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Generic submanifolds in almost Hermitian manifolds

by BarBara OrozpA (Krakow)

Abstract. By a generic submanifold in an almost complex mamfold (M’, J} we shall mean
a real submanifold M of M’ [or which dim J' T, M n T, M is constant on M. The purpose of this

paper is to make some observations and give some statements dealing with differential geometry
of generic submanifolds.

1. Preliminaries. All the objects considered in this paper are assumed to
be of class C*. Manifolds are assumed to be connected and paracompact.

Let (M', J’, g') be an almost Hermitian manifold where J' is an almost
complex structure and ¢’ 1s the Riemannian metric tensor field on M’ and let
M be a real submanifold in M. TM’' and TM will denote the tangent
bundles of M’ and M, respectively. We also set:

TM'|,, — the restriction of TM' to M, g — the restriction of ¢g' to M,
.~ — the normal bundle of TM in TM’'|,,, p — the projection onto TM in
TM'|y =TM®. 4, n — the projection onto .4 in TM'|, =TM®.1, P =
poSlem, ¥ =nodizy, “.=T.MnJ T.M for xeM, #, — the holomor-
phic extension of T.M in T. M, ie, #,=T.M+J T, M for xeM,
%,=imP, for xeM, 4} — the orthogonal complement to 4, in T. M, /! —
the orthogonal complement to %, in T, M, 7, — the orthogonal complement
to TM in #,, v #, — the orthogonal complement to »#, in T.M', P,
I — the Riemannian connections generated by g and g, respectively, D —
the normal connection, i.e, the connection in .4" induced by ¥V, o« — the
second fundamental form of M in M’, A — the second fundamental tensor
of M in M.

We shall denote by ( , ) the metric tensor g' as well as g. The induced
norms will be denoted by || ||. It is easily seen that .t #, <. 1", ¥y <. 1,

A=Y ® N Ay, Yo, and 1 H are orthogonal, 7, is an orthogonal
complement to J'. 1 +.1, in T_M’', P is a (1, 1) tensor field on M, ¢ is an

4 -valued 1-form on M. It is also easy to check that . is an epimorphism
onto ¥ . In fact, if $EYo, then (e #, so (. =J X+Z, where X and Z

belong to T, M. Hence ¢ = né = nJ’ X. It is also obvious that kery, = ,.
Therefore, Y|y _1: 7t - 70, 18 an isomorphism. Of course, Pl = J; . Since
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pJ X, Y)=—-(X,pJ'Y), (pJ'X,Y)=0 for XeT.M and YekerP, . It
means that im P, is orthogonal to ker P, and consequently im P, is an
orthogonal complement to ker P, in T, M, ie., %, =kerP,. If Xe}! and
Ye,, then (pJ'X,Y)= —(X,J'Y)=0s0o Pr; <+ Since ¥, <imP,,
¢:rc 7y Let XeT,M. We have (X,X)=(' X,J' X)=(PX, PX)+
+(WX.¥X). So ||X|| =|IPX]| iff yX =0. Therefore 7, = XeT,M; ||X]
=||PX]|;. Notice also that .1 #, and 7/, are the greatest J'-invariant
subspaces in .1, and T, M respectively.

Denote by R and R’ the Riemannian curvature tensor (of type (0,,4)) of
M and M’, respectively. Recall that if ¢ and ¢’ are J'-invariant planes in
T.M’, then the holomorphic bisectjonal curvature by ¢ and ¢ is defined by

Hglg, ¢)=R(X,J X, Y, J'Y),

where X, X are unit vectors in ¢ and ¢, respectively. We shall write
Hg(X,Y) instead of R'(X,JX', Y, JY'). If M’ is K&hlerian, then by the
Bianchi identity we have

Hg(X,Y)=R(X.Y, X, V)+R(X,J'Y, XJ'Y).

Recall also the Gauss equation

R(W,Z,X,Y)=RW, Z, X, Y)+(x(X, 2), 2(Y, W))—(x(Y, Z), a(X, W)),

and the relationship between the second fundamental form and the second
fundamental tensor

(x(X, Y), &) =(4: X, Y).
DeriniTion 1.1, A real submanifold M of an almost complex manifold

(M’, J) 1s called generic if di{n B constizrmt on M.
. . d . . .
If M is generic, then 7 = {J ¥, ¥*= |J 4 are distributions on M

xeM ) xeM
. ir o odr di
and A # =) A, # =) #, Vo= ) Yo, are vector subbundles of
xeM xeM xeM

TM'|y. The distribution / is parallel (with respect to F) ilf the distribution
<* is parallel and iff the almost product structure (7, ) is paraliel. The
vector subbundle . 1" # is parallel (with respect to D) ifl </ is parallel.

