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Abstract. The functions », w: J = [0, T] — R" are said to be sub- and super-
functions for the initial value problem (1) u’(t) = f(¢, % (%)), %(0) = e, if v(0) < ¢,
v; < f;(t, 2) whenever v () < z < w(f) and 2; = v;(!), and similarly for w. Max Miiller’s
existence-comparison theorem [5] states that if such a pair of function (v, w) exists,
then (1) has a solution existing in J and lying between v and w. This result is extended
to infinite systems of differential cquations considered as differential equations in
Banach spaces or locally convex spaces. In particular, our results cover the case I
(which was treated before without success). Methodically, our approach is based
on an elementary comparison argument.

Introduction. Throughout this paper J denotes the compact interval
[0,T], and D e {D*, D, , D™, D_} is a Dini derivative. In 1927 M. Miiller
[5] has proved the following theorem which extends a result of Perron [6]
from one ordinary differential equation to systems of such equations.
In formulating the theorem we make use of the order relation in R™ induced
by the natural positive cone. In other words, for z, ¥ € R® the inequality
o <y means that z;<y; for i =1, ..., n.

THEOREM A. Let J = [0,T]; v, weC%J, R") and v(t) <w(t) for
ted. Suppose that fe C°(K, R"), where K = {(t,x): ted and v({) <z
< w(t)} = B*Y, and that, for ted and i = 1, ..., n,

Do,(t) < f;(t, ®) whenever v(I) <z << w(l) and z; = v;(1),
Dw,(t) = fi(t, ) whenever v(t) <z << w(t) and x; = w(t).
Then the initial value problem
(1) w'(t) = f(ta “(t))’ u(0) = ¢,

where v(0) < ¢ < w(0), has a solution w existing in J and satisfying v(t)
<u(t)<<w(t) in J.
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Recently, Volkmann [7] has extended Miiller’s theorem to the Banach
spaces ¢, (real null sequences) and 7, (1 <p < oo). He remarks that
a corresponding result for the space I would be desirable (footnote 2 on
page 89). Deimling and Lakshmikantham [3] have further generalized
Theorem A to certain Banach spaces with a Schauder base (sece Example
(c) below). They also formulate the theorem for the space I, (Theorem 3
in [3]), but the proof indicated there works only in the finite-dimensional
case; sec Example (d) below.

We give here an alternative approach to the problem in which the
comparison aspect is separated from the existence question. This approach
is both elementary and far-reaching. It yields, cum grano salis, a theorem
of the above type in all cases where a local existence theorem is available,
for 7, in particular.

A comparison theorem. Let I be a non-empty set (index set), and let
R! be the set of all functions y: I — R. We use index notation, ¥y = (¥,);-
The set R’ is ordered componentwise (natural ordering), i.e.,

y<z iff 9y, <z foralliel.

Furthermore, v = yv z and v = YA z are the elements of R! defined com-
ponentwise by wu, = y,v 2, = max(y;, 2,), v = ¥;A2; = min(y;, z;) for
1 e I. Let v(f), w(t) be two functions from J = {0, T] into R’ satisfying
»(t) < w(t) in J and let, for t € J and 2 € RY,

(2) P(t,2) = v(t)v (zaw(t)).

For fixed t, P(t,2) is a projection of z onto the “interval” [v(t), w(?)}
= {y e R": o(t) <y <w(t)}

THEOREM 1. Let u, v, w be functions from J into RY and assume that
v;, w,; are continuous and u; 18 differentiable in J for all < € I and that v(t)
<w(l) in J. Let f: K — R’ be given, where K = {(t,2): ted,v(t) <2
< w(t)} is the region between v and w. Let D be a Dini derivative and let
P be defined by (2). If, fort e J and ¢ € I,

(3)

Do, (1) < f;(t,2) whenever v(1) <z << w(t) and z; = v,(t),
SESwW

Dw;(t) = f;(t,2) whenever v(t) <z (t) and z; = w;(t)
and
(4) w'(t) = ft, P(t, u(t)) in J, u(0) =e,
where v(0) < ¢ < w(0), then
(5) v <ut)y<w(@) nd.

Here, w'(t) is, by definition, the function w;(1), i.e., the differential
equation i8 componentwise satisfied.
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Proof. Assume that the conclusion is false and that, e.g., w,(t,)
<< u;(t,) for some index j and scme ¢,, 0 < t, < T. Since, by assumption,
%;{0) < w;(0), there is a largest interval ({y, {,) to the left of ¢, such that
u;(t)) = w;(t) and w;(t) < u;(t) for 3, <t<1,. Let te(ty,t] be fixed
and let 2z = P(t, u(t)). Obviously, »(1) <2< w(i) and 2; = w;(t). Hence
z satisfics the conditions in the second inequality of (3), and we have

w(t) = fy(t,2) and  Dwy(t) > fi(t, ).

