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Abstract. We study the growth of the classical Bieberbach maps and show that there
exists a séquence of such maps, ol order ¢ converging uniformly on compact sets to the
identity map as ¢ converges to zero. Using the concept of capacity of an analytic set in C"
introduced by Stoll [7], we show that if the growth of the volume of an analytic set A is
slow enough then every bounded holomorphic function on A is constant. From this we obtain
a Casorati-Weierstrass theorem in terms of growth. More explicitly, let F be a. non-degenerate
holomorphic mapping from C" to C" (n > 2); if the growth of F is sufficiently slow we prove
that C"\F(C") is of Lebesgue measure zero.

1. Remarks on the Bieberbach maps. It is a classical result of Bieberbach
that there exist holomorphic maps F: C> —» C? with constant, non-zero,

jacobian determinant and such that C?*\F(C?) is non-empty. We will refer
to such maps as Bieberbach maps.

Following Stehlé [6], for each ke C with |k| > 1, we consider the
following automorphism of C?:

@ = (u,v): C*>C?
with :
(L.1) u(zy, z5) = kz;+j(z5),  v(zy, 25) = kz; +j(kzy +j(22)),
where j(x) = x?[2(k—1)x+3(1—k)] is a polynomial of one variable. Con-
sequently (1.1) is a fixed point of @ and @'(1, 1) = kId.
.THEOREM [6]. The functional equation

(1.2) @(F(2)) = F(kz)
has a unique holomorphic solution F: C* — C? satisfying F(0) = 0 and F’'(0)
= identity. Furthermore the solution F is a Bieberbach map and (1, 1)¢ F (C?);

F(C?* = {z/ze C? lim @7"(z) = 0}.
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Using this result we want to show:

PRrOPOSITION 1.1. For every ¢ > O there is a Bieberbach map F,: C* - C?
satisfying Ilnlgx [Fe(2)] < ¢, exp (r*). Moreover, there exists a sequence {F.} of
zZ|=r

such maps converging uniformly, as ¢ = 0, on compact sets to the identity map

on C?, and such that the point (1,1)¢ F.(C?) for all e.

Proof. Let F = (f,g) be the solution of the functional equation (1.2).
By definition (1.1) of ¢ we have

N N
(1.3) Skz) = pZO ap [*(2) 9% (2),  g(k2) = A by f*(2)¢° (2)
with |a.g|, |begl < ck® for some c independant of k, « and B.
Let M,(r) = lmr«.(tx log |f(2)l and M (r) = fl}gx loglg(z)|. Fix ro so that

z|
M,(ro) and M,(r,) are strictly larger than 1. Then (1.3) implies that for
r=r,

N
M (kr) < log max ﬁZ=0 laapl | £ (219 (2)°)

< N(M,(r)+ M, (r)+log (N2 ck®)
and
M, (kr) < N (M;(r)+M,(r)+log (N?ck?).
Using these inequalities repeatedly we have for any positive integer s

s—1
M, (k°ro) < @NY(M(ro)+ M, (ro))+ .Zo (2NY log (N2 ck®)
i<
< Ny {M;(ro)+ M, (ro)+log (N? ck®)}.
For r > r, there exists an integer s such that
' k= lry < r < Kry.
This implies that

e
@NyF-! < (L) ., o= log2N/log k.
o :

Therefore
r

M, (r) < M;(k°ry) < (;—)02N{Mf(r0)+Mg(ro)+log (N2 ck3)}.

0
Consequently

M (r) < ¢, r°
Since for sufficiently large k, ¢ = log 2N/log k < ¢, we have
exp (M, (r)) < exp (c,7") = c. exp ()
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and

exp (M, (r)) < c. exp (r).
Thus

Ilnlaix |F ()] < 2¢,exp (r°).

This proves the first part of the proposition.
Denote by F, the solution of the functional equation (1.2) then ¢(2)
N

= Z ®;(z) and F,(z) = Z ;x(2), where ¢; and P;, are homogeneous
polynormals of degre j. Smce F,(0) =0 and Fk(O) identity, we have

Pyi(2) = 0 and P1 «(2) = z. Then .
(1.4) |Fi(2)—z| < Z 1P (2)l < Z Hyacl2l,
where

Wi = supl i (2)/121].

According to Stehlé ([7], p. 122), there is a positive constant M such that
o

H (@)t

where the above summation ranges over all multi-indices a with 2 < |af
< N =degop and ) pa, =j. Let i,, = 1 and define inductively
> .

