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Existence and uniqueness of solutions of the Darboux

problem for the equation

ou ou ou Pu *u 2u )
' ox,’ ox,’ Oxy’ 0T, 0T, Ok 0Ty’ OT,0T,

Pu
01, 01,0,

= f(wly Loy T3y U
by B. PALczEwskI (Gdansk)

Publication [3] was dealing with conditions which guarantee uni-
queness and the existence of solutions for the equation
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under the conditions

u(0, Ty, Ty) = (X2, B3), u(Ty, 0, Xy) =@u(Ty, T3), U(X1,Tp, 0) =32y, T,) .

The problem of solving equation (1) under these conditions was called
in the above-mentioned publication—problem (A).

This problem is obviously an analogon of the well-known Darboux
problem for the case of two independent variables, i.e., for the equation

(1)

with the conditions
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z(wio) =a(w), z(07 3/) =r(y)'

Problem (A) we shall call also the Darboux problem for equation (1) or
shortly, the Darboux problem, if it is known what equation is in question.

Paper [3], and especially its second part, contains some sufficient
conditions for the existence of solutions for problem (A), but considering
the method used there and the relatively extensive class of comparative
functions g(z, 2) (see [5] or [3])—the results do not deal with the case
where the right part of equation (1) is dependent on the full set of
variables (£, u, p,, ..., ¢3) Or i8 not a bounded function in the area under
consideration. It is obviously possible to complete those results in some
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way using the method and the results contained in the works of J. Ki-
syoski ([1] and [2]) and W. Walter ([5] and [6]) concerning especially
the Darboux problem for equation (1°).

1. Formulation of the problem and auxiliary notations.
We shall say that the funection ¢(£) belongs to the class C*(V) if on the
set V there are defined and continuous functions ¢(£), @s(£), prn(&) and
Przzs(€) fOr 1,5,k =1,2,3, j <k, where

V={o0<m<a, a:>0,1=1,2,3, §=(£D1,.'172,.’123)}.

Further, for rectangulars Rp = {zj,zx): 0<z:e < as, ¢t =79,k (j,k
=1,2,3; j<k) let us determine functions ¢,(z,, z;), @(x;, 2;) and
@s(z,, #,) continuous, including second mixed derivatives, and fulfilling
the conditions

@1(0, z3) = @y(0, x3), @1(T5, 0) = ¢4(0, 2,), (21, 0) = @s(2y, 0)

for ;¢ (0,a:), 1 = 1,2,3.

DARBOUX PROBLEM. Let us seek the function u (&) e C*(V) fulfilling
equation (1) and the conditions

(2) (0, @, 23) = @y(Xp, B3),  u(2y, 0, 23) = @o(@y, Z3),
u(wl, %3, 0) = (Ps(;l‘l, .1:2)
for (z;, xx) € Rjx, where j, k =1,2,3; j <k.

It is easy to show that the solution of the Darboux problem is
equivalent to the solution of the integro-differential equation

(3) (@, By T3) = (@, Loy T3) +
Ty XTp Ty

[ ] 1Tty tay tay 0ty tay 1), Plbyy by ), @y, ta, )]ty dtydlty

000
where

3
(4)  wol@y, @5, Ta) = @1(0, 0) + Z‘Pr(‘l’ia Tx) — [1(0, &) + @o( 2y, 0) + @4(0, 13)]
=1

but

=

ou Pu
P = (py, P2 Pa)y Q@ = (Quzy Gr3) @2a) » pil€) = 1'717; y q(§) :31:;3.'17_/; .

Further, we shall write the right side of equation (1) shortly as f(&, », P, Q).
Class G'(0,a)> (see W. Walter [5]).
We say that the function ¢(z, z) defined for x ¢ (0, a>, 2 > 0 belongs
to class @&'(0, a) if it fulfils the conditions:
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1° g(z,2) > 0 and ¢g(z, 0) =0,
2° g(x, 2) is continuous for z € (0,a> and 2> 0,
3° every solution z(r) of equation

(+) & 92,2

fulfils the condition z(z) = 0 or 2z(z) > -z (6 = d(z) > 0),

4° every solution of equation (x) is bounded,

3° g(x,2) < g(x,z) for z <z

After these notes we are going to give some theorems proved for
the problem which interests us.

