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On a generalization of Frenet equations
by S. TorA (Krakéw)

The purpose of this note is to generalize the result of my former
work [4] (related to the curve in a 3-dimensional space) to the case of
an n-dimensional Euclidean space (n > 3).

I. The vectors of a Frenet n-hedron for a curve. Let C
be a curve in an n-dimensional Euclidean space R, given by the vectorial
equation
(1) r=r(o), oel(})

where o is the length of the arc of the curve C taken from a fixed point.

We assume the following properties for the curve C:

1) For any j-dimensional plane L; (j << %) through the point M (a,)
there exists a neighbourhood of this point such that the plane L; and
the curve C meet only at the point M(g,) in it.

2) The function r(c) is of the class C*~2 in the interval 7.

3) The derivative of the order » —1 of the function r(o) exists at
the point g,.

4) The following condition holds:

ord(rg”, rg?, ..., 78 ) =n—1

where r§’ denotes the value of the derivative of order { of the function r (o)
at the point g,.

Now we shall give a certain construction of the vectors ¢; of a Frenet
n-hedron, different from the classical one.

On the basis of [3] the curve € with equation (1) has a system
H,,...,H,_, of osculating planes at the point M (g,), where H; is the
i-dimensional plane given by the equation

rergd DAY (=1, ..,0-1).
=1

We shall find an orthonormal system of vectors ¢, ..., ¢,_, such that
T; = H;, where T; denotes the ¢-dimensional plane through the point
M (0,) with the vectorial base ¢, ..., ¢;.

() I is the neighbourhood of the point o,.



198 S. Topa

For this purpose we shall prove the following

THEOREM 1. The system of wvectors t,,..,t; (t=1,...,n—1) given
by the formulas

)

tl = I'O )
(2) ne1
t,, = vers (Z 'uimtj -|—1mr.(,m) (m=2,..,n—1),
i=1

where ui* and Ay (im > 0) are arbitrary real numbers, is the vectorial base
for the plane H;.

Proof. We use the method of mathematical induction with respect
to i ({=1,..,n—1). For ¢ =1 the theorem is true.

Now let us assume that the theorem is true for ¢ = s and let us show
that is true for ¢ = s+1. From the inductional assumption it follows
that each of the vectors ¢, ..., t; depends linearly on the vectors ry’, ..., ri.

In view of (2) we see that

8

s+l, (8+1)]
b1 = vers( Wit Agaro ' ’

=1

and we conclude that the vector t,.; depends linearly on the vectors
rs)l) r‘()s+1)
, -.0’ L

From this follows our theorem.

In formulas (2) we can put 4, =1 (m =2, ..., n—1).

Now we have to choose the coefficients uj* in (2) according to the
conditions

(3) bt =0, (k,j=1,..,m).
So let us multiply the second formula in (2) scalarly by the vectors t
(1 <7 <m-—1). By conditions (3) we get
0 = uf* +;rd™,
which yields
W =—tr®  (j=1,..,m—1; m=2,..,n—1).

Therefore we have
m-1

t, = Vers (rf,""—z (e,ri™ )t,) .

r=]1
The vector ¢, will be defined by the formula
t” == tlA -.-/\ tn—l )

where the symbol on the right-hand side denotes the vector product
of the vectors ¢,, ..., ¢, ;.
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Thus we have the formulas

(1)
tl =Ty,

, m—1
(4) tn = vers (™= N (e,ri™)e)  (m=2,..,0—-1),
v=1

tﬂ=tl/\"‘/\tn—1‘

DEFINITION 1. The vectors ¢, ...,t; given by formulas (4) will be
named the vectors of a Frenet n-hedron for the curve C at the point M (o,).

