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Leja’s type polynomial condition
and polynomial approximation in Orlicz spaces

by Wiestaw PLESNIAK (Krakow)

Franciszek Leja in memoriam

Abstract. Bernstein’s “Jethargy” theorem on polynomial approximation in Orlicz spaces is
given. The theorem is used to characterize holomorphic and entire functions in spaces of u-
integrable functions on a subset E of C” such that the pair (E, p) satisfies Leja’s type polynomial
condition.

1. Condition I*. Let E be a subset of the space C" and let u be a non-
negative function defined on the family of Borel subsets of E such that u(¢)
= 0. In the sequel such a function will be simply called a measure. The pair
(E, p) is said to satisfy condition I* at a point ae E, closure of E, if for every
family # of polynomials in C" such that

p({zeE: suplf(z)l = oo}) =0

and for every b > 1 there exists a constant M > 0 and a nenghbourhood U of
a such that for each f in £,

sup|f1(U) < Mb™¢/.

By the well-known polynomial lemma of Leja [7] every subset E of the
complex plane C' satisfies [* at a point aec E with respect to the measure

p(A)=m;({t>0: AnC(a, t) # Q})

where C(a, t) denotes the circle with centre a and radius ¢t and m, is the
Lebesgue linear measure provided that u({zeE: |z—a| < J}) =4 for some
0 > 0. This remarkable result appeared a very useful tool in complex analysis
especially in the theory of polynomial approximation (for references see [8],
[12], [13], [14] and [9]). It also yields the following

L1, ExampLe. If E is a rectifiable Jordan arc in C' and u is length
measure over E, then (E, p) satisfies I* at every point acE.
By Fubini’s theorem, from Example 1.1 we derive
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1.2. ExampLE. Let E be a subset of the space R” (R is treated as a subset
of C" such that C" = R"+iR"). If, for a point ac E, there exists a non-singular
affine mapping | in R" such that ael(I") = .Eu |a!, where [" is the n-th
Cartesian power of I = [0, 1], then (E, m,) satisfies I* at a, m, denoting the
Lebesgue measure in R". In particular, for every bounded, convex set E in R”
or else for every bounded Lipschitz domain (of class Lip 1), the pair (E, m,)

“satisfies I* at every point aeE.

The next two examples are related to the complex Monge—Ampere
operator theory developed by Bedford and Taylor (see [2] and previous
articles by same authors).

13. ExampLE ([3]). Suppose E is a compact set in C". If E is L-regular
at a point ae E (see Section 2) and p is the counting measure over E, then
(E, p) satisfies I* at a. (In this case I* reduces to the classical polynomial
condition of Leja [7].)

14. ExampLE. Let E be a bounded subset of C" that is L-regular at a
point ac E. If u is a measure over E that dominates L-capacity ¢ (see Section
2), then (E, p) satisfies [* at a (see e.g. [6]). Actually, we may take i to be a
measure that dominates the Borel measure (dduz)" related to the complex
Monge-Ampere equation (see [9] and [20]). (Observe that (dd°ug)" vanishes
on pluripolar sets). '

We note that the condition [* is invariant under non-degenerate

holomorphic mappings from C" to C™ (m < n) (see [13] and [6]). We also
quote a convenient geometrical criterion for L* (see [14]):

1.5. ANALYTIC ACCESSIBILITY CRITERION. Given ae E, suppose there exists
an analytic mapping h: [0, 1] — E such that h(0) = a. If, for each te(0, 1],
the pair (E, p) satisfies [* at h(r), then (E, p) also satisfies [* at a.

This criterion extends that for the L-regularity proved (independently)
by Cegrell [4] and Sadullaev [17]. Actually, if E < R", the analytic curve h
can be replaced by a semianalytic arc (see [15]). Hence in particular, by
Examples 1.2, 1.3 and 1.4, we get (see [15]).

1.6. ExampLe. If E is a bounded open subanalytic set in R” and pu is
either the counting measure or the L-capacity ¢, or else the Lebesgue n-
dimensional measure, then (E, p) satisfies ¥ at every point acE.

We add that if (E, p) satisfies I*¥ and v is a measure over E that
dominates u (i.e. v(A) =0 imples u(A) =0), then (E, v) also satisfies I*.

