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Asymptotic analyses of two fourth order
linear differential equations

by DaviD LoweLL LovELADY (Tallahassee, Florida, U.S.A.)

Abstract. With » and ¢ positive and continuous, the equations (r4”")”"+ qu = 0
and (ru”’)” — qu = 0 are studied with respect to oscillation and the asymptotic be-
havior of non-oscillatory solutions.

I. Introduction. Let each of r and ¢ be a continuous function from
[0, oo) to (0, oo), and suppose

(1) [ r(e) s = oo,

0

In [4], we showed that if

o ¢
(2) [ (f—s)r(s)™ds) qtyat = o,
0 0

then every solution of
(3) (ru”’)'+qu =0

is oscillatory, i.e., has an unbounded set of zeros. In Section II we shall
refine this result. In particular, we shall exhibit two functions ¢ and y
such that if

(4) 24z =0
is oscillatory then (3) is osecillatory, and such that if
(5) 2Z'+yz =0

is non-oscillatory, then (3) is non-oscillatory.
There is no hypothesis, on the other hand, which will ensure that
every solution of

(6) (rull)ll_qu = 0
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is oscillatory. We shall prove, in Section IIT the existence of two classes
of non-oscillatory solutions of (6), and then find conditions under which
all non-oscillatory solutions are in these two classes. Also, it will be shown
that if all non-oscillatory solutions are in the two classes, then the solu-
tion space of (6) has a two-dimensional subspace consisting of only oscil-
latory solutions. It will follow, for example, from the results of Section
IOT that (1) and

=]

(7 [ eqwat

0

I
8

imply that (6) has non-trivial oscillatory solutions.

II. Equation (3). Throughout this section we shall assume that (2)
fails, for otherwise the oscillatory properties of (3) are known. From (1),
we can find ¢ > 0 such that

In particular, the failure of (2) implies

oo

[ tg(tydt < oo.

0

Let ¢ and y be defined on [0, o0) by

p(t) =r(®)" [ (s—t)g(s)ds
t

and
t

w(t) = ¢(0) [ (1 —s)r ()7 ds.

0

The following theorem is the main result of this section.

THEOREM 1. If (4) s oscillatory, then every solution of (3) is oscillatory,
and if (B) is non-oscillatory, then every non-trivial solution of (3) ig non-oscil-
latory.

There are a great many results known with respeet to oscillation
and non-oscillation in second order-equations, and Theorem 1, together
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with these results, permits the drawing of many corollaries. We cite
~-an example.

COROLLARY 1. If

timsupt [ ( f (s— &pr(6)ag) a(9)ds > 1,

{00

then every solution of (3) is oscillatory, and if

0o 8

limsupt [ ([ (s—&)r(&)7'd&)q(s)ds < ¢,

R |

then every mon-trivial solution of (3) is mon-oscillatory.

Corollary 1 is clear from Theorem 1 and classical results of E. Hille
{2] (see C. A. Swanson [5], Theorem 2.1, p. 45, for a summary of the rele-
vant portions of Hille’s work). It should be noted here that two applica-
tion of integration-by-parts yield

o © 8

[ o@ds = [ (f(s—&r&)dg) q(e)ds
¢ ¢ H

f ¢t > 0. This last computation also shows that

==} o0

[o®ds< [ pis)ds

14 11
if ¢t > 0, thus yeilding independent proof of a consequence of Theorem 1:
If (4) is oscillatory, then (5) is oscillatory. (See Hille [2] and A. Wintner
{71, also [56], Theorem 2.12, p. 60.)