If M is generic and dim ~ =0, then M is called purely real. If dim 7/
= dim M, then M is called holomorphic, A generic submanifold M is called
proper if dim M # dim 7/ # 0. A generic submanifold M in an almost Hermi;
tian manifold M is called CR-submanifold (or metric f-submanifold [6]) if 7,

=J &+ for any xe M. A generic submanifold need not be a C R-submanifold
[6]. A CR-submanifold is called totally real if it 1s purely real. We have

Lemma 1.1 ([5]). The condition: %o = J' 7; for every x €M implies that
M is generic.
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If M is a CR-submanifold, then P|_, = 0.So (y o P)(X) = Ofor X e 7+ If
X €2, then

WoPNX)=yJ' X =nJ'J' X =—nX =0.

Assume now that yoP =0. For any xeT.M we have 0 = (i o P)(X)
=nJ'pJ' X. Hence J'pJ' X €T, M and consequently pJ' Xe<,. If Xevy,
then pJ'X €%, only if pJ' X =0. Therefore, J'X €.4, for X e ;. Conse-
quently yoP =0ilf J' &} = “,, for every xeM. By virtue of Lemma 1.1, M
is a CR-submanifold iff yoP = 0.

A submanifold M is totally geodesic if « = 0. A real submanifold M in
an almost Hermitian manifold M’ is called mixed totally geodesic if a(X, Y)
=0 for any Xev,, Ye¥; and xeM.

Remark 1.1. D. Blair and B-Y Chen proved in [1] that a CR-sub-
manifold of a complex manifold has a natural structure of a CR-manifold. It
should be remarked that a generic submanifold of a complex manifold carries
a natural structure of a CR-manifold. Recall now the notion of a CR-
manifold, [4].

DEerINITION 1.2. A CR-manifold is a pair (M, ./ (M)), where M is a real
differentiable manifold and .%/(M) is a complex subbundle of TM ®C. The
following conditions are satisfied:

(@) (M) (M) = 0],

(b) .&/(M) is involutive, i.e., for any complex vector fields X and Y with
values in .o/(M), [ X, Y] has values in .o/(M).

We have

ProprosiTioN 1.2. A manifold M admits a structure of .a CR-manifold if
and only if there is an f-structure on M such that

(1.1) /X fY)-[X, Y]-f[X,fY]-f(/X, Y] =0

for any vector fields X, Y belonging to the distribution & =imf.

Proof. By virtue of Theorem 2 from [4], p. 280, we know that (a) from
Definition 1.2 is equivalent to the existence of a distribution  on M and
a field J of endomorphisms of & such that J? = —id,. Moreover, &

=re(/(M)+.¢/(M)) and /(M) = | X—-iJX, Xe¥]. If M is a CR-manifold,
then we define
JX for XeZ,

0 for Xeot,

o=}

where &' is the orthogonal complement to & in TM. Conversely, if f is an
f-structure on M, then we define & as im f and J as the restriction of f
to 2.
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Therefore, the condition (a) from Definition 1.2 is equivalent to the
existence of an f-structure on M. We have

(12) [X—iJX, Y=iJY]=[X, Y]-i[JX, Y]—i[X,JY]-[JX, JY]
=([X, Y]-[JX.JYD—i([JX, Y]+[X,JY].

If M is a CR-mantfold, then for vector fields X, Y belonging to </ there is a
vector field Z belonging to % and such that

[X,Y]-[JX,JY]=Z and [JX.Y]+[X,JY]=JZ,
1e.,

TM>—[X, Y]+[JX,JY]=J(UX, Y]+[X.,JY])DeJTM.
It follows that

X SYI=[X, Y]I-/L/ X, Y]-f[X,fY]=0.
Conversely, if (1.1) holds then for any vector fields belonging to &
UX.JY]-[X, Y] =f(JX, Y]+[X,JY])).

It means that [JX,JY]-[X,Y]eimf=7% and [JX, Y]+[X,JY]
= —([JX,J(JY)]-[X, JY])e7. Consequently

[JX,JY]I=[X, Y] =J(JX, Y]+[X,JY]).

Putting this in (1.2), we conclude that M is involutive. The proof is complete.
From now on a CR-manifold we shall mean a manifold equipped with
an f-structure satisfying (1.1).

CoroLiary 1.3. A generic submanifold of a complex manifold is a CR-
manifold.

