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Differential-functional inequalities of parabolic type
in unbounded regions

by P. BESALA and G. PASzEK (Gdansk)

Abstract. The paper deals with a diagonal system of parabolic differential-
functional inequalities of the form

n n
(0.1) wf(t,2) < 3 (afiit, D) (e, ), + 3 0R(E g (¢ @)+ fH(L 2, ut, 2), w8, )

i,i=1 i=1

k=1,...,N)

in an arbitrary open set D (bounded or not) in the half-space: ¢ > 0,z = (z,, ..., y)
€ B*. The function «(¢, z) = (u'(¢, z), ...,V (¢, 2)) is continuous in the closure D
of D and wu(t, ) = (v(¢, ), ..., uN(¢, ) denotes the function from 4y to BN such
that u (¢, -)(x) = (¢, z), A being the intersection of D with the plane { = t.

Under adequate assumptions we prove theorems on differential-functional in-
equalities, from which the maximum principle is derived, as are also some theorems
on cstimates and uniqueness for solutions of the first Fourier problem for differen-
tial-functional equations.

Parabolic differential-functional inequalities in regions bounded with respect
to z-variables were treated by J. Szarski [4]-[6], A. Sobolewska [3] and in an un-
boundeds trip by T. Stanisz in his thesis. Our improvement of their results consists
in that the solution u(t, «) is allowed to belong to some wider function classes and
that the region is arbitrary. Thus, in particular, we extend the corresponding result
of [1] (concerning parabolic differential inequalities) from the strip to an arbitrary
unbounded region and from L! to LP-solutions. The nethod used here is patterned
on that employed in papers [1], [2].

1. Preliminaries. Wec denote by ¢ points of the interval (0,T),

T>0, and by z = (#,,...,2,) points of the real n-space R" (n>1)
n

with |@] = (3 «})"*. Let 8§=<0,T)xR"* 8 =<0,T)xR" and let G
t=1

be an open set contained in S. We denote I' = SNoG, 6@ being the

boundary of @. The following lemma is an extension of Lemma 1 of [1].

LEMMA. Let w(t, ) be a function continuous in 8 such that w > 0 in

@ and w = 0 in S\GQ. Assume w has derivatives wy, w,,, Wyp, G each point of

G and the first derivatives are bounded in any bounded set G, = Gn(|z| < ),

r > 0 (by a constant M, > 0). Then the function

(1.1) 2= (w+eP? e>0,p>1,
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possesses the derivatives 2y 2oy Bza (¢, =1,...,m) at each point of 8
and they are given by the formulae

» D—3)[D, 2 Pp—3)/D, 2
Ny, — _pz( )l w wz., z‘ = pz( )/ w w“
(1.2)

2oz, = PLUP —1)w* +261eP"MPwaw 0, + pl?~ VP00,

Jor (t,2) eG and 2, = 2, = Zgg; =0 for (t, x) e S\G.

Proof. It is sufficient to show that the function z = w3 has the de-
rivatives %, ., 54:1-1, in § and that

(1.3) ‘z-zi = 3w2wzt, El = 3w2w‘, E

—_— 2
iz = 6ww2£wzj +3ww

zTj
for (t,z) e @ and %, = 2 = Zr; =0 for (¢, 2) € S\G, because then the
derivatives of z exist and can be calculated in the usual way, whence
we obtain (1.2). We prove that 2,=z, = &z, = 0 for (1, #) € I'; at other
points the formulae are obvious.

Let (t,2) € I' and let

sk __ ¢,
"=y ey Ty, Tt R, T,y 2,), B FEO

Choose » > max (||, |#**]) and suppose first that (¢, 2**) e G. Let (¢, a™),
|k’] < |k|, be the point (on the segment joining the points (¢, z), (¢, 2™))
such that (¢, ) e I and all the points of the segment between (¢, £**)
and (¢, '*) belong to @. In particular, A’ may be equal to zero, i.e., (¢, z**)
may coineide with (¢, ). Applying the mean value theorem we get

h—lw(t’ .’13"‘) — h—l['u)(t, mih)_,w(t’ mih’)] — 'w;r,‘-(t! wiﬂ(h—h’))

for a certain 0 < 8 < 1. The boundedness of the first derivatives of w in
G, implies

(1.4) I~ w(t, ™) < M,

where M, can be chosen to be independent of k.

