-dimensional set; moreover, this
single-valued function satisfies the Lipschitz condition with respect to
all variables.
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It can be shown as in § 5 that for (z, w) from a sufficiently small
neighbourhood of the origin, < 0, there exists an integral v(z), w(x)
remaining in N for 7 <« < 0, having asymptotic development (5.9)
and such that w(Z) = %. Therefore by the previous remark every integral
of the kind considered has the same asymptotic development.

Returning to the coordinates x, y we obtain a Lipschitzian manifold
consisting of points lying on the integrals of system (3.1) (r > 2), remaining
is a certain neighbourhood of the origin.
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