2. Convergence of successive approximations for equa-
tion (1). Here we shall occupy ourselves with the formulation of certain
conditions sufficient to ensure the convergence of a sequence of successive
approximations for equation (1).

Therefore we determine the sequence of functions for equation (3)
using the recurrent equation

(5) uPID (g, ) Tyy Ty) = Po(Ty, Ty, T3) +

Z) Ty T3

+ fff flty tay B3y u® (8, by 0) s P™(2, 1, 1), QU0 (1, 1, t5)]dE Al dty

000

for n =0,1,2, ..., where

u® ou® ou®
uO(x,y, &y, T3) = Yo (@, T, Ty), POz, >, x5) = (3.271 ' ox, Pyl
e2u®  2u®  *2u®

ox, 0z, 01,8y’ O01y0my

QO (z,, @y, ;) = (

Now we can write the following

THEOREM 1. If the function f(&, w, P, Q) is defined, continuous and
bounded for £eV, —co<u,P,Q < +oco0 and for 0 <z < as, 1 =1,2,3,
—oco<u,u,P,P,Q,Q < -+ oo, we have the inequality

(6) ”:r:s'[f(&,u,P,Q)—f(E,ﬂ,I_’,QH

< aolu—ﬁ]+ 2 (ava'f'rl'pv—ﬁvl+ﬂ7w}$qujk_‘qfk|) ’
v+7 +‘;:=18, i<k

3
where ag, ay, fy > 0 and a,+ D, (ay+ fs) = 1, then the sequence of approxi-
»=1

mations determined by formula (5) i8 convergent to the unique solution of
problem (A).
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Proof. (See also W. Walter [6].) First, for any natural number m
by the fact that the function f is bounded (K = sup lf(£,u,P,Q)|

. &eV,—oo<u, P.Q<oo
and by equation (5) we have

3 3
W@ - u®©) <K [[a, 9@ -p0@ <K [] @,
8=1

I=1,l#1

|47 (§) — G (§)] < Ka, .
Further, since

v() = sup{|f (€, u, P, Q)—f(£, w(§), PO(&), QV(&)]]
for 0 <t < min(a,, a,,a,) and p(t) = y(min(a,, a,, a5)) for t > min(a,, a,, a,),

A, —{(E,u P,Q): £eV,0 < min(z,, 2;, 2,) <

lu—u‘“’(f)[<K”wa,lp,e O <K 1] 21,

I=1,l#%

|gik—GE) < Ky, iy, k =1,2,3,5 <k, j+k+v =6},

Assuming p(t) = ]3/ »(t) we choose a function y, for the function . This
function should be continuous, non-decreasing, convex and fulfilling
the conditions w,(?) > v (¢) and y,(0) = 0. By relation (5) we then obtain
for m =0,1,2, ...

3
(7) 1€, um, Pow, @) —f(£, 40, PO, Q)| < [ [yo(@s),
i=1

where & = (zy, Ty, &3) -

Putting ya(t) = po(27"t) for » = 0,1, 2, ... we obtain the inequality

t
j.p,.(r)dr < tpoia(t) for n=0,1,2,..,

which together with (6) and (7) permits us for » =1,2,3,... and for
m =0,1,2,.. to confirm the validity of the inequalities

n

(8) AB(O) =16 (O —uP (O <Oizey D) arspAT)Pl@) Y rol2s),

r,8=0
TS, TSN

3
ar,s>07 3 ar,s=1y

T8
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(8") AGn(&) = |p™ (&) —p" (&) < B (@) s(2) Yu—r—s(23)
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for ¢,9,k=1,2,3, i<k,
2y
3{013971;
We omit here the simple inductive proof of inequalities (8')-(8"). We
can now state that for n =1,2,3,... and for m =0,1,2, ... we have

3

Ama(E) = ASh(8) + 2 AD(&) + D A% < const pxm(n)

J.k 1

where p{™ (&) = n—), R (&) =

where x4 = max(a,, a,, a;), N(n) = E(n/3). Since lim ypyu)(u) =0, we
n—>00

have A,,.,.(f)—;.*o for m = 0,1, 2, ..., which permits us to state that there

is a function u(&) for which

ou™ ou otum 2u
= — = -
éx; woxy’  Ox;0TK N OT;0TY

2 (E)%’u(f)’

and which at the same time fulfils equation (3) and solves the Darboux
problem.