The following theorem will give a certain geometrical interpretation
of the vectors {t;} (i =1, ...,n) given by formulas (4):

THEOREM 2. Assume that m > 2. Let us consider an (n—m—+1)-
dimensional plane H,_n, through the point M(ao,) which is perpendicular
to the plane H,,_,. Let us project (perpendicularly) the curve C on the plane
H, _ 1. Let us denote the projection by C*. The projection of the point M (o)
of the curve C will be denoted by M*(c) and its radius-vestor by r*(c).
Next let us form the ratio

(r*—ro)
[r* —r|

sn(h) = = vers(r*—r,) ,

'where.h = g—0y, r* =r*o), ro = r(o,)-
We shall prove that there exists a limit

lim s,(h) =tn,, h>0.
B0

Proof. Let us write the equation of the plane H, _nm+1 ‘in the form
n—m+1
r=rg+ 2 a,a,, a,=const,
r=1
where the system of veectors a,,..,a,_,4, is an orthonormal system
such that
a,-tk=0 (j=1,...,n—m-i—1; k=1,...,m).

The equation of the projecting plane H,_, can be written in the
form
m-—1

F=rt D A,

r=1

In order to get the equation of the curve C* we put

m—1 n—m+1
(5) r+ D hto=rot D aa;.
r=1 j=1

Multiplying (5) scalarly by ¢, we obtain

= —(r—rp)t, (v=1,..,m—1),
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so the equation of the curve C* has the form

m—1

(6) e =r— D [(r—rot.]t, .

s=]1
In consequence of (6) we have

m—1

sm(h) = vers {(r—ro) = D [(r—ro)t,]t.} .

r=1

Let us apply Peano’s formula with derivatives up to the order m
to the difference r —ry; we get
m—1

v | S 2SS p 2

F=1 y=1

m-—1

I 0

i=1

m—1

R e

=1

It can be verified by using formulas (4) that

S-St .

J=1 r=1

In consequence we obtain
-1
8a(h) = vers {r("') +e— Z [(rg™ +e)¢,]t,} .
»=1

If h—>0, this vector tends to the limit vector equal to t,.
‘Then the theorem is proved.

II. The definition of curvatures for a curve. Now we
make use of a lemma of 8. Golagb [2] which states that for a curve with
equation (1) of such regularity that Frenet’s equations are valid (in the
classical sense) we have relations of the form

(7) P Z«u(a)tﬁ]‘[wﬂm (m=1,...,n-2),
=1

where the coefficients aj' are certain algebraical functions of the curva-
tures »; and their derivatives. *
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Multiplying (7) scalarly by t,;, we obtain

m
(8) tmro D = nx,- (m=1,..,n—2).
F=1

Formulas (8) can be used to give a formal definition of successive
curvatures x; (j =1, ...,n—2) for a curve with weaker assumptions of
regularity than the above ones. )

Let the curve C satisfy conditions 1)-4), which have been stated
in chapter I.

Then there exists a system of vectors {t;} given by formulas (4) which
satisfies the conditions

(m)

tp,ro >0 (m=1,..,n—1).

This implies that all the functions x,, ..., x,_s defined formally by (8)
are posifive. So we can write the formnulas

(2)
% =0Ty ,

(9) t r(m+1)
Mg =20 (m=2,..,0—2).
Hyeee M1

THEOREM 3. The formulas in (9) may be represented in the simpler
form
@)

#y = 8T
(m+1)
| Fo
= e (=2, .y m—2) .
m)
tnTo

Proof. We shall use the method of mathematical induetion. We
have

(3) (3)
_Lyrg 4o

%2 _— —_— v
) tzr(()2)
Assuming that
(k)
t r D
xk—l.:-ﬂ—_ (k = 2,.5,...7'"1—2)7
(k—-1)
t._1To
we obtain
(k-+1) (1) {e+1)
o tk+1ro — tk+1rl‘) — tk"'l To
(xl one xk_g) xk—l (k-l tk r:)k) tk r(()k)
Lo a-n
LY

which was to be proved.
Now let us make the additional assumption that the vector t,_, has
a derivative of order 1 at the point o,.



202 S. Topa

Then we can put

’ ’ def dtﬂ—l
Hp-1 = {tla eery tn—l, t‘n.—l] ] th1 = do ’

where the symbol on the right side denotes a mixed product of the vectors
1y ooey Bp1y En—1, Which is simply equal to det(t,, ..., t,_y, th—y)-
.DEFINTTION 2. The functions s, ..., %,_, given by the formulas

(2)

% =1Ly,
(m+1)
L r
Ay = —m¥10 (m=2,..,mn—2),
t (m) ? b
mTo

Hp—1 = [tly ey tpn—y, tf’z—l]
will be named the seccessive curvatures for the curve C at the point M (oy).