If (¢, 2™) e §\@G, (1.4) is evidently satisfied, too. Inequality (1.4)
yields

W22, 2 —Z(t, )] = BT WP, ™)) < M wi(t, 2?) >0  as h—0.

Hence z, (¢, z) =0 (i=1, ..., n). Similarly we find £,(t, #) = 0 for (¢, z) € I'.
Now we show that Z,. (¢, #) = 0 for (¢, z) e I'. Let (t, 2™) € G. Then

B 2, (8 ™) — 3, (8, )] = W230 (2, o™)w, (¢, &)
< 3M, h7lwl(t, 2,
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whence, according to (1.4), we obtain
(1.5) W™ [, (2, 2 — £, (8, ©)]| < MM w(t, a™)

for suitable 7', #'’ > 0. Note that inequality (1.5) is also satisfied if (¢, #’*)
€ 8S\@G. Since the right-hand side of (1.5) tends to zero as A—0, we get
E,L.Ij(t, x) = 0 for (¢, #) € I' and the lemma is proved.

Notice that, assuming additionally that for each r > 0 the second
derivatives of w with respect to # are bounded in G,, the derivatives z,,
Bgyy Bzg, AT continuous on S\@G, in particular on I

2. Notations and main assumptions. Throughout this paper D will
denote an arbitrary open set (bounded or not) contained in the zone S and
2 will stand for the portion of the boundary of D that is not situated on
the plane ¢t =T, i.e.,, & = 8noD. We assume that the projection A;
of the intersection of D (the closure of D) with the plane t = # onto the
space R" is non-void for 0 <t < T.

Let h(z) = (b'(®),..., BV (x)) be a continuous function from 4,
into BY. A matrix ¢ = (¢f(t,2,9)) (k,1 =1,..., N) of continuous and
non-negative functions in {0, T'> x R® x R" being given, we say that k()
belongs to the space L¥(4,), 1 < p < oo, if for any fixed (¢, ) e D and
1 <k < N the norm

(2.1) (25 @) = f Zlh )7 ok (1, @, y)dy) '

is finite. In L7 (4,) the followmg partial order is introduced: for h = (h’ (%),

o W (z)) e LP(4y), b = (hl (@), ..., B (®)) € LP(4,) the inequality & < h
means that b*(z) < h*(x), © € 4, (k =1,...,N).

Considering inequalities of type (0. 1) in D, we always assume the
following :

I. The coefficients af; (af; = af), % (4,5 =1,...,n; k =1,..., N)
given in D ean be extended to the whole strip 8 so that the extended coeffi-
cients (denoted also by a,j, b’°) have the derivatives (aﬁ)zj, (b}‘), at each
point of 8, the extended coefficients and the derivatives being measurable
and bounded in any finite cylinder SN ([z] < 7).

II. Z'a,, (t, 2)&¢&; > O for (t, ) e D, (&, ..., 8,)€R" (k=1,...,N).

t,jml
III. There exists a matrix ¢ = (¢f(¢, #,9)) (k,1=1,...,N) of
continuous and non-negative functions in (0, T) X R"™ XxR" and a number
P >1 such that the functionals f*(¢,z, %, k) (k =1,..., N) are defined
for (¢,4) €D, u = (!, ..., u") arbitrary and for h e LF(4,). Moreover,
each f* ig, for almost all (¢, z) € D, non-decreasing in u!, ..., u*~ ', u**1, ...
.y N, B
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IV. There exist functions cf(t, @), ¢f >0 for I # k, continuous in
S and such that for # < u, A < h the inequalities

N
i@, z, u, h) —f* @, =, 4, i‘) < 20:‘(‘1 ) (u'— @)+ ”h_ﬁ“p,k(t’ z)

le1

(k =1,...,N) hold almost everywhere in D.
For k=1,...,N and & = ('(t,%),..., DV(t,2)) >0 we define

(2.2) Lk (%) = 2 (afs (¢ @) ULz, + Zb}‘(t, ) Uz,
4,jml i=1
(2.3) L @ny = N (alt, 0)0E), — N (bh(t, )2,
1,j=1 J=1
N
(2.4) *®) = [ Y &,y ek, y, 2)dy,