M a
(1.5) Bik S 3550 Llallnh), a=
’ a p

(1.6) Hjyx =

where a, p are as in (1.5).
Define

B = MY G
4

Clearly for every k we have

_ H
#J'J( s k_,_k ¢

Observe that the series Y j;x’/ has a positive radius of convergence, in fact if

N
G(x,y) =y-M _Zz (x+yY,
]=
then '

y(x) = Z ﬁjxj‘ ‘.
=2
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Then (1.4) implies

. B . L
|Fi(z)—z| < wilzl < Bialzl < Z B~
iz2 iz2 = K=k
This last sum tends to zero, uniformly on bounded sets, as k tends to

‘infinity. This shows that F, converges uniformly to the identity on compact
sets. .

2. Analytic sets of slow growth. The maps in the preceding proposition
are of exponential growth. We will show that if a holomorphic map grows
sufficiently slowly then it has dense image. We begin by establishing a suffi-
cient condition for the non-existence of bounded holomorphic functions’ on
an analytic subvariety A in C". We will need the result of Stoll in [7].

For an analytic set A in C" of pure dimension k, let 4, = AN B, and
0A, = An0B,. Here B, denotes the ball of center 0 and radius r in C"
Let y, denote the characteristic function of B, and let [A] be the current
of integration on A. Then for almost every r the current d(x,[4]) represents

the current of integration on the regular points of the real analytic set 04,;

denote this last current by [dA4,].
k p—1

In fact, let 4 = (J A% where |J A4° is the set of singular points of A”
j=0 s=0

and dim A? = p. Sard’s theorem implies that, for almost every r, 0B, is
transverse to every A?, consequently, for such r,dA4, is a real analytic set
of dimension 2k—1 and the set of its singular points is of dimension 2k —3.
Such r will be referred to as regular values. Therefore the current d(x,[4])—
—[dA,] 1s supported by a set of dimension 2k —3. By Federer [2], Theorems
4.1.15 and 4.1.20, it vanishes. This permits us to use Stokes’ theorem in
Lemma 2.2 below. -

For simplicity we assume that O0¢ A and A is irreducible. Let y be
a closed non-negative 2 form of type (k—1,k—1) on A. Assume also that
x > 0 at some point of A. Then for regular values 0 < s < r there exists
(Stoll [7], Lemma 4.2, p. 72) a continuous function ¢,; on A, ¥ on the

simple points of A,—Z:; with the following properties:
1) 0< g <1,

() ¢,s =1 on 4, and @, = 0 on A\A,,
3) dd* ¢, Ay = 0, where d° — ﬁ @—20),

(4) —d°@,,Ax >0 on J0A, UiA,,
and

®) = [ dadr =~ | do,Ax>0.

CAg
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In this paper y will always denote (dd°log|z|*)*"!, where |z| is the
euclidian norm of z = (z,,..., z,).

Following Stoll [7], define
(21) Cps = — j dc(prsAX'
FA,

For fixed s, ¢,, decreases as r increases. Hence lim ¢, exists and

r—T

- Cyp(4) = lim ¢,; =-0

is called the capacity of A.
As usual we shall define

c, vol (4,) tn(d,r)

n(A,r) = = A" (ddlog |22, N(A,r) = 6‘. ; dt,

where ¢, is determined so that n(C* r) = 1. We shall now prove that on an
analytic set of “slow” growth there are no non-constant bounded holomorphic
functions.

THEOREM 2.1. Let A < C" be an irreducible analytic set of pure dimension
k. Suppose that ‘
.. N(4,r)
lim inf ————-
reo  (logr)
Then every bounded holomorphic function on A is constant.

For the proof we shall need the following lemma whose proof is quite
standard.

LEMMA 2.2. Let u be a function of class 6> on A. Then if r and s are
regular values, 0 < s < r, we have

(2.2) j @, dd udy = f ud @, Ay.
A"

FAg—0 A,
Proof. Using Stokes’ theoreni and property (4) of ¢,, we have
| udo Ay = | dude,Ax]= [ dudd o,Ay.
As— A, As— A,

PAg—0A,
On the other hand, by type considerations, we have

duld® oAy = dpAd udy.

Therefore
." duAd’ Prs AX = I d(Prs Ad° uAX
As= Ay Ag— A4,
= I d ((Prs d‘uA X) - j Drs dd* qu
s—Ar Ag—A,
= .‘. Dps d* qu - j (/. ddc UAX .
tAg—c A, Ag—A

r
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Since ¢,, = 1 on A, and ¢,, = 0 on A\ A, the last relation can be written as

| deudy— [ dd°udy+ I @ ddiudy = | @, dd uly.
24 A, i i,

This is again a consequence of Stokes’ theorem.