III. Frenet equations. We assume that the curve C has vectors
of a Frenet n-hedron in a certain neighbourhood of the point M (s,) in
the sense of definition 1. Furthermore all the curvatures of the curve C
at the point M (o,) exist in the sense of definition 2.

THEOREM 4. If the above assumptions are satlisfied then the following
Frenet equations for o = o, hold:

6= %ty ,
(10) tm = — %m-10m—1 T Xmbm+1 (m=2,..,n-1),
t;b = —%p1lp_1.

Remark 1. In the above theorem we do not assume the differen-

tiability of the vectors ¢,...,t, at the point o,, because we can easily
verify that:

THEOREM. The necessary and sufficient condition for the existence
of the successive curvatures for the curve C at the point M (o,) s that the
vectors of a Frenet n-hedron exist in a certain neighbourhood of the point
M (o,) and be differentiable at the point o,.

Proof. The sufficiency does not require a proof; so let us pass to the
necessity.

If there exist successive curvatures for the curve C at the point
M (o,), then using the method of mathematical induction we can prove
the differentiability of the vectors t,,...,t,_,. The differentiability of
the vector ¢,_, was assumed in definition of the curvature x,_,. Finally
the differentiability of the vector t, follows by the theorem on the deri-
vative of the vector product.

Now we shall prove theorem 4.
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Proof of theorem 4. The first equality follows simply by the
calculation

@ "32) @ r‘()z (2)
# 8, = (L7g ))tz = (T)"o )) —@; — T = t.
lro”| Lon

The next equalities except the last one, will be proved by means
of the method of mathematical induetion.

‘We have
2) r 1(12) (2) r (()2)’ (2)
% =Ly = (2) = (2) I l ’
[ro I e
3 (3 3 3 8
o = tyry _ [r) — (£,r0)t, — (8,00 ) to]rl”
2 () @ 3 (3 2
try ([ —(trs) )t — (Eare) ) 8] - 16
@) (2)
€) ( ro 3)} To 3
lr°) (rr®) rd ( o r8 )) (2)],.(())
[ro | [ro |
| (2) ) !
3) 1) @), (1) To ' (9| To (2)
ro —(ro'rg )ro ( "o)—— |re |
& LRty
B r.‘)2)2r‘()3)2_ (2)2('_(1) (s))ﬂ ( (2) (2))2
o 1@ r® —r@ (e O B D (rPr®) (z)l_lr(()z)'i ’
; r(()z)’r‘(JSJ_ raz)'(r(l) r(a))ru) (r(2) (3)) (2)
3 r—4
lrf,z”r((,”—r“,z)’(r“’ (3)),,(1) (r‘()z) ,.C('s)) ,.32;[ !
and
@ @ 1 2
(2) ’ Iro)lréa)_rn) l (2)‘2( () t3,)
7 r —
(11) L = (Ir(z)l) - (2)2
B rge)zrg!) (r(z) r(s)) ,_( 2)
o e |?
Hence

2
— ity + Hty = — g |rg" -
(2)8_(8)2 (1) _(3 (2)2 (2) p(3),2
["o) "o) —("o)"o’)z"o) —("o)ro))

N

+ 2)8 T 2)2 2 2y,
T PN — e
2)3 (8 (2)2,_(1)_(8), .1 (2 (3 (2)
O =P (7P ) — (i rs )

o [r(()z)',.(s) (r‘” (3) ),.32)' ,.‘(Jl) (z) “”)r”’]
1 LI ¢ 2 1 2) (8 2
—_ |ra2)lr((’l) ; (0)I3 [r(") ros) (2) (r(l) (3))'.( ) (r( )r( ))l"( )]
(2)2_(8) (2) (3) (2)
_ @ o 1 @ q ) pD ro’ ro —(ro )ro
= |—|ro " |Fro o ro (ro yro'} + @
[ro | iro |

(2)2_(8 @2)_(s (2
ro)"o)—( )"o))"o)

I (2)3 !