44 =1
. N N
(2.5) 4%(®) = LK)+ D d & +(p—1)( Y cf +1) 2+ 0 + I*(9),
i=1 i=1
(2.6) W*(t,7)
n n
- m?xz Iaf,diﬁjl 4+ PF (Ir:a;x]a{-‘,l +m:a,x|2 (aﬁ-‘,)zj—bﬂ) +I¥(dD).
J=1 . F=1

We also assume

V. There exists a function ®(t, ») = (P'(¢, ), ..., P (¢, z)) of class
C*(8) such that for x = 1,..., N we have &*({,2) > 0 in D,
(2.7) I¥(P) < oo for (t,0) €D,
and the integro-differential inequalities
(2.8) A¥(D) <0
hold true almost everywhere in D.

For vectors « = (u', ..., 4N), v = (v', ..., ¥") we write

<o il WY (kR =1,...,N).

3. Differential-functional mequalities.

THEOREM 1. Suppose u(t, z) = (u'(t, z), ..., u~ (3, @), o(t, 3) =
(v*(ty @), ..., oV (t, @) are continuous functions in the closure D of

D and u(t, @) < 9o(t,a) on ZX.
Let

@ = {(t, @) e D: ¥(t, @) > ¥(t, 2)}.
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Assume that the derivatives u{‘,uﬁi,uﬁ‘,j, Uy Vo Vsay (6,5 =1,...,m)
ewist in G*, are measurable and bounded in every set G*N\(jz| < r), r> 0,

and that the differential-functional inequalities
(3.1) uf(t’ z) < Lk(uk)(t: ) +fk(t1 z, u(t, z), u(t, ))’
(3.2) of (¢, @) > LF(o*) (8, 2) + (¢, @, (8, 2), 0(t, *))

are satisfied whenever (t, ) € G~

Let assumptions 1~V concerning the operators L* and the functionals
T* be fulfilled and let u(t, -), v(t, -) € L¥(4,).

Moreover, assume that

(3.3) [ (w2, @) — o (2, @) *JP*(2, @) dtde < co.
D

Under these assumptions we have
u(t,?) <o(t,x) 1in D.

Proof. Let % = (&!,...,u"),® = (¥, ...,8") be continuous exten-
sions of #, v, respectively, to the whole strip S such that # <& in S\D.
We define

(3.4) 2 = ((w*)*+ ¢)??,

where £> 0, p > 1, w* = (u¥—v*)* = max(0, @ —%*) for (¢,2)e 8. At
points of the set G* we have, by the lemma,

LH(2) — 2 = p(e") @7 (w*)* (L* (w*) —wf) +
n
+p [(p —1) (w*P +2e](2F)PEVP ook 2 af,wﬁ‘wﬁj.
f,j=1
Hence, by inequalities (3.1), (3.2) and their parabolicity, we obtain
(3.8) LX) —2> —P(zk)(p-s)’p(wk)z[fk(ti z, u(l, ), w(t, ))—
—fk(tr @, 9(t, z), v(t, ))I'
In the set G* we have u'(f, z) < v'(i, ) +w'(t,z) (I =1,...,N),
w*(t, x) = o*(t, )+ w*(t, ) and in the space LP(4,) we have u(l,-)

<o(t, )+w(t, ), where w = (w!, ..., w). Applying successively assump-
tions IITL, IV we get

fk(t: z, u(t, x), u(t, )) —fk(tf @, v(¢, »), v(¢, ))
éfk(tr @, v(t, o) +w(t, z), v(t, ) +w(t, )) —fk(ty z, v(t, z), v(1, ))

N
< Dot + flwlly,,

j=1
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which together with (3.5) gives

(3.6) LM~z > —p()P I k) 3 chut + ol ).
i

Inequality (3.6) is derived for (almost all) points (¢, x) € G*; however,
it is clear that it holds true.also in S\G*.
Now we make use of the identity

37 D (e = Z[zk(i"(w")wl‘)—<P"(L’°(zk)—z¢")l+
k k

+ ) D) [#* D alsek, — o 3 alil + b,
P j J

in which we set for 2* the functions defined by (3.4) and for ¢ = (¢, ..., ¢~)
the product y"®, where @ appears in the assumptions of the theorem,
y"(x) (r > 0) being a function of class C*(R") such that " = 1 for |z| < 7,
y" =0 for [z|=>r+1,0< 9" <1 in B" and the first and second decriva-
tives of ¥" are bounded in R" by a constant independent of r.