Proof of Theorem 1. First we shall show that if (3) has a non-oseil-
latory solution, then (4) is non-oscillatory. Let # be a non-oscillatory solution
of (3). If u is eventually negative, we may replace v by —u, so we assume
that « is eventually positive. Let w = r«’’, and find a > 0 such that «(t)
> 0if t > a. Now w"’ = —qu < 0 on [a@, o), s0 w’ is decreasing on [a,oco).
If w’ is ever negative on [a, oo), then w(t)—> — oo as t— oo, sinee w' is
decreasing. This and (1) say that «'(t}—— oo and #(f)>—oc0 as t—oo,
a contradiction. Thus w’ > 0 on [a, o). If b > a and w’(b) = 0, then w’(?)
= 0 whenever > b, contradicting the fact that w’ is decreasing. Thus.
20’ (t) > 0 if ¢t >> a. Now w is increasing on [a, o0), and it is clear that either
w < 0 on [a, oo), or there is b > a such that w > 0 on [b, ). We take
cases.

Case 1. Suppose w < 0 on [a, ). Now %' <0 on [a, o), and
reasoning similar to the above says #’' > 0 on [a, c0). In particular, %
is increasing on [a, o). Since w'’' < 0 and w' >0 on [a, o), w'(o0)
= lim w’(t) exists and w'(cc) > 0. Since w' >0 and w< 0 on [a, o),

t—>oo
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w(oo) exists and w( o) < 0. The joint existence of w(oo) and w'(oc) says
w’( 00) = 0. Also,

w(f) = w a)+fr(s)"w(s) <a)+w(oo)f r(s)"'ds

if > a, s0 (1) says that w(oo) < 0 would contradict «’ > 0 on [a, oo).
Thus w(oc) = 0. Now, if > 1t> a,
w'(r)—w’(t) = — [ g(s)u(s)ds,
i

80

w'(t) = [ g(s)u(s)ds.
¢

Also, if 7>t > a,

w(z)—w(t) = [w'(s)ds = [ ([ q(E)u(E)dE)ds
¢ t =8
=(z=1) [ g(s)u(s)ds+ [ (s—1)g(s)u(s)ds
T 11

> f(s—t)q(s)u(s)ds,
¢

SO

—w(t)> [ (s—tg(e)u(s)ds
¢

and

00

—w’(t) = —r@®) w0 > @) [ (s—1)g(s)u(s)ds
[]

>r) u(t) [ (s—1)g(s)ds,
¢
since w is increasing. Thus

w'' (1) Ju(t) f (8 —1)q(s)ds

whenever ¢ > a. Let v be given on [a, o0) by v(¢) = %’(¢)/«(¢) and note
that v(t) > 0 if ¢ > a. Now

v'(t) = u” (1) [u(t) —o()*
and

(8) o' (1) +o) < —r()7* [ (s—1)g(s)ds
t
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whenever ¢t > a. A classical result of A. Wintner [6] (see also [5], Theorem
2.15, p. 63) says that the existence of a positive solution of (8) on [a, o)
implies that (4) is non-oscillatory, so the proof is complete for Case 1.

Case 2. Suppose there is b>> @ such that w > 0 on [b, co). Now
¢ ¢
w(t) =u'(b)+ [r(s) w(s)ds > u (b)+w(d) [ r(s) ds
b b
if t > b, so (1) says there is ¢ > b such that »’ > 0 on [¢, oo). If ¢ > ¢, then

4 ¢ ¢ 8
c)+fu’(s)ds> fu'(s)ds = f(u'(c)-l— fu”(E)dE) ds

t s ¢ ¢
> f(fu"(f)d&)ds = f(t—s)u"(s)ds = f(t—s)r(s)“w(s)ds.

Also, w' > 0 and w"’ < 0 on [¢, o), s0 w’'(o0) exists, w'(c0)=>0. If 7> ¢
= ¢, then

w' (1) = w'(z)+ [ g(s)u(s)ds,
t

80

w' (1) —w(oo)+fq Ju(s)d fq(s)u(s)ds
Thus
(9) w'(t) > gs)(f s— E)r (&) w( ds)ds

¢

> [ 0 (f @—orerinas)as
¢ ¢

if ¢ > ¢. Now (9) and standard iteration methods say that there is & con-
tinuously differentiable function z from [e, co) to [w(c), oo) such that 2z(¢)
= w(e), z2(t) <w(t) if t > ¢, and

(10) 2(0) = [ q@)([ (s—&r(&)2(5)aE) ds
¢ t
if £ > ¢. Differentiating (10) yields

2'(t) = — [ q(a)(s—t)r(t) 2(t)ds,

2'(t) = —[r)™ [ (s—t)g(s)ds)z(t).
t
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Thus 2 solves (4) on [¢, o). Clearly z can be extended to 2 solution of
(4) on [0, o0) and, since z has no zeros in [¢, oo}, this solution is non-oscil-
latory. This completes the proof of Case 2, and we have shown that if
(4) is oscillatory, then (3) is oscillatory.