Hence the real-valued function ¢(¢) = w; —u; has the properties ¢(f,) = 0
and Deg(t) > 0 for any ¢ € (1,, t;). It follows that ¢ is increasing, in par-
ticular ¢(¢;) >0 or wu;(t,) < w;(t,). This is contradiction to our initial
agsumption that w;(¢,) << u;(,) proves the theorem.

Remarks. If the real-valued function ¢ is continuous and satisfies
Dy () = 0 except in a countable set of values ¢, or if ¢ is absolutely con-
tinuous and ¢’ (¢) > 0 almost everywhere, then ¢ is increasing. This remark
leads immediately to the following corollaries.

Corollaries to Theorem 1. (a) In Theorem 1 it is sufficient to assume
that for each ¢ € I there is a countable subset C; of J such that (3) holds for
t e J\C;; the Dini derivatives for v; and w; may be different, and they
may change with ¢ (but not with ¢ for fixed 7).

(b) Theorem 1 remains true if the components «,, v;, w; are assumed
to be absolutely continuous and if inequalities (3) (where Dw;, Dw; can
be replaced by o}, w;) and the differential equations u; = f;(t, P(t, )) hold
almost everywhere in J. The exceptional set of Lebesgue measure 0 may

change with ¢ (this remark is substantial only if the index set I is not
countable).

It is an essential feature of our method that the comparison result is
sepcrated from the existence problem for the initial value problem «’
= f(t, P(¢, u)), #(0) = ¢. There are no assumptions about f; on the other
hand, the existence of a solution « is assumed.

If conditions are imposed on f such that the initial value problem
(4) has a solution, then Theorem 1 leads immediately to an existence-com-
parison theorem of the type of Theorem A.

The following setting is used. Let X < R’ be a Banach space or, more
generally, a (separated) locally convex topological vector space with the
property that X is closed under the operations v and A, that these oper-
ations are continuous and that the coordinate functionals g; defined by
0;(2) = 2, are continuous. These properties ensure that the operator P
given by (2) is defined and continuous and that for a continuous or dif-
ferentiable function v: J — X the components v; are continuous or dif-
ferentiable real-valued functions. In view of these remarks and Theorem 1,
the next thecrem is self-evident.
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THEOREM 2. Let X < R! be a locally convex space such that 2 —O0v 2
and z — z; (i € I) are continuous maps from X into X and X into R, respect-
wvely. Letv, w € C°(J, X),v(t) < w(t) in J, v(0) < c < w(0) and K = {(, 2)
e X X: v(t)<z<<w(t)}. Assume that f: G — X is continuous (with
respect ‘to the product topology in J X X), where K =« G = J x X, and that f
satisfies condition (E),

(E) The initial value problem (4) has a solution in J.

Then there exists a solution u e O'(J, X) of the initial value problem

(1) w'(t) =f(t,u®) ind, u©) =c
satisfying (5).

Note that the assumption regarding the map 2z — zv 0 implies that
for any a € X the maps z ~-avz =a+(z—a)v0 and zaa = —((—z)v
v (—a)) are defined and continuous. Hence P(t,2) as given by (2) is a
continuous map from J x X into X.

ExAMPLES. We shall consider a few special cases in which condi-
tion (E) is satisfied.

(a) I is finite. In this case, Peano’s existence theorem applies and
M. Miiller’s Theorem A follows.

(b) Let I = Nand X =¢,or X =1,, 1<p< oo. In these cases,
K is compact, and the function g(t,2) = f(t, P(¢,2)): I x X - X is
continuous and compact. Hence condition (E) holds. This is well known
and is usually proved by applying Schauder’s fixed point theorem to the
map T: Y — Y, where Y = C°(J, X) and

¢
(6) (Tu)(t) = c-l—ff(s,u(s))ds.

Case (b) has first been given by Volkmann [7].

(¢) Let I = N and assume that (e;) is a Schauder base in X, where ¢;
is the element (0,...,0,1,0,...) with 1 at the ith place. If the positive
cone C = {zeX: 2, > 0 for ¢ € N} is normal (i.e., if there exists M > 0
such that 0 < y < 2 implies |ly|| < M |]z|)), then K is again compact, and (E)
holds. This case which includes the cases in (b) was given by Deimling and
Lakshmikantham [3].

(d) Let I be an arbitrary index set and X = I_(I) normed by means
of |zl = sup{lz;|: ¢ € I}. Let f satisfy a y-Lipschitz condition
y(f(B) < ILy(B) for Bc K,
where y is the Hausdorff (or ball) measure of non-compactness and L is

a constant. It is easily seen that g(t,2) = f (t,P(t, z)) satisfies the same
condition, hence (E) holds; see. e.g., [2].