Proof. Let M be a generic submanifold of a complex manifold (M’, J).
Since J’ 1s integrable

X SY)-[X, Y] =J(/X, Y]+[X,/Y])

for any vector fields X, Y belonging to 7/, where f is the induced f-structure
on M. But it means that [fX.fY]—[X., Y] and [fX, Y]+[X, fY] belong
to TMnJ'TM = . Hence J'([f X, Y]+ [X,.f YD) =f[fX, Y]I+f[X,[fY],
ie.,, (1.1) holds good.
In paper [4] can be [ound the following assertion (Theorem 3, p. 281):
If M is a manifold satislying (a) of Definition 1.2, then (b) is equivalent
to the following

[X,Y]+J[JX, Y]+J[X,JY]=[JX,JY]=0

for X, Y belonging to /. But we cannot write J[ X, JY] since [ X, JY] need
not belong to 7, i.e, the distribution s need not be integrable. Notice also
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that if M is a manifold equipped with an integrable f-structure, then it is a
CR-manifold.

2. Structures induced on real submanifolds in almost Hermitian manifolds.
For the 1-form Y we put

(Vx¥)Y =Dy yY—o¥Fy Y

for any vector fields X and Y on M. The form ¥ is said to be parallel if V'
= 0. Note that {y and P are defined for arbitrary, not necessarily generic, real
submanifolds in almost Hermitian manifolds. We shall prove the following

ProrosiTioN 2.1. Let M be a submanifold in an almost Hermitian mani-
fold M'. If W =0 or VP =0, then M is generic and the almost product
structure (7, ) is parallel with respect to V.

Proof. Let x, yeM and let © be a curve joining x and v. Let X e%/.
Denote by X the vector field defined along 1, obtained by the parallel
displacement of X along . Therefore, V; X = 0, where 7 is the velocity vector
field of t. If My =0, then we have

0=(Vey) X = D,y X)—y (V; X) = D;(y X).
Since the connection D is metric,
tWX, yX)=2(D;y X, yX)=0.

It means that ||y X|| is constant along 7. But (yX), =0, so (n//)?),.=0.
Therefore, 1} (kery,) < kery, ie., t;(7,) < 7,, where t; denotes the parallel
displacement along 7 from x to y. By the same reason, t}(7,) < ¥,.
Consequently, t3(¥,) = v,.

Assume now that FP = 0. In particular, we have F; PX = PV, X = 0. It
means that 17 (PX) = Pt;(X). The parallel displacement is an isometry and
Xev, = YeT.M: ||Y||=|IPY]l] so |ty XI|l=IlIX||=IIPX|l =r;(PX)I =
IIPt3(X)|l. 1t means that 7;(X)e”,. So 7;(7,) = 7, and like in the previous
case we conclude that 1;(7,) = 7,, ie, dim 7, is constant on M and ¥ is
parallel. The proof is complete.

Using the same method as in the above proof, we obtain

ProposiTiION 2.2. Let M be a real submanifold in an almost Hermitian

manifold M'. If VP =0, then ¢ < \) %, 6= \J %+ are distributions
xeM xeM
parallel with respect to V.

For any real submanifold in an almost Hermitian manifold we have the
following equality

(VxNY =(Px Y Y=K, (X, V)+(Vx¥) Y- K, (X, Y),

where K, (X, Y)=pJ'a(X,V)+ A4,y X and K,(X,Y)=nJ'a(X, Y)-
—a(X, PY).
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In fact
(V)Y =V J Y=J' Py Y
= Py PY+ Vg Y—pJ' Vi Y—nJ' V', Y
= Py PY+a(X, PY)+ Dy Y= Ayy X — PV, Y—
—pJ (X, Y) =y (Vy Y)—nJ a(X, Y)
= (Px P) Y= A,y X—pJ'a(X, Y)+(Vx¥) Y—nJ' a(X, Y)+a(X, PY).

K, is a (1, 2)-tensor field on M, K, is an .#-valued 2-form (not necessarily
antisymmetric) on M. We shall call K, and K, Hermitian fundamental forms
of M in M. If M’ is Ké&hlerian, then (FyP)Y =K, (X, Y) and (Fxy)Y
= K,(X, Y). Hence if M’ is K#hlerian, FP =10 iff K, =0 and Py =0 iff
K, = 0. By Proposition 2.1 we also obtain

CoroLLARY 2.3. If M is a real submanifold in a Kihlerian manifold M’,
then K, =0 or K, =0 implies that M is generic.