By assumption I and by the lemma, we may integrate (3.7) over
{th~ strip (0, t,) x B"*, t, € (0, T), obtaining

(38) [ N etetlde = [ Yoot dot
. 1 3

It’n k t
to
*
+ [ dt [ DN +¢f) — o (LF () — )| deo.
0 R, k
Hence, keeping (3.6) in mind, we get

39) [ YAt dr< [ Y ol dnt
k R, k

Ry

¢
4 fO it J. 2 q)kp(zk)(f’—3)/)7(wk)2 (2 C{‘wl-i- ”wl'[p’k) dw+
0 4; k 14

&y .
+ f at szk(Lk(cpk)—l-qJﬂdm.

0 R, k

Now, cf‘ = 0 for ! # k implies

(3.10) ()P~ (wk)® 3 ol < (#)PIP Y7 of ()P — e ()PP
¢ [

By Young’s inequality we have

(3.11) P(24)P VP (A)1lP < (p—1)2* + 2,
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which for I = k turns into equality. We also have
(3.12)  p ()P I (kY ol , < p (VPP ol < (2 —1)2F + (w0l 4 -
By (3.10), (3.11), (3.12) we obtain from (3.9), by letting ¢—0,

fZ(wk)p‘P le=ty @2 < fdtIZ{(w (Lk(QJ )+ o)+

+¢*| ‘,v* o' +(p—1) Z o +1) (w0*)? + il o]} =,
which can be written as follows:
(3.13) Rf ;‘ [0 (2o, 2) 1P £y, @) dz < jl') | ij [wk (¢, )7 A% () (¢, @) dtde,
where A"?«p) is defined by (2.5). Setting ¢ = y"® yields

314 A4g) = 7 4(@)+2 Y all O+ ) D ol +
+2 [2 at),,~ ] yz,}+1'°(yf¢>)— (@)IH®).

By assumptions V, (3.3) and by (3.14) and the properties of y", it follows
that the upper limit (as r—o0) of the integral on the rlght hand side of
(3.13) is less than or equal to zero. Thus

IZ [w*(to, 2) " D*(ty, #)dv < 0  for ¢, e (0, T),
%

whence w*(f{,x) =0 in 8 (k =1,...,N) and the proof is completé.

4. Some corollaries.

Remark 1. If the functionals f*(f, z, «, h) are independent of the
funetional argument k, Theorem 1 (and, similarly, subsequent theorems)
is concerned with differcntial inequalities of parabolic type. The result
is obtained by setting of(f, x,%) = 0 in Theorem 1 and constitutes a
generalization of a result of [1].

DEFINITION. By a solution of a system of inequalities (or equations)
of type (0.1) in D we mean a function (i, ) = (u'(3, @), ..., w" (¢, @))
continuous in the closure D, having the derivatives uf, ug, u%, (i,J
=1,..,n;k=1,...,N) in D, which are mecasurable and bounded
in any bounded set DN(|z| < r), and satisfying the system in D.

An immediate consequence of Theorem 1 is the following

MAXIMUM PRINCIPLE. Let u(t,z) = (ul(t, @), ..., w" (1, )] be a so-
lution in D of system (3.1) and let assumptions 1 —V be fulfilled with ¢
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satisfying the condition

[et, o, 9)dy < 0 for (f,2)eD (k,l =1,...,N).
4

Suppose that wu(t,-) € LP(4,). If, moreover, for some constant vector M
=(M',..., MY) > 0 we have

v, ) <M on ZX, [f¥t,z,M,M)<0, (t,z)eD (k=1,...,N)
and

[[ (w2, 2) — MY Po(t, )dtdw < 00 (k =1,..., N),
D

then
ut,s)< M inD.
For the proof one can easily verify that the functions v and v = M

satisfy all the assumptions of Theorem 1.
A particular case of Theorem 1 is the following