Maxz Miller's existence-comparison theorem 399

This case has particular importance due to its connection with the
method of lines for parabolic differential equations (cf. [8], §§ 35, 36).
‘We shall take up this matter in a future paper.

We remark that the above Lipschitz condition can be replaced by
a weaker condition of the Kamke type.

(e) Let X = R’ endowed with the locally convex topology of com-
ponentwise convergence, which is generated by the seminorms p,(2)
= |#l, i € I. This topology is the product topology of R’, hence K is com-
pact by Tychonoff’s theorem. Condition (E) is satisfied without further

assumptions on f. Note that in this case the continuity of f signifies that
for any sequence (¢,,2") c G, 2" = (2}')sr1,

limt, =1,, limz! =2, (iel)

n—00 n—»o0
implies

. limf;(¢,,2") = f;(te,2) for i el,

n—>oo
where z = (z;). It is not true that a function fe C°(J X 1, (I), lo(I)) (the
Banach space I (I) was defined in (d)) is continuous in the topology
considered here. On the other hand, if f has the property that each com-
ponent f; depends only (on ¢ and) on a finite number of z; and is continu-
ous as a function of these variables, then f is continuous in the topology
of R

Therefore, Theorem 2 applies, whenever f; depends only on finitely
many 2; and is continuous. A more general situation is considered in the
next paragraph.

{f) Let f be continuous and such that f(K) = C, where C is a convex,
compact subset of the locally convex space X which is not assumed to
be complete. Then condition (E) is satisfied.

We sketch the proof. Let {p,}..4 e a system of seminorms in X which
generates the topology of X. Let ¥ = C°(J, X). The space Y becomes
a locally convex space by means of the system of seminorms {q,.},

g, (%) = max{p,(u(t)): teJ} foruel.
We need the following
LEMMA (Ascoli-Arzela). A subset M of Y is relatively compact if
(i) M) = {u(t): we M} is relatively compact in X for each t e J;

(ii) M <8 equicontinuous, i.e., for any a € A there is a modulus of conti-
nuity 0,(8) such that

P, (w(t) —u(s) < 8,(ls—1)) for ue M.

(A modulus of continuity is a funmction 6 which is continuous and in-
creasing for s = 0 and for which 6(s) = 0.)
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For a proof of thislemma, see [4], p. 34, or [1], Chap. X, §2, Theorem 2.

Next we consider Riemann integration. Let ¢ < X be convex and
compact and let D = C°(J,C) « Y. It is easily seen that D is convex
and compact. Let0 < a< T, letmw: {, = 0<?, < ...<1, = a be a parti-
tioning of the interval [0, a]and let v = (7;), t,_, < 7; < ?;. The Riemann
sums of a function u € D defined by

P
o(m, 1) = 2 (tk,—tk—l)“("fk)
k=1

are elements of aC. Using the uniform continuity of w, p,,(u(s)—u(t))
< d,(]s —1|) (8, modulus of continuity), one sees that {o(=, 7)} is a Cauchy

set (with respect to the order relation defined by subdivision of partitions).

Hence the limit
a

fu(t)dt = limo(x, 7) € aC

0

exists, and we have the usual properties of integrals such as

p.([ wa)< [ pafut)dt.

Now let g(2, 2): J X X — C be continuous and let T: Y — Y be defined by
t
(Tu)(t) = [ g(s, u(s))ds.
0

The set M = T(X) has the properties

(i) M(t) = tC for 0<ELT;

(ii) p, (v(t) —v(s)) < L,lt—s| for v € M, where L, = max {p.(g(t, 2)):
(t,2) ed X C} < oo.

Hence M is relatively compact by the Ascoli-Arzeld lemma. It follows
from Tychonofi’s fixed point theorem that the equation

#w =c+Tu

has a solution. If this result is applied to the function ¢(t, 2) = f (t, P(t, z)),
condition (E) follows. Qur result is summed up in the next theorem.

THEOREM 3. Let X and v, w, K be as tn Theorem 2. If f: @ - X is
continuous and f(K) c C, where C is a conver, compact subset of X, then
there exists a solution w of the initial value problem (1) in J satisfying v(1)
<ut)<w(t) in J.

This theorem deals with the case where f is a compact map. If f is
not assumed to be compact, additional hypotheses have to be introduced
which guarantee existence. One such case was treated in Example (d).
It is clear that this procedure works in other Banach spaces, too.
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COROLLARY. Assume that X is a Banach space and that the hypotheses

of Theorem 3 are satisfied with the following changes. Instead of f(K) < C,
we assume that ) '

7(f(B) <ILy(B) for Bc JXK,

where y is the Hausdorff measure of mon-compactness. Then the conclusion
of Theorem 3 remains valid.

f1]
(2]

(3]

(4]
(5]
(6]
(7]

(8]
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