In this note we shall show how the condition I* is involved in problems
of polynomial approximation in Orlicz’s type spaces. In particular we shall
give a version of Bernstein’s lethargy theorem for such spaces as well as a
characterization of the Bernstein-Walsh type of holomorphic and entire
functions in Orlicz spaces. An important role will be played by an extremal
plurisubharmonic function associated with a subset of C" which can be
considered as a multidimensional counterpart of Green’s function.
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2. L-extremal function. For any subset E of C", we define an L-extremal
function by

Ve(z) =sup {u(z): ue #,u<0on E| for ze(C",

where ¥ = £ (C") is the set of all plurisubharmonic functions u on C” such
that u(z)—log(l +|z]) = O(1), as |z| - oo, || being any norm in C" (see [19],
[18]). If E is a compact subset of C!, V; is the generalized Green function of
the unbounded component of C'\E. Set

VE#(z) = hmsup Vg(w), zeC",
and

¢(E) = liminf[|z] exp(— V2 (2))].

fz| >

The quantity c(E) is called L-capacity of E. If n=1, c(E) is logarithmic
capacity of E. It is known ([18], Theorem 3.10), that c(E) = 0 if and only if E
is pluripolar, i.e. if there exists a plurisubharmonic function u on C” such that
E = {u = —oo}. We note that if ¢(E) > 0 then V¥e. ¥ (see [18], Corollary
3.9).

We recall that E is said to be L-regular at a point ae E if V¥(a) =0, E
is L-regular if V*(z) =0 for each ze E. We quote an analogue of one-
dimensional Kellogg’s lemma which follows from [1], Theorem 2: If E is an
F,-set in C", then the set {zeE: Vg (z) > 0} is pluripolar.

3. Orlicz spaces. In the sequel the term “measure” is used in proper
sense. Let E be a subset of C" and let u be a Borel measure over E. We
adopt notations of Rolewicz [16], p. 18. Let N be a continuous, strictly
increasing function defined on [0, o) such that N(t)=0 iff t =0 and
N(is+t) K M[N(s)+ N(t)] for s, 1 > 0 with a constant M > 1 idependent of
s and . Denote by X the linear space of all u-measurable complex functions
defined on E and set [ = {xe X: x(z) =0 p-almost everywhere on E!. For
xe X/I, we define

on(¥) = [ N(Ix(2)))du(z).

E

Let Xy be the space of all x in X/I such that gy(kx) < oo for some k >0
(depending on x). If xe Xy, we set

(3.1) x|l = inf{e > 0: gy(x/e) < ¢€}.

It 1s proved (see [16], Theorem 1.2.3) that ||-|| is an F-norm in Xy (ie. ||x]|
=0 iff x =0, ||lax|| =||x|| for all scalars a with |a| =1, {[x+ || < ||x]|+] VI
and [|a, x|| =0 as o, — 0) such that ||x | = 0 iff gy(x,)— 0. The space Xy
endowed with this F-norm is an F-space (a complete, metric linear space)
denoted further on by N(L(E, p)). If E = (0, 1) = R' and u = m,, N(L(E, p))
is called Orlicz space and N is called Orlicz function.
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4. Bernstein’s “lethargy” theorem. For k=0, 1,..., we set
P, = {pg: p is a polynomial in C" of degree at most k}.

In the sequel we shall assume that E and u are such that for each k, 2, is a
linear subspace of N(L(E, u)) and dim 2, < dim &, ,. (This is the case if e.g.
#(A) >0 implies ¢(A)>0 and for each m>0, [ N(z[™du(z) < o; we
obviously assume u(E) > 0. E

An important problem of constructive function theory is to classify

elements x in N(L(E, p)) with respect to the range of convergence to zero of
the sequence

dy(x, #)=inf{||x—pll: pe?}, k=0,1,...

In general, every speed can be attained, since we have, similarly to the
classical Bernstein “lethargy” theorem for the polynomial approximation of
continuous functions on compact intervals in R' (see e.g. [5]), the following

4.1. ProrosITION. Suppose u vanishes on every subset of E whose closure
is pluripolar. Then for any decreasing null-sequence {g,} of non-negative
numbers there is an element x in N(L(E, y)) such that

dN(x, ?k) =& for k = ko.

The proof of the proposition is based on two following lemmas and a
general version of Bernstein’s theorem for F-spaces (see Theorem 4.5).

4.2. LeMMA. Set M(N, E) = u(E)sup {N (¢): t > 0}. With the assumptions
of Proposition 4.1, for each ¢e€(0, M(N, E)), the sets

B, = {xe #;: on(x) < &}

are compacts (k =0, 1,...).