Remark 24. The Hermitian fundamental form K, of a real submani-
fold M in an almost Hermitian manifold M’ is symmetric if and only if it is
zero. In fact, o is symmetric so K, is symmetric iff 4,,Y = 4,,Z for any
tangent vectors ¥, Z. On the other hand, (pJ'a(X, Y), Z) =(J'a(X, Y), Z)
= —(a(X, Y),nJ'Z) = —(A4,, Y, X) and (Ayy X, Z) =(Ayy Z, X). It means
that K, =0 iff A,y Z = A, Y for any tangent vectors Y, Z.

Remark 2.5. Assume that M i1s a CR-submanifold in an almost Hermi-
tian manifold M’ and K, is symmetric. Then a(X, PY) =a(Y, PX) for any
tangent vectors X and Y, so «(X,J' Y)=0 for XeZ* and YeZ. It follows
that M 1s mixed totally geodesic. If X, Ye& then a(X,J'Y)=a(J' X, Y).
Assume now that M is mixed totally geodesic and a(X,J'Y)=a(J X, Y)
for any X, Ye%. Then a(X, PY)=a(X,J' Y)=a(J X, Y)=a(PX, Y) for
X,Ye” and a(X, PY)=0=a(PX,Y) for Xe¥* and Ye7. Clearly
2(X, PY)=0=a(PX,Y) for X, Ye* If M is Kihlerian, the condition
a(X,J'Y)=al' X, Y) for X, YeZ is equivalent to the fact that the dis-
tribution & is integrable. It follows that in the case where M’ is K&hlerian K,
is symmetric if and only if M is mixed foliate, i.e, the distribution & 1is
involutive and M is mixed totally geodesic (this definition is taken from [3]).

Assume now that both fundamental Hermitian forms vanish. Since K,
=0, (J'a(X, Y)+ A,y X,Z)=0 for any X, Y, ZeTM. It means that
a(X, Y)e. 4+ # for any Y € &. By the fact that K, = 0 we obtain nJ'a(X, Y)
=a(X,J' Y)for any Ye7. But a(X, Y)e. 4" #,s0 J'a(X, Y)=nJ"a(X, Y).
We have obtained the following

ProrosiTioN 2.6. Let M be a real submanifold in an almost Hermitian
manifold. If both fundamental Hermitian forms vanish, then a(X,JY)
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=J'a(X,Y) for any Ye¥, X € TM. In particular, x(X, Y)€e. 1 #, provided
X or Y belongs to 7.

Suppose now that M is generic and M’ is almost Hermitian. We have a
naturally defined f-structure on M, ie,

0 for Xeut,

fX:{JX for Xeu.

It is easy to check that f'is an f-structure, i.e., /> +f = 0. f will be called
the induced f-structure on M. We also put

0 for £e vy,

F(o)=
© {J'C for Ce. .t #.

Since F>+F =0 on ., F will be called the induced F-structure in the
normal bundle. F will be said to be parallel if &y F¢ = FDy ¢ for any normal
vector field & and X e TM.

As for the parallelity of the induced f-structure on M we have

ProrosiTioN 2.7 ([S]). Let M be a generic submanifold in a Kadhlerian
manifold M'. The induced f-structure on M is parallel if and only if

2.1 X, JY)y=Ja(X,Y) for Yer and XeTM
(equivalently a(X, Y)e. V' # provided X or Y belongs to ).

Remark 28. Let M be a generic submanifold in a Kihlerian manifold
M’'. Then Vf = 0 iff the distribution % (equiv. (¥, ")) is parallel, DF =0
iff &, (equiv. (7, .4 #)) is parallel. In fact, let Y €%. Since M is Ké&hlerian,
JVyY+J a(X. YV =VyJ Y+a(X, J'Y).

If the distribution 7~ is parallel, then J'VyYe% and VyJ' Y e, But
Ja(X,Y), a(X,J Y)e. I ' +J .1 hence J'a(X, Y)=a(X, J'Y). By Proposi-
tion 2.7, Vf = 0. Suppose now that the distribution .4 % is parallel. Let
Ee V' H#. We have