In a similar way it is possible to prove the theorems given further
on, so we omit the proofs for them.

THEOREM 2. Let f(&, u, pr, Ps, Grs) be a function defined, continuous
and bounded for £ eV, —oo < U, Pry Ps, qrs < +o00, where (r,s), r <8, is
one of the three pairs formed of numbers 1,2,3. If this function for
0<zi<as, —00 < U, U, Pry Pry veey §rs < +00, t =1,2,3, fulfils the in-
equality
(9)  |f(&,u, Prypsy Grs)—f(&, %, Dry Dsy Trs)|

3

< ag(na"" lu_al)_i'ﬁsg(il;][wh lps—ﬁsl)'f‘
1 1
3 3
+')/rg(‘w1fr‘1 [.’L‘i, ]pr—ﬁrl) +5rsy(5;1};[1$i, IQrs—Qrsl) ’
1 1
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Where a, ﬂs, Vry 61’5 > O, a + ﬂs + Vr + (51-5 == 1, g(a,‘, Z) € G’(O, ars,,‘, Ayrs
? 1 1 1

= lla/i'ma'x(ly—y'_y
i=1 ar’ s’ Aras
with respect to x for every settled z > 0, then the sequence of successive
approximations (5) ts convergent to the unique solution of the Darboux

problem.

) and the funciion g(x,xz) is non-decreasing

THEOREM 3. If the function f(&,w, P, Q) is defined, continuous and
bounded for £eV, —oco <u,P,Q <+oo and for 0 <axs < as, ¢ =1,2,3,
—00 < Uy Ty ..y Q < oo fulfils the inequality

(10)  |f(&, u, P,Q)—f(£, %, P, Q)]
3
' 2 lfhk—?jkl),

3
( \ 7
- I, Evi 1 n
= g(w1+~732+1’3’ fe— |+ 2, |y — Ps| +
v=1 Jk=1j<k

3 3
where g(x, z) fulfils the condition (34D a;+ a,a,)g(x, 2) € G'(0, Y ar>, then
1 1

it 18 obvious that problem (A) has exactly one solution. It i3 possible to
obtain that wunique solution by wusing the method of successive approxi-
mations (5).

3. Method of fixed point for equation (1). Theorem 3 given
above for a certain subclass of G’-class functions can be formulated
in the same way as in [2] without the assumption that the function f
is bounded. At the moment we shall occupe ourselves with the theorem
concerning the existence of a solution for problem (A) when the right
side of equation (1) fulfils the Osgood type condition for P and @ and
the increase condition for u.

For analogical conditions concerning the right side of equation (1),
we have the results contained in [1].

Further, we shall investigate the following integral equation, equiv-
alent to problem (A)

(11) (&) =f[57'9"0(5)‘*‘fffs(tlatzata)dtldtzdtsﬂl’l(f)+ff3(fv1’tz;ts)dtzdtsy
000 00

'Pz('f)‘*'.‘ fs(tuwz,ts)dtjdtay 'Ps(f)+ff3(t1at23$3)dt1dtz’
0 o 00

Ty

viol€) + [ 8(2y, sy ty) Aty pis(8) + [ (21, to, T5) Ay,
0

0

T

Yool &) + f 8(tyy Tqy .’l:a)dtl] 3
0
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. . o o2
where (&) is determined by (4), but wy; =5%:, Yie = 3:13'6/’!903;; and
>Pu
() = s omony

Let us note the following lemma important for the further part
of this paper:

LEMMA. If the functions w(n) and o(n) are defined, non-negative,
continuous and non-decreasing for 1 >0, w(0) =@ (0) =0 and w(n) >0
for n > 0 and if, moreover, the function w(n) fulfils the conditions

(12) o(m+mn) <om)+olp) for n>=>0, i=1,2
and

"t
(13) ’ ol Loo for 3>0,

then the equation
Ty z v

(14) s(@,y5m) = o|f [ e(t, s matdr+ [ e(t, y; mat+ [ e(@, 75 m)dr| + ()
00 0 0

has for every n = 0 exactly one solution, continuous for (x,y, n)e R x {0, ¢
such that e(x,y,0) =0, where R ={0 <z <a, 0 <y <b} ¢c— any
constant > 0.