Proof. Since dim &, is finite, it suffices to show that for each bounded
Borel subset F of E with u(F) > 0 the set B, is bounded with respect to the
uniform norm ||-||r (observe that u(F) > 0 implies ¢(F) > 0, whence || ‘||f is
indeed a norm in %,). Choose the set F and suppose there exists a sequence
{pm} = B, such that lim [|p,llr = co. Without loss of generality we may

m—a —=
assume that the sequence {|p,(2)|} is increasing for each ze F. Then for each
0 > 0, the sequence of sets

F,={zeF: |p,(2)l <8}, m=1,2,...,

[« o]
is decreasing. We claim that u(Fy) = 0, where Fo = () F,,. For if u(Fo) > 0,
' m=1

then c(F,) > 0 and for d = ¢(F,)/2 we could find r > 0 such that F < B(0, r)
and

exp VF’"0 2)<r/d as|z|<r.
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Hence, since for every polynomial p # 0, (1/deg p) log|pie ¥, we would have
pmlle < HPmllF,, exp [k sup Ve (2] < Ipallr,, exp Lk sup V2 (2)] < 6(r/d)*

B(0.r)

for m=1, 2,..., which is impossible. Thus, lim u(F,) = 0. Consequently, by

choosing F and & such that u(F)N(d) > ¢, we get
e on(pm) = [ N(Pm(2)dp(2) > | N(O)du=NQ@)[u(F)—p(F)]l>e¢
F F\F,

for sufficiently large m, contradiction.

4.3. LEMmA. With the assumptions of the preceding lemma, for each k we

have
fii:= sup {inf oy(x—p)} = M(N, E).
xePy+1 PePy

Proof. Choose a basis {ey,...,e,,..., e} of #,,, such that {e,...,e,} is
a basis of #,. Let F be a bounded Borel subset of E with u(F) > 0. Since all
norms in #,,, are equivalent, there is a constant d > 0 such that for each
X=a,€+ ... +o,6,€ Py vy,

d™ Y Ixlle 2 Xl 1= log |+ ...+l
Hence, for every pe %, and m=1, 2,..., we have
|imes— pllr = d- inf |me;— ply+, = dm.
pePy
For any xe #,,,, we set
P(x) = {pe Z,: inf || x—gllp = |Ix—pll¢}.

qePy

Since dim#, < ©, P (x) # @. Choose poe P (e). Then, for each m
=1,2,..., mpoe #,(me,) and the sequence of the sets

Gn = {zeF: mle,(2)— po(2)| < 6}

is decreasing. If r > 0 is such that F < B(0, r), we have
dm < ||me;—mpo|p < |Ime;—mpoligo.r)

< [Imeg—mpollg, - S;(l(? expl(k+1) V2 (2)]
Ze ,r)

<oexpl(k+1) sup V2 ()],
2eB(0,r)
and by a similar argument to that of the proof of the preceding lemma, we
get lim u(G,) = 0. Hence
M(N, E) > fj, = sup | N(ime;—mpo|)du = sup | N(8)du
m F m F\Gm

= sup N (9) [u(F)— p(Gn)] = N () u(F).
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By the arbitrariness of the choice of 6 >0 and F < E, the proof of the
lemma is concluded.

By the definition of the F-norm (3.1) and by Lemma 4.3, we get
4.4. CoroLLARY. There exists y > 0 such that for each k =0, 1,...,
m:= sup {inf|[x—pl} =y.
XePy 4| PPy

Now Proposition 4.1 immediately follows from

45. THEOREM ([11]). Suppose {¥",) is an increasing sequence of distinct,
finite dimensional linear subspaces of an F-space X. Suppose that

(1) there exists &3 > 0 such that the sets B(0, g) N ¥, are compact
(k=1,2,..)).

Then for every nullsequence {g,} of real numbers such that

() 3o >€,2¢6,2...20
and

(ii) 2¢, < m:= sup {inf {||x—v||} (k=1,2,..) there is an element
xe¥y+1 VeV
xe X such that

dist(x, ¥,)=¢ for k=1,2,...,
lI-|| denoting an F-norm in X.