Proof of Theorem 2.1. Let f be a holomorphic function an A and let
M.(r) = xlngx log (14|f]?)(2). Apply the above lemma to u = log (1+|f]?).

z|

Then by property 4) of ¢,,

A,f¢rsdd‘103(l+lfll)/1x= J  log (1+1f1%) d @, Ay

-
h —,

S 'A'

< = [ log (1 +1f1)d g Ar.
Therefore we have

(2.3) AI @rsddlog (1+|f1)) Ay < ¢, M, (1)

Applying Lemma 21to u = log |z|*> we have
(24) [ o.dd°log |2]* Ay = | ¢,,(dd" log |z|*)*
A, A, '
= | loglz?d @, Ax = 2¢, log L.
2A -2 A, A}
Since 0 < ¢, < 1, (2.4) implies

2.5) n(4,r) > 2c,, log %

Since c,; decreases as r increases, we have for regular values of t,s <t <'r,

(2.6) 2¢,, log % < 2¢, log % < n(4,t).
Integrating (2.6) we have_

2, f%log%dt < "‘t(t) dt = N(4,)—-N(4.s),
and “ ‘
27 < 4[N(A,r)—N(A,s)] <4 N(4,r)

“ ST Gogrs? (logr/e)

Using (2.3) and (2.7) and the fact that ¢,, is positive and equals one on A
we see that for 0 < s < r

NAD o),

(2.8) J’ ddlog (1+|f)? Ax < 4W s
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If f is bounded and lim inf M
f is constant. e (log r)

~ To obtain the general case we need the following lemma which is probably
well known.

Lemma 23. If U is a bounded connected open set in C, there is a holo-
morphic function g from U to the unit disc D such that, for almost every
ae D, g~'(a) is infinite.

Proof. If U = D the existence of such a function is well known, take
any infinite Blaschke product. In the general case let & be the Ahlfors
mapping of U with respect to z,e U. Recall that h maximizes |f’(z,)|
among fe H® (U) satisfying || fllo < 1, f(zo) = 0, Re f'(zq) > 0. It is known
that the Ahlfors function is unique and of modulus on the Shilov boundary
of H® (U), see [3] for example. We prove that D\h(U) is of analytic capacity
zero, i.e. every bounded holomorphic function on D\ h(U) extends to a function
in H*(D). In fact if E is a closed set in D of positive analytic capacity
with O¢ E, then the Ahlfors function f of D\E with respect to 0 is such
that |f'(0)] > 1. Suppose |f'(0)) = 1 then since f is unique f(z) = z and
this function is not of modulus one on the part of the Shiloy boundary
which project on E, consequently |f'(0)| > 1. If D\h(U) is not of analytic
capacity 0, foh will be such that {(f oh) (z¢}f > |W’ (z4)|, contradicting the
extremal property of h. Since D\h(U) is of analytic capacity zero it is also
of Lebesgue measure zero and if B is an infinite Blashke product the function
g = Boh satisfies the properties required by the lemma.

We return to the proof of the theorem. Suppose f is a non-constant
holomorphic map from A to D. Choose a holomorphic function g from
U=f(A) to D as in Lemma 2.3. Then for almost every a in the open
set (gof)(A), n(An(gof) '(a),r) tends to infinity as r tends to infinity.
Replacing f by go f we may assume that f itself has this property.

Let o be the Standard Kihler form on P!, normalized so that | w = 1.

]
Choose s = \/r in (2.8). Then ’

= 0, then by (2.8) and Fatou’s lemma,

N(A,r)

(2.9) [ f*ody < 16 Tog

Ags

Using Crofton’s formula (cf. Shiffman [5], p. 79), we have
N(4,r)

(2.10) [n(Anf 7 @./r)= | froax< 16 o o7

P Agp

and by Fatou’s lemma
N(4,r)

. . -1 g : 1 -
[ tim infn(4 0~ @), /) < 16 Jim ind G20 < o

pl
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Hence for almost all ae P!
lim inf n(A mf"(a),\/r—) < 0.
r— o

This is a contradiction. Hence f is constant.

N4,
Remark 24. Relation (2.7) implies that if lim infﬁ(ﬁ)—

C. (A) = 0 and consequently every smooth plurisubharmonic function on A4 is
constant.

= 0, then

3. A theorem of Casorati- Weierstrass type. Let F be a holomorphic map
form C" to C". We suppose F is non-degenerate that is the Jacobian J;
of F is not identically zero. We are interested in finding conditions on F
which will allow us to conclude that F(C") is dense in C". The only known
result in this direction is apparently a theorem of Chern Stoll Wu, involving
order functions, see [1] for a short proof. We have the following result.