We obtain the proof of this lemma by applying theorem 2 from
paper [1] to the function w(z+p+ q)+o(n) and repeating the argument-
ation contained in the proofs of lemmas 9-12 of that paper for equation (13).

Now we can introduce the theorem announced, proving only that
part of it which relates to the existence of the solution of problem (A)
since its uniqueness is included in theorem 3 if we substitute in it
g(z, 2) = w(2). We have

THEOREM 4. (see [1], theorem 2). 1° If the function f(&,u, P,Q) is

defined and continuous for £eV, —oo < u, P,Q < +oo and fulfils the
condition

3 3
(15) If(¢,u, P, Q)—1(¢,%,,Q)| <ollu—al+ Y |pi—pid+ D lan—inl) ,
i=1 );k/il
where w(z) has the properties enumerated in the lemma, then problem (A)
has exactly one solution.

2° If the function f(&,u, P, Q) fulfils the conditions

(16)  1f(&, u, P, Q)—1(&, u, P, @) < o Y ipi—pil+ Y lan—anl)

i=1 Fk=1
j<k
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and

(17) [f(&,u,0,0)] < e, +cylu]  (increase condition),

where ¢, 1 = 1,2, are equal to any constant >0, the function w(z) has
the properties as above—then there exists at least one solution of problem (A).

Proof. It is sufficient to show that equation (11), when fulfilling
conditions (16) and (17), has a continuous solution on the set V. Basing
ourselves on (12) we have w(n) < (14+7%)w(1), which permits us to state
the following appreciation for the function f

3

1E 0 P @ <atalul+o@)(i+ Yipd+ D) laal) .

i.k=1,j<k

Let us establish the following notations:

,ua:m?;Xl'Pt(E)[, m,,:mg;x]w,-k(f)l for 1=0,1,2,3,
1,k=1,2,3, i<k,

3

3
x=1+01+6‘2(1+.“o)+“’(1)(7+2-““_}' 2 '“f")’
=1

i,k=1j<k
= {(&,u, P,Q): £V, |u| < po+x?exp[x(a, + ay+ a5)],
lp:l i+ x71expx(a, + a,+ as)], || < pme+explx(a; +a, + a5)],
1,7,k =1,2,3, j <k},

wy(n) = sup {f (&, u, P,Q)—1f(&,u, P,Q)|}.
P Q) Eu,P,Q)c 4
|u—u+ %’I-’ﬁ—xiKn

Furthermore, let w,(n) be for » > 0 a continuous, non-decreasing func-
tion, w,(0) = 0, such that

i) — (B, el ) — warl B)] < 2 |2 — )
for 4,5,k=1,2,3,i<k
Next let wy(n) be a function defined as follows
wg(n) = (|1 + explx(a,+ @, + a3)]] 7+ waln)} +
+ o {(2 4+ »)exp[x(a, + a; + a3)]n 4 6wy(n)} .

Finally, let C(V) be the Banach space of continuous functions ¢(£) de-
fined on the set ¥V with norm ||¢|| = sup|e(£)|.
vV
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In C(V) we shall consider W—the convex, closed and compact set
of form

3
W —{p: 9 ¢ O, lp(&)] < xexp(x Y o), |9(6)—0(8)] < e(@1, Zs |Za—aa]) +

+ &(Zy, Ty; ]Ez-w2|)+5(mz; @y; | Ty — @, ), & = (@1, T, Ty), 5-= (Zyy Xy, Ty) ‘V}§

besides e(x,y; n) denotes here the only solution of equation (14) for
@(n) = wy(n), fulfilling the condition e(x,y, 0) = 0. It is easy to verify
that the operation y = Fo, v, p e C(V), where F is determined by the
right side of equation (11), is continuous on the set W and F(W)C W.
Indeed, if ¢ ¢ W, then