§. A criterion of analyticity in Orlicz spaces. Our goal is to describe these
x in N(L(E, p)) that are the restrictions to E of holomorphic functions in a
neighbourhood of E. With this aim we shall additionally assume that
lim N(t) = «© and

t—=a

(5.1) For each ae(0, 1), limsup[N(a9]'* < 1.

k—wo

The typical examples of such functions N are: N(t) =t? (p > 0) and
N(t) = log,(1+1) (a > 1). Observe also that if N, and N, satisfy (5.1) so do
the functions max(N,, N,), N;+N,, N; N,, and N,oN, (superposition). We
note a simple technical

5.1. LEmMA. For every b > 1 there is ¢ > 1 such that

b*N(t) = N(c*1)
for t 20 and k > k.
By Siciak’s version of a Bernstein-Walsh theorem (see [18], Theorem
8.5), if E is a bounded subset of C" such that E is polynomially convex, then
for every holomorphic function x in a neighbourhood of E,
limsup (inl {||x = pllg: pe #}]* <1

k—a
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whence we also have

limsup [dy(x, 2)]'* < 1.

k—ac
Conversely, suppose xe N(L(E, p)) is such that for a strictly increasing
sequence {k;} of positive integers, we have

(5.2 limsup [dy(x, g’kj)]

Jj—o®

1/k;
<.
Then we have

5.2. TueoreM. 1° If (E, p) satisfies I* at each point ac E and
(5.3) limsupk;,,/k; < oo,

J—®

then every function xe N(L(E, p)) that sau:sﬁes (5.2) is equal p-almost
everywhere on E to a function X holomorphic in a neighbourhood of E.

2° If u satisfies the assumptions of Proposition 4.1, E is polynomially
convex, compact set in C", and

(5.4) limsupk;,,/k; = o,

j— o

then there is a function xe N(L(E, p)) that satisfies (5.2) and is not the
restriction of a holomorphic function in any neighbourhood of E.

Proof. 1° By (5.2), for each j there is a polynomial p; of degree at most
k; such that

k:
lIx—pjil < Ma”

with some constants M > 0 and ae(0, 1) that are independent of j, ||‘]|
denoting the F-norm (3.1). Hence by (5.3),

Py 1 —pill < M(a"*!+4%) < 2Mb*!

for j = jo = jo(c), where ¢ > limsupk;,,/k; and b = a'’. Consequently,

j— o
(5.5) on(p;+1—pj) < 3Mb*!

for j > j,, where j, > j, is chosen such that 3Mb"*! < 1. Now we adopt a
reasoning of Nguyen Thanh Van [8]. Take any ce(b, 1) and set

E,;={zeE: c_ij(lij(z)—pj(z)l) > m}.
Then by (5.5), u(E, ;) <3M (b/c)'**/m for j > j,, whence by setting

we get

m| 61 E,)= lim u(E,)=0.

m-= @
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This means that for each ce(d, 1) we have

supc ¥ 1N (|pj+ 1 (2)=p;(2)) < 0

iz1

pu-ae. on E and hence, by Lemma 5.1, we can find d > 1 such that the
sequence

& p (- (=1,2,..)

is bounded p-a.e. on E. Since (E, p) satisfies L*, for each re(l, d), there exists
a constant C >0 and a neighbourhood U of E such that

k; .
suplpj+;—pj < Cr/*l,  j=1,
U
whence the series

p+ Z (Pj+1—P))
j=1

is uniformly convergent on U to a holomorphic function X such that X(z)
= x(z) pu-a.e. on E.

2° By (5.4) there is a subsequence {kiz} of {k;} such that {k;,, ,/k;,} tends
to o, as [— . For simplifying the notations we leave {k;} to be the
subsequence. By Proposition 4.1 there is a function xe N(L(E, p)) such that

dN(x, 9&) = 8,‘ for k 2 ko,

where ¢, = ij, as k; <k <kjyy,forj=1,2,..., and ¢€(0, 1). Thus, x fulfils
(5.2) but, according to the Bernstein—Walsh theorem cannot be extended to a
holomorphic function in any neighbourhood of E, since we have
limsup [dy(x, 21" > limsup [dy(x, 2, , - )] 7"
k— a0 j—om®
= lim ijmjﬂ_l) = 1.
j—o o
53. Remark. A weaker version of Theorem 5.2 was proved in [12].
A similar criterion to that of Theorem 5.2 can be proved for entire
functions without any restrictions on E (in part 1°).
Consider the set of elements x in N(L(E, p) such that for a strictly
increasing sequence {k;} of positive integers, we have
(5.6) lim [dy(x, ykj)]"*f =0.
j—~®
5.4. TueOREM. 1° For every subset E of C", if xe N(L(E, p)) satisfies (5.6)

with a sequence [k;} fulfilling (5.3), then x is equal u-ae. on E to an entire
function.