THEOREM 3.1. Let F = (fi,..., f;) be a holomorphic map from C" to C".
Suppose that F is non-degenerate and that for 1 < q < n—1

lim su qu(r) <
1 r— 0 p (log r)l +eq
n—1

with Z g, < 1. Then C"\F(C") is of Lebesgue measure 0.
q=1

We shall need the following lemma.

LemMma 3.2. Let g be a holomorphic function in C" satisfying g(0) = O and
M, (r) = O((logr)' **). Let A be an analytic set of dimension k with 0¢ A.
Then if 0 < a < 1, there are positive constants C and C' such that

[ N(Ang '(1),r") < Ca (log* rN(A,r)+C' N(A, 2e).
pl -

Proof. By relation (2.8) and Crofton’s formula

_ N(4,r)
le n(Ang (4, s)da(d) < 4_(10gTs;2 M,(r).
Therefore
(31 [ N(Ang '(A),r)da .
pl

e N(A 2t) * N(,r
<o M@0 + 1% gy

But by Schwarz’s lemma M, (2t) < Ct, for ¢t < e, and there 'is a constant C,

dt
g(r)_'t_"



Casorati—Weierstrass theorem 173

such that M, (r) < sup [C,(log* r)' **, C,]. Therefore (3.1) can be majorized by

A dt
C;N(A,2¢)+4N(A,r)C(Log* r)***{ —— —
1 ( e)+ ( ?') ( Og r) ;“ (log r/t)Z t

: C
< C,N(4,2)+ ; 2_(A,r)(log* r).
—a

Proof of Theorem 3.1. We shall denote by da the restriction of the
standard measure on P! to C and by da, ... da, the product measure on C".
For A = (4,,..., 4) e C* we denote

N o t) = N(fi YAD A o 0 £ LR, 1)

Let F, = (f;,.... f}), 4 < n. We prove by induction that C*\F,(C") is of
Lebesgue measure 0. The result is clear for ¢ = 1. By induction suppose
C:\F,(C") is of Lebesgue measure zero. Let V = {z/Jg(z) = 0}. By hypothesis
V is either of codimension one or empty. Let E, = {1/A = (4;,..., ) eC",
F;'(4) = V}. We first prove that E, is of Lebesgue measure zero in C%

In fact by a yery special case of an inequality of Federer [2] we have
for r >0

JHO(VAF ()0 B)d* ) < C,H™ (VN B,).

Here HP denotes the Hausdorffl measure of dimension p, d??1 denotes the
Lebesgue measure in C% and C, is a constant. In fact this inequality is valid
for Lipschitz maps and metric 3paces. Since H>"(V n B,) = 0, it follows that,
for almost every A, H*"~?(V nF_~'(4) n B,) = 0. Consequently, for such A,
VAF'(d) is of dimension n—g—1, but if F'()) =V, then
H*"=9?(VnF, "' () nB,) would be strictly positive. Therefore for almost
every Ae C? the function f,,, is not locally constant on F,”'(4). It remains
to prove that C\f,,,(F;'(4) is of Lebesgue measure 0 for almost every
A€ C9, an application of Fubini’s theorem will then-prove that C4*'\F_,, (C")
is of Lebesgue measure 0. '
We now prove that for almost every Ae C*

.o Ny, ey Ag, 1)
32 1 f— g
G2 e (log 2

< oo, g<n—l.

Recall that Jensen’s formula on C" gives the following inequality when
k S q_l, - .
(33) [ Ny, )da, < C, (log* '+ 4.C,

p!
where C, and C, are constants. Lemma 3.2 implies

! Ny .o, ey ) da, < C3(10g" YN (Agy ooy A1y )+ CoaN Ay, oy Ay, 20).



174 N. Sibony and Pit-Mann Wong

By repeatedly using Fubini’s theorem and then (at the last step) using (3.3)
we arrive at

§{ N(Ay,..., 44, rda, ...da; < Cs(log*r) =' +C,.

cq

Therefore -

[ lim inf N(iyy ..oy i.q,r)
cqg 7@ (log r)
This proves relation (3.2). By theorem (2.1) for almost every A, F;'(4)
admit no non-trivial bounded holomorphic functions. Since f;., is not
locally constant on F;'(4) then C\f,,,(F;'(4) is of analytic capacity
zero, ie. every bounded holomorphic function on the open set f,.,(F, '(1))
is constant. Therefore C\f, ., (F;'(4)) is of Lebesgue measure 0.
Remark. Using remark (2.4) it is easy to show that if

lim sup——M& =0, 1<qg<n-1,
r—® (log r)l +eq .

da, ...da, < 0.

then E = C"\F(C") is of zero I'-capacity in the sense of Ronkin [4] and
therefore H**~! [C"\F (C™] = 0, which is more precise than C*\F(C") is of
Lebesgue measure zero.
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