T, T3 Tg

IFo(&)] < e+ e+ I |p(t, tay t)] @ty dtadte] + 0 (1)1 + Z et Zuw

4,k=1

x3 ) Ta

f I‘P(wu tyy t)| Aty dty + ff |@(tyy T2y ta)]dt1dta+
0 00
zq

1

fI‘P(t17t21%)|dt1dt2+f|?’($1’932at3)|dt3+
0

3

+

+

y C—pgy °——

+f|‘P($1y ls) fl’a)[dtz‘i‘fl?’(tn Ty, a’a)ldtll
3
< (et epe+ x‘zcz)exp(nng)+w(1)(1+3x—1+3+Z,u¢+

+2mk)exp( Zw;) xexp( Zwt)

7ik=1
but

|[Fo(&)—Fo(EW)| < wl[l‘”l"i’ll+w2(lw1—i’1l)+|m1—5’1|"-lexp ("Zat”‘|‘
1

T, 23 23

+lf[§my %(E‘”) + fff Pty by ty) Aty Aty dly, yy(E) +

000
T3 Ty

ff (wutz;ta)dtzdt -;V’m(f)”*‘f‘P(tnmz,a’a)dtl]“
00 0

+[E0, yo(E0) + [ I f Pty oy to) diy Aty dly, py(E0) +

T3

Z3 z
+ [ [ 0@, by t)dtadty, ..., pulE) + [ 0y, 7y, 2 t]| <
00 0
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L wl{[l + exp(zZa‘)] [, — %, | 4 o, I-Tf'l—fll)’ +

+w[ff |@(@1y sy ) — @ (), 1, ty)| dt. dt, +
00

g T3
+_( I‘P(‘Untzvma)“‘P(Elvtzawa)ldtz“}‘f | (@yy 29,y tz) — @ (T, 2o, ta)ldt:s]
0 0

Ty g

< oy — 7 |) + “’[f J. &(tyy ts; |2y — Ty |) Aty dty +
00

+f5(t2; a3 ]ml—@l)dtr{'} £(Tyy by I‘”l*@[)dtal
0

0

= e(Tn, &35 |0y — Ty )

where & = (x,, x,, 7,), g(l) =(Z), T, T5) € V.
In an analogical way we obtain

| Fp (%, T3, T3) — Fp(Zy, Ty, T3)| < &(Ty, 35 |Ta— Zol)
and
IF‘P(EU Z,, wa)_F‘P(in Z,, 53)] < 5(517 T,; l-’”a_isl) ’

which together signifies that Fp ¢ W and at the same time that (W) C W.
Further, if ¢, p e W, then

3 3 8
qu»—F@n\<.w1(gaz-nq»—a||)+w[(;‘a¢+ Y wale—al] -

j.k=1,j<k

The above properties permit us, by the Schauder theorem [4], to state
the existence of a fixed point ¢, for operation F, and at the same time
the existence of a solution of problem (A).

Note 1. A simple example shows us that conditions (16) and (17)
do not guarantee the uniqueness of the solutions of problem (A), e.g. for
the equation

Pu
0%, 0Ty 0X4

3
— (1t ap | [ futae)-Juluto,
i=1

where « > 0, fi(xx) are continuous, non-negative functions respectively
in <0, ax>) it is possible to give at least two different solutions of C*(V)
class under zero conditions (2):

w(E) =0 and u2(5)=[]_[ ff,(t)dt]”".

i=10



Darbouz problem 277

Note 2. 1t is evident that condition (15) alongside with continuity
of the function f guarantees not only the existence of a unique solution
of the problem (A) but it is also sufficient for the convergence of the
sequence of successive approximations which is defined by the recurrent
equation

Iy Tes Z3

06)  puia(®) = 18 vl &+ [ [ [ oaltes to, &) At 8todlte, .., pl&) +
000

TyTk

+ f [ oaleddtidte, ..o vi®) + [ gal.)aty, ],
o0 1}

where @y(&) € C(V).
The corresponding theorem can be formulated in the following way:

If the function f(&,w, P,Q) defined and continuous for £eV, —oo
< u, P,Q < 4 oo fulfils condition (15), and besides w(z) has the
properties enumerated in the lemma, then the sequence of successive appro-
zimations determined by equation (#x), i8 convergent, for any @ (&) € C(V),
to the unique solution of the problem (A).

The proof of this theorem can be obtained by a suitable modification
of the method contained in paper [2].
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