Suppose (5) is non-oscillatory, and let z be an eventually positive
solution of (5). Find @ > 0 such that 2(¢) > 0if { > a. Now 2’ > 0 on [a, oo).
If t>1>a, then

¥(t) =2 (r)+f tz(s)ds > [ p(s)z(s)ds,
¢
50

o0 oo g

fip 8)z(s)ds —f (f (3_5)7(5)‘1d£)q(s)z(8)d8

¢ t 0
> [ ([ 5= &reriae) qlosecs)as
t ¢

if ¢>> a. Thus, as before, there is a continuously differentiable function
u from [a, o0) to [z(a), oo) such that u(a) = z(a), u(t) <2() if t=>a,
and

W) = [ ([ s—&r&)7 aE) g(s)u(s)ds
¢ ¢

if 1> a. Now, if t > g,

(=<}

w’(t) = — [ (s—t)r(t)"g(s)u(s)ds,
[

oo

r(t)u’(6) = — [ (s—1)g(s)u(s)ds,
¢

o«

Fyu" @) = [ g(s)u(s)ds,
4
(rt)u” ()" = —gq(®)u(t).

Thus u solves (3) on [a, o). Clearly % can be extended to a solution of
(3) on [0, oc), and, since # has no zeros in [a, oo), this solution is non-oseil-
latory. But W. Leighton and Z. Nehari [3], Corollary 9.10, p. 367, have
shown that the non-trivial solutions of (3) are either all oscillatory or
all non-oscillatory, so the proof of Theorem 1 is complete.

III. Equation (6). Throughout this section, if % is a solution of
(6) welet w, =ru'’.If 4 =1, 2,3, 4 let y, be the solution of

s

t
(11) y(t) = {0+ [ @—a)re) [ (s— &) a(&)y:(£)dE) ds
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on [0, o), where f,(¢) =1, f,(t) =1,
t ¢
f:(t) = f (t—s)r(s)~'ds, and f,(t) = f(t—s)sr(s)‘lds
0 0

if t> 0. Now {y,, ¥2, ¥s, ¥,} i8 & basis for the solution space of (6). Since
each f; is positive on (0, oo), (11) says that each y; is positive on (0, oo).
Again using (11), this says that if » is in {y,, ¥,, ¥5, y,}, then w’, w,,
and w, are positive on (0, oo). So we see that there exist eventually posi-
tive solutions % of (6) with «’, w,, and w, all eventually positive. There
is also another class of eventually positive solutions.

THEOREM 2. There exists a solution w of (6) with u(t)> 0, u'(t) < 0,
w, (1) > 0, and w, (1) < 0 whenever 1> 0.

If % is an eventually positive solution of (6) and each of ', w,, and
w,, i8 eventually positive, we shall call « strongly increasing. If u is an
eventually positive solution of (6) with w, eventually positive and ’
and w, eventually negative, we shall call % strongly decreasing. Before
proving Theorem 2 we need a lemma.

LEMMA 1. If u is a solution of (6), ¢= 0, u(c) > 0, u'(¢c) < 0, w,(¢)
>0, and wy(c) <O, then wu(t)>0,u (1) <0,w,(t)>0, and w,(t)<O0
whenever 0 <t < c.

Lemmsa 1 is so similar to & result of S. P. Hastings and A. C. Lazer
[1], Lemma 1.2, that we shall not include a proof.