THEOREM 2. Assume that u(t, x), v(t, ») are solutions, in D, of sys-
tems (3.1), (3.2) respeotively, such that

u(t,p) <v(t,2) onlZ
and that

(4.1) f(l“k(t: o) 1P + |v* (8, #)i®) exp { — K (lz|*+1)"*}dv < K,
4
for 0<t< T, k=1,...,N and for some oonstants K >0,K > 0,1>0,
p = 1. Let assumptions I —1IV be satisfied with
(4.2) er(t, @, y) < M exp {K(|z|*+1)" — K, (ly|*+1)**},

where M >0,K,> K are constants and let u(t, ), v(t, ) € L7 (4,).
Moreover, assume there is a constant C > 0 such that the inequalities

(4.3)  laki < C(lalr+1)@02 | 3 (ak),,—bF| < Ollal*+1)"%,
Fj

ofy —(bf),, < C(l2|*+1)""
hold true almost everywhere in 8.
Then u(t, z) < v(t, x) in D.

Proof. We have only to check assumptions V and (3.3). To this
effect choose

(4.4) &k (¢, ) = exp —{1K° (|m|'-|—1)"’},
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where K < K, < K,,

(4.5) u = CME2+ni|A—2|+Vni+(n+pN)/ K]+ (p—1+M)/K,
and
M = MXN [exp{(K—K,)(lo*+1)"*}do.
By

We first show that Theorem 2 is true for the domain

K,—K
D! = DnJ[(0,T,) x R*], where T1=min(T, : 0)

K |
By (4.2), (4.4) we obtain
I*(®) < Mexp{—K,(lz|*-+1)*}.

One can verify that assumption (4.3) together with (4.4), (4.5) imply
A* (D) < 0 in D' (we omit the details). Furthermore, it can easily be shown
that (4.1) implies (3.3).

Now the proof can be extended similarly to the domains D**'= Dn
N((T;, 2T;) xRB%), i = 1,2, ...

5. Estimates. Let o*(¢, z, u, 8) (¢ =1,..., N) be functions subject
to the following conditions:

VI. Each o* is defined for (¢, ) € D, arbitrary »= (u?, ..., u"), 8=
(8%, ...,8") and is non-decreasing in u?, ..., u*~!, «**1, ..., 4V, !, ..., 8",

VIIL. For @« < 4,8 <8 we have

N

o*(t, v, u,8)— o, @, %,§) < Z[c?(t1 o) (u' —@) + (8 =8)] (k=1,...,N)
I=1

for almost all (¢, ) € D, where ¢f are some continuous functions in S
such that ¢f > 0 for 1 # k.

Remark 2. Notice that if o* satisfy VI, VII, then the functionals

fftyz,u, h) = a”‘(t,m,u, fhl(y)g’f(t,m,y)dy,...
4

e [ W @)kt 2, 9)dy),
4

(k=1,...,N),h = (b,..., WN) e L)(4,), satisfy conditions III and IV
stated in Section 2. It follows that Theorem 1 involves some integro-dif-
ferential inequalities.

THEOREM 3. Assume that wu(l,») = (ul(t, @), ..., " (2, 3)), v(, 2)
= (v}(t, &), ..., vV (¢, 7)) are solutions, in D, of the systems of equations
(8.1) uf(¢, x) = L¥(u*)(2, 7) +fk(t3 z, u(t, x), u(t, )}

k=1,...,N),
(5.2) ”“(t,m) =L"(v")(t,w)+g"(t,a;,v(t, z), v(t, )) )
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respectively, u(t, -), v(t, ) being elements of LY (A,) for some ok(t, w,y) >0,
where (i, z,u,h), g°(t, z,u, h) (k =1,...,N) are functionals defined
for (¢, z) eD u = (uty ..., u") arbitrary and h = (h',..., K") e L?(4,),
such that
(5.3)  [f*(, @, u, B)—g*(t, =, &, h)]sgn (u* —it¥)

< o (ty @y =@,y oy 1 — AN, B — Bl gy -y Y — BV, )

(k =1,...,N); here
W —Rl, = N7 f B (y) =R (y)1” ok (¢, @, 9) dy)”,

sgnz =1 for 2> sgnz——l for 2<0. o, x,u,s) (k=1,...,N)
are functions satzsfymg conditions VI and VII.