2 If p fulfils the requirements of Proposition 4.1 and {k;} is a sequence
that satisfies (5.4), then there is a function x in N(L(E, ) fulfilling (5.6) which
cannot be the restriction of an entire function.
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Proof. 1° By a similar argument to that of the proof of part t° of
Theorem 5.2, we show that there is a subset F of E with u(F) > 0 such that
for each zeF,

sup(2£) 7" N(Ipjs 1 (2)—p; (2)]) < o0,
jz1

where &; = [dy(x, )] = |lx—p,|"" - 0 as j— co. Then, similarly as in

Lemma 5.1, we can find a sequence n; — 0 of positive numbers such that for
zeF,

(5.6) sup N(n; “I* 1p;+ 1 (2)—p; (2)]) < 0.

iz1

Since for each j, —logn;+k; log|p;.+, —p; is a plurisubharmonic function
from the class .#, and since F is not pluripolar, by [18], Theorem 3.5, it
follows from (5.6) that the sequence

- 1/k; .
'7j1|Pj+1—Pj| T j=12,..
is uniformly bounded on every compact set in C". Therefore the series

a

Pt Z (Pj+1— Py

Jj=1
is uniformly convergent on every compact set in C" to an entire function X
such that X(z) = x(z) p-ae. on E.
2 Set, for j=1,2,...,

and
£t=t;j as kJ<k<kJ+1
Then by Proposition 4.1, there is a function xe N(L(E, p)) for which
dy(x, ) =&
for almost all k. Now by (54), it is easy to check that
limsup [dy(x, 2)]"* = 1.

k—a
On the other hand, if x is an entire function on C", then for each subset E of
c,

lim [dy(x, 2)]'"* =0,

k— o
and this completes the proof.

The functions in N (L(E, p)) that satisfy (5.2) are called quasianalytic in
the sense of Bernstein. (Those which satisfy (5.6) are per analogiam called
quasientire.) For properties of quasianalytic functions we refer to [10]
(quasianalyticity in spaces of continuous functions) or to [12] (case of Orlicz

18 — Annales Polonici Mathematici XLVl
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spaces). We end by proving a mutation of an identity principle for
quasianalytic functions [12], Theorem 5.4.

55. ProposiTION. Let E be a connected open set in R" and let u be a
Borel measure over E such that

(i) For each subset A of E, if c(A) =0 then u(A) =0.

(1) For each n-dimensional compact interval I = E, the pair (I, y) satisfies
I* at every point acl.

If then xe N(L(E, ) satisfies (5.2) and x =0 on a subset F of E with
u(F) >0, then x =0 on E.

Proof. By (5.2) there is a sequence {p;,} of polynomials in C" with
deg p; < k; satisfying dy(x, 9”,‘1.) = ||x—pjll, and a constant ae(0, 1) such that
for each j> 1,

[ N(pdu <a".

F
We may suppose F is bounded. Take be(a, 1). By the already known
argument we can find m > 0 and a subset H of F with u(H) > 0 such that
for each zeH,

supb™ I N (|p;(2)l) < m.
J

Hence by Lemma 5.1, there is a constant de(b, 1) such that for ze H,
(5.7) supd “p;(z)) < N~ (m)
j

and by the continuity of each p;, the inequality holds for ze H. Since
c(H) > 0, by Kellogg’s lemma (see Section 2) there is a point zoe H such that
Vg (z0) = 0. Hence by (5.7), p;(z)— 0, as j— oc, uniformly on an open
neighbourhood U of z,, whence x =0 on En U. Now our assertion follows
from (ii) which can be shown by the same argument as that of the proof of
{12], Theorem 5.4, and therefore we omit the details.

5.6. Remark. Condition (ii) does not imply condition (i). For if u is
taken to be counting measure, then by Example 1.3, for each compact
interval I, (I, p) satisfies ¥, and the same time condition (i) fails to hold.

5.7. QuesTion. Does (i) imply (ii)? We note that the answer 1s “yes” in
case of any measure of Example 1.6.
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