Proof of Theorem 2. If % is & positive integer let v, be a solution
of (6) such that v,(n)> 0, v,(n) <0,w, (n) >0 and w, (n) <0. Find
numbers a,, b,, ¢,, d, such that «, = a,¥,+b,9,+¢,¥:+d,y,. By mul-
tiplying «, by & positive constant, if necessary, we may assume

(12) ay+by e+ d;, =1.

But (12) says there is a subsequence {n,};., of the positive integers
such that

a = lima,, g =limd, , y =lime, and 6 =limd,

k—oo k—oo k—»co k—eco
exist. Clearly
(13) a4 B2 p24 82 = 1.

Let uy = ay,+ fy,+yya+ dy,. Now (13) says w, is non-trivial. Also,
Lemma 1 and the construction of {,}> , ensure that u,>0, %,<0,
Wy, > 0, w, <0 on [0, co). If t>> 0 and ue(t) = 0, then u,(s) = 0 when-
ever 8 > t, a contradiciton. Thus u,(?) > 0 Whenever t>0. Now wu > 0,
80 w, , 18 Increasing. Thus if t> 0 and wu (¢) = 0, then 'wuo > 0 on (t 00),
a contra.dlctlon Thus w,, , <0 on [0, oo) Similarly, w, >0 and U, < 0
on [0, oo), and the proof i 1s complete.
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Since we now know of two classes of eventually positive solutions
of (6), namely strongly increasing and strongly decreasing, the best oscil-
lation theorem one can hope for is one which restricts all eventually posi-
tive solutions to these classes.

THEOREM 3. If

(14) [ #qyat = o,
or if (14) fails and
(15) (r2') +wz =0,

18 osctllatory, where w 8 given by

o0

w(t) = [ (s—1)q(s)ds,

t

then every evenlually positive solution of (6) is either strongly increasing or
strongly decreasing.

It might appear that (14) gives and hypothesis which is independent
of 7, but it should be recalled that throughout we are assuming (1). Before
proving Theorem 3, we need another lemma. This is an easy extension
of an earlier cited classical result of A. Wintner [6] (see also [5], Theorem
2.15, p. 65). We suspect the lemma is known, but the author has not been
able to find it in the literature. The proof of the lemma is so standard that
we shall not include it. X

LeEMMA 2 Equation (15) i8 non-oscillatory if and only if there is ¢ >0,
and a posilive continuously differentiable function v on [¢, oo), such that

()0 () +v()2 < —r(t)o(l)
whenever t > c.

Proof of Theorem 3. Suppose that # an eventually positive sol-
ution of (6) which is neither strongly increasing or strongly decreasing.
Find a > 0 such that %(f) > 0 if 1> a. Now w,, > 0 on [a, oo), s0 w,, is
increasing on [@, oo). If w,, is ever non-negative, then, since w,, is increasing,
w,(t)=>+ oco,u’(t)>+o00, and %u(t)—>—+ oo, a8 t—>o0, i.e., % is strongly
increasing. Thus w, <0 on [a, o). Now w, is decreasing on [a, o),
and if w, is ever negative on [@, o), then «'(t)>—o0 and u(f)>— o0
a8 t—o0, contradicting the eventual positivity of 4. Thus w, > 0 on [a, oo).
Now «' is increasing on [a, o). If ' < 0 on [a, o), then % is strongly
decreasing, so there is b > a such that 4’ > 0 on [b, o).

Since w, > 0 and w, < 0 on [b, oo), w, (co) exists and w,, (o) < 0. Since
w, < 0 and w, > 0 on [b, co), w, (o) exists and w, (o0) > 0. Also, the joint
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existence of w,(o0) and w, (o) says w,(o0) = 0. ¥ v>1>b, then

wy(v)—w, (1) = [ q(s)u(s)ds,
¢

80

(16) w,(t) = — fq(s)u(s)ds

Also, t

an w, (1) > fm(s—tm(s)u(s)ds
¢

if t>b. If s>1t>0b, then

(18) u(s) = w(b)+ [ w(HAE> [/ (£ > (s—D)w' (1),
b i

since u’ is increasing. This and (17) say

w,(b) = w'(b) [ (s—b)?q(s)ds.