Let assumptions I, II and V of Section 2 be satisfied and let w(t, x)
= (w'(t, @), ..., @™ (¢, z)) be a non-negative solution, in D, of the system
of integro-differential inequalities

(5.14) w?(t’ z) = Lk(wk)(ti ) +ak(t: z, w(t, ), fleotl,, . (2, Z)y ...

2 ”(UN (t, m))

”p,k
(k=1,..., N) such that w(t, ) e L2(4,) and
[uf(t, 1) —0*(¢, )| < *(t, ) (B =1,...,N)

for (3, x) € 2. If, moreover,

(5.5) [ [ 1k (t, @) —o*(¢, @) P ¥*(¢, @) dtde < oo,
D
then
(5.6) [k (8, 2) — (¢, )| < 0*(,2) (kK =1,...,N) in D.

Proof. Denote w* = [u*—o*|, w = (w?, ..., w") and
& = {¢, v) e D: w'(t, 2) > o'(t, 2)}.

Suppose that for some % the set G* is not empty. Since w* > 0 in G*, the
derivatives wy, w,, wf . exist in G* and are measurable and bounded in
any bounded set G*N(|z| < 7). Consequently, by (5.1), (5.2) we get

w? = Lk(wk) + [fk(t’ z, u(t,z), u(l, )) _gk(t’ z, v(t, ®), v(t, ))] sgnw’”’
whence, by (5.3), we obtain
w:‘ < Lk('wk) + Uk(t’ z, w(t, z), ||w1|lp,k(t, T)y ouey "wN”p,k(t) m))

for (t, ) € G*. It follows that all the assumptions of Theorem 1 with u,
v replaced by w, o respectively, are satisfied. Thus we conclude that w < o
in D, which was to be proved.
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The estimate of the solution itself stated in the next theorem ecan
be deduced from Theorem 1 in a similar way.

THEOREM 4. Suppose that u(t, ) = (ui(t, @), ..., u" (t, 2)) is a so-
lution of system (5.1) in D, u (3, -) € LP(4,), where f*(¢, x, u, h) are functionals
defined for (t,x) € Dy, w = (u!, ..., w") arbitrary, b = (', ..., W) e L?(4,)
and satisfy the inequalities

Fe(t, @, u, B)sgnu® < (8, @y [wd], ooy 10V, 1B ey - ooy 1BV 1)

(k=1,...,N), c*(t,x, u,s) being functions satisfying conditions VI
and VII. Let assumptions I, II and V of Section 2 be fulfilled and let w(t, x)
= (w'(t, z), ..., o" (1, ©)) be a non-negative solution, in D, of system (5.4)
such that

W @, z) < o, (k=1,...,N) for ({,z)eX.
Moreover, assume that

ff [w¥(t, @) P ¥P(t, v)dtde < oo (k =1,...,N).
D

Under these assumplions we have
luk(t, )| < w*(@#, @) (kK =1,...,N) for (t,x) e D.

The unigqueness of a solution of the first Fourier problem for parabolic
differential-functional equations is the objective of the following

THEOREM 5. Let u(t, x), v(t, x) be solutions of system (5.1) in D such
that w = v on Z and u(t, -), v(t, ) € LE(4,), where p > 1, ¢ = (o (t, 2, Y))
(k,1 =1,..., N), of being non-negative functions continuous in {0, T> X
x R™ x R™. Suppose that f*(t, x, u, h) are defined for (t,x) € D, v = (u?, ...
coey uV) arbitrary, b = (B, ..., kN) € L2 (4,) and satisfy the inequalities

[F*(t, 2, w, b) —f*(t, @, @, k)]sgn (u* —@t*)
N
< D e, o) W — @i+ =R, (¢, 2)  (k=1,..., N),
=1

where ¢f are some continuous functions in S and ¢f > 0 for 1 k. Assume
that conditions I, I1, V of Section 2 and condition (5.5) hold true.

Then u(t, ) = v(t, x) tn D.

Proof. It is sufficient to note that the function w(t, ) = 0 satisfies
in D the system

N
0f(t, @) = L¥(o¥) (8, 0) + D) of (1, ) o' (t, 3) + |l 4 (t, @)
=1
(k =1,..., N)and to apply Theorem 3.
In particular, Theorems 3-5 contain some results on parabolic
differential equations.
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