204 S. Topa

and in view of (11) we have

’

—xl Tty =t .
In the foregoing calculation we have made use of the formulas:
3) [raz):r‘(ja)—__ r‘(,z)'(r((.n r(()ﬂ))r(()l) _ (rSZ) rt(.s))r((f)]z

2)3 - (2)% (3)8 2)2

=ro [ro re) —rp) (rg’ rd) — (i riV)e]
Furthermore

riop® =0,
which after differentiation yields

r2? L p)pd) — 0,

Hence it follows that

rp® — _ p@r
and particularly at the point o, we have
b) rOp®

Therefore we see that the second equation holds.

Suppose now that the equation with the number m = k is valid.
We shall prove that the equation with the number m = k41 remains
true.

At first we shall find the derivative of the function t..,. If we use
the notation

s—1
= r®_—
Ve =T Z (&r®)e; ,
j=1

then
b1 = VOIS Uy,

and at the point ¢, we have

Vit [ V41| — Vg [ 2 (Vg 41Vk41) ]

’ 2 l‘le+1 l
Ty = D)
Vpt1
1 [ , (vk+1”;c+1)vk+1]
= Vg1 — 2
|V 1] Vit

1 [, (”k+1 ;| Ve

= V1 — Vi1
T R |kl

1
= m [Vi+1 — (Ex+1Phs1) Breta] -

Now we shall find vj., and further t,,,¢.,.
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We have
k
b} .
Vhyr = 4D — D [(frt) L gfretD)e; o (grk+D)e]]
i=1
k k
= rk+2 — Z (&;r&+»)e; — Z [(e7r®+0)e; + (grk+1)g]]
o= =
3
— plk+2)_ 4‘; (8, r®+2) g, — (6 rtR+D) g, 4 (6,r+1) e} —
j=1

k
— 2 [(efrde+D) g, 4 (¢ rttD)ef]

j=2
Let us consider the following expressions:
1) (ejr®+0)g; = [ — (6717 1) sy (854,r&F D) 2
= — %1 (1P *ID)E; 4 oi(g 7 ET)
(&;r®+D)e; = (;r* D) [—ag_ 8 4 %;844]

= — % (GrEID)e; s Lo (e D)y,
for j =2, ..,k

k
2) ) [(Ert+n)e; + (t;rt+0)e]

j=2

k
= X Dl D)y — iy (8- FED) 5]+
j=2

k
) [ (g P D) b — ;o (704 D) gy ]
j=2
k k-1
L2
= 2, % (r&t)e ., — 2 % (D) e, -
j=2 i=1
k k-1
1 [«
—.—2 ”i(tj+lr(k+l))‘f"‘2 #i (LK)
i=2 =1

= s (Er D)ty g + e (B r*FTD) 8 —
— {06, (6 PEID) £, 5, (ErKHD)e )

As a result of 1), 2) and 3) we have

k

Vi = rkiD — 2 (& 2) 85 — oy (Gr*H D) ey -y — oo (e PR+
i
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and

Lo 1Vks1 = Ly TETD) —og (g, rk+1)) |
Hence we obtain

K
1 W
tip = [r(k+2)__ > (& r®+D) 8 — o (£, rBAD) g, ) —
|Pk+1] 7—;1/
— s (G PETD) by — (Bppq P EFD )8 "k(tkr(k+l))tk+l]
v t r&+1)
__ k4] trg— 0 LT
log 1, | ey
Because of

K
rk+1? — 3 (g ptt1))e
L aarOH) gy P _ P )

loessl o2 s & =1
i=1

and

[Vkrz|  eyor®tD "

= = Xp41

|Vrg1]  Cpgar®tD
we obtain finally

Liyr = — Xpbp + %1 biye -

Just that was to be proved.

We have yet to verify the last equation in (10). Applying the for-

mula for the derivative of the vector product of the vectors and using
the first » —1 equations of (10) we obtain

th={t A ALY
n—1

LA AL A AGAL A Aty
i=1

= %n—l{tl Ae A tﬂ_.z A tﬂ,}
= —dpa{ta ABLA ... Alp—g} = —%p 18a— -

The theorem is proved.