b
Thus, (14) fails. Now (16) and (18) says that if { > b, then

—w,(t) > u (t)f (s—1t)q(s)ds,
(19)

wy(t)juw (1) < — [ (s—1)g = —w(l).
t

Let v be given on [b, oco) by v(1) = w,(t)/%(t), and note that v is positive.
Also,
V' (1) = w, () /u'(t) = r(t)  o(t),
so (19) says
r{t)o’ (1) +o(1)* < —r(t) o)

if ¢t > b. Thus (15) is non-oscillatory and the proof is complete.

Although Theorem 3 gives conditions which restrict the possible
asymptotic behaviors of non-oscillatory solutions of (6) (if » is non-osecil-
latory, then one of 4 and —wu is eventually positive), it does not in fact
ensure the existence of non-trivial oscillatory solutions. The following
theoremn not only yields oscillatory solutions, but it confirms that the
.question partially answered by Theorem 3 is indeed the relevant question
to ask.

THEOREM 4. Suppose that every eventually positive solution of (6) is
either strongly increasing or strongly decreasing. Then there are three lin-
early independent oscillatory solutions of (6), and there is a two-dimensional
subspace of the solution space of (6) every member of which is oscillatory.

2 — Annales Poloniel Mathematic! XXXVIIL/2
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Theorems 3 and 4 have an obvious corollary which we state for com-
pleteness.

COROLLARY 2. If (14) holds, or if (14) fails and (15) is oscillatory,
then there are three linearly independent solutions of (6), and there is a two-
dimensional subspace of the solution space of (6) every member of which
18 oscillatory.

Proof of Theorem 4. If 4 =1, 2, 3 let {a;,)=, and {b,,}>, be
sequences such that

(20) @Y () +0,Y.(0) =0
and such that
(21) @i+ b5 = 1.

By (21), there is a subsequence {n,};., of the positive integers such that

a =lima,,  and f; =limb,,
k—oo k—oo
exist for ¢ =1,2,3. For ¢ =1,2,3, let z; = a;y;+ B;¥;,,- It follows
from (21) that o} + 8} = 1, so each w; is non-trivial. We claim each z, is
oscillatory.

Let ¢ be in {1, 2, 3} and suppose z; is non-oscillatory. There is no
loss in assuming that x; is eventually positive, and we do. Since z; is & lin-
ear combination of two of {y,, ¥., ¥,, ¥a}, at least one of z,(0), z;(0),
w,,(0), and fw;i(O) is zero. Thus Lemma 1 says that x; is not strongly
decreasing, so, by hypothesis, x; is strongly increasing. Find ¢ > 0 such
that a;(t) > 0, ;(t) > 0, w,,(t) > 0, and w, (¢) > 0 if ¢> ¢. Clearly there
is an integer k such that n, > ¢ and such that, if v = a,, ¥; +b;, ;11 u(c)
>0, u' (€) > 0, w,(c) > 0, and w,(c) > 0. Now,

¢
(22) () = u(e)+(t—e)w (c)+wy(0) [ (t—s)r(s) ds+

t ¢ s
+wy (o) [ (t—s)sr(s) " ds+ [ ¢—o)r(s)™ ([ (s— O g(&)u(£)dE) ds

if ¢t> ¢. But the solution of (22) is positive on [¢, o), and u(n,) = 0.
This is 2 contradiction and w; is oscillatory.

Similar arguments can be used to show that no linear combination
of {z,, x,, x,} is strongly increasing. Furthermore, a use of Lemma 1 simi-
lar to that above says that no linear combination of {z,, x,} is strongly
decreasing, 8o every member of span {x, x,} is oscillatory. If, for any
i, a,f; = 0, then x; could not be oscillatory. Thus a; % 0 and g; 0,
and the linear independence of {z,, #,, x;} is immediate. This completes
the proof.
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