The fundamental theorem. Suppose we are given a sgystem
of scalar functions of the variable

(12) '

Xl, .;.’xn_l, TGI(z),

which are summable in 1.

(*) I denotes an interval containing the point r,.
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We consider an orthonormal system of constant vectors

o L0 0
by ley ..oy Ly

with an orientation consistent with that of the system of coordinates.
Furthermore let us fix a point M,.

THEOREM 5. Under the above assumptions there exists a unique curve C
with the equation

(13) r=r(t), 7el,, I,CI, 7€l

and the following properties:
1) the curve C contains the point M, which corresponds to the value t,
of parameter ;

2) o = t—1, is the length of arc of the curve C taken from the point M,;
3) there is a system of vectors

t(7), ey tu(r), Tel
absolutely continuous in I, and such that

0 .
tit) =t; (1 =1,..,n)

4) the following system of equations holds:

dar
hT g
t{ = x1t2 ’
t;n = _"m—ltm—l +Hmtm+1 (m = 2, ceey n—l) )
th= —%p_1tp_y .

(The symbol = denotes that the relations are satisfied almost everywhere
in I,).
Proof. The system of equations

t, = nt,,
(10°) tm = — #Zm-1tm-1 1 %mlmis (m=2,..,n-1),
t;l = —Xp_1lp1

with coefficients (12) has one and only one solution ([1])

(14) 6(7)y oy ta(7)

where the functions t,(r) are absolutely continuous in I, and satisfy the
conditions

t{(fn)=t? (i=1,...,n).
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We shall prove that solution (14) represents in the whole interval I,
orthonormal system of vectors and has the same orientation as the system
of coordinates.

In order to show this we consider the scalar functions A, defined
by the formulas

(15) i A =¢tt (8, k=1,..,n).

In consequence of (10’) these functions (15) satisfy the system of
equations

]'1'1 - 2"1]'12;
Mi = yde; — %5 ahaica + %k
(16) My = —wishiv;+ % hivr; — % —1hi i F #ihi e

’

J-l'n, = "‘1}'215“ ”n—lll,n—l y
14

Am' = - "i—lln,i—l + "i}-n.i+1 - "n-lln—l,i y
14

lnn = _2"71—lan—l.n )

for i,j = 2,...,2n—1, and the initial conditions
(17) a-:Jk(""o) = 691: (83 k= 1., n) .

The conditions for the existence and uniqueness of the solution of
gystem (16), (17) are satisfied.
Since the system of functions (15) and the system defined by

i =0, Tel, (8,k=1,..,%)

satisfy both together the system of equations (16) with the initial con-
ditions (17), then we conclude that

(18) tt, =04, vel, (8,k=1,..,m).

In view of (18) we see that the system of vectors ¢, ..., ¢, represents
an orthonormal system with the same orientation as the system of
coordinates.

Now we define the function r(r) by the formula

(19) riv) = [ t(r)dr.

But we always have
()] =1, el

so from (19) we obtain ¢ = r—1t,, where o denotes the length of arc of
the curve C defined by function (19), which is taken from the point 3M,.
The theorem is proved.
Remark 2. The system of vectors in (14) can formally be named
the system of vectors of a Frenet n-hedron at the point M (r) of the
curve C (7 ¢ I,), and the functions in (12) its curvatures.
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CoOROLLARY. If we assume that for the functions »; (¢=1,...,2—3) in
formulas (12) there exists a derivative of the order (n —¢—1) and it is ab-
solutely continuous in I,, and furthermore that for the function x,_, there
exists a derivative of order 1 almost everywherein I,, »; >0 (j=1,...,n—2),
then we state that the vectors of system (14) obtained by means of the
above theorem are exactly the vectors of Frenet n-hedron for the curve C
almost everywhere in I, in the sense of definition 1. The functions x;
(¢=1,...,n—1) are the successive curvatures for the curve C almost every-
where in I, in the sense of definition 2. The curve C is of the regularity
class C»—2 in I, and dr*—%r/dv—2 is absolutely continuous in it.
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