DyFE=DyJ'l=VyJ' i+ A;: X =T Vyi+A4,:X
Since Dy F¢, FDyle AN H, J A X and A, XeTM+J' TM = # so J'A. X
= Ay X and Dy F¢ = FDy{. The inverse implications are trivial and hold

even if M’ i1s only almost Hermitian.
Now we can prove

ProrosiTION 2.9. Let M be a generic submanifold in a Kdhlerian manifold
M’'. The induced F-structure in the normal bundle is parallel if and only if
(2.2) a(X, Y)e,

provided X or Y belongs to 7.
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Proof. At first we shall prove that condition (2.2) is sufflicient. If
XeTM, Yes* and e |7, then, by (2.2), (4 X, Y)=(a(X,Y), &) =0.
Hence A: X e for any XeTM, ¢e.i ' #. Now we shall prove that the
vector subbundle . {"# is parallel with respect to D. It is sufficient to show
that (Dy &, J'Y) =0 for any vector fields X eTM, Yes* and &€. | .#. But
for such vector fields 4: X € and J'Y € ¥ *@ . It follows that (4; X, J'Y)
= 0. Therefore

(Dx &, J'Y)==(FxJ'E, Y)= =(DxJ'E Y)+(A4,: X, Y).
Since Ye¥" and J' (€. i #, (A;¢ X, Y)=0. Moreover, DyJ'¢€. 1" and
YeustcTM so (DyJ'E, Y)=0. Hence (Dy&,J' Y) =0.

Assume now that the induced F-structure in the normal bundle is
parallel. We have

DyFE=VyJi4+Ape X, FDyE=JDyl=JVyi+J A X
for such vector fields A, X € 7 and J’ Yer'®%7,. It follows that (A: X, J'Y)
Ap: X =J A X.

But it means that A XeTMnJ' TM = . Let Ye”* Then for any
Set #, 0=(A:X,Y)=(x(X, Y),¢). Consequently, a(X,Y)e”,. The
proof is complete.

CoroLLARY 2.10. With the same assumptions as in Proposition 2.9, we
have: The induced F-structure in the normal bundle is parallel if and only if
one of the following conditions is fulfilled:

(1 Ape X =J A X for (e 1" 4 and X eTM,
(2) A:XeD for (e v # and XeTM.
By virtue of the fact that a totally geodesic submanifold in a Kihlerian

manifold is generic and by Propositions 2.7 and 2.9 we obtain

CoroLiary 2.11. Let M be a totally geodesic submanifold in a Kdhlerian
manifold. Then induced f-structure on M and the induced F-structure in the
normal bundle are parallel.

We also have

CoroLLARY 2.12. Let M be a purely real submanifold in a Kdihlerian

manifold M'. Then the induced F-structure in the normal bundle is parallel iff
one of the following statements holds:

(N a(X, Y)ery for any X, YeTM,
(2) A: X =0 for any (e V' #.

Now we shall prove
ProposiTioN 2.13. Let M’ be an almost Hermitian manifold and let M be
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a real submanifold in M'. If Viy = O, then .4 # is parallel with respect to D. If
VP =0, then Vf =0.

Proof. Assume that Py =0. Let ¢ be a normal vector field on M
belonging to .4 .. Then (&, J'Z) = 0 for any tangent vector field Z. Hence
0=X( J' Z)= X (&, ¢Z) for any tangent vector field X. But

X, ¥Z) =(Dx & ¥2)+ (S, Dxy2Z) = (Dx &, Y 2)+(C, yVx 2).

Since £ €.1 " # and ¥ has values in 7, (&, YyVyZ) = 0. Hence (Dy ¢, yZ) = 0.
Z has been choosen arbitrarily, i is onto 7, so Dy & €. 47 .#. Assume now that
VP =0. We know (by Proposition 2.1) that the almost product structure
(7, 7*%) is parallel. With the aim of proving our assertion it is sufficient to
show that Vy fY=fVyY for Ye”. But f Ze¥, then fZ =J'Z = PZ. So

Ve fY = VxPY = PVyY = fVy Y.

This completes the proof.

As a corollary from Propositions 2.1, 2.2, 2.7, 2.9, 2.13, we obtain

THEOREM 2.14. Let M be a real submanifold in an almost Hermitian
manifold M'.

(1) If Wy =0, then M is generic and the almost product structure (7, ")
is parallel with respect to V. The vector subbundles .1 # and 7, are parallel
with respect to D.

(2) If M' is Kahlerian and Vy =0, then M is generic, Vf =0, and
DF =0.

(3) If VP =0, then M is generic, the induced f-structure on M and the
almost product structure (%, ) are parallel.

(4) If M' is Kihlerian and K, =0, then M is generic and the bundles
G, 4+ 6, 6+ are parallel. If K, =0, then M is generic and the bundles <,
G, Yo, Vv H are parallel. If K, =0, then VP =0 and Vf =0. If K, =0,
then W =0, Vf =0 and DF = 0.

(5) If M’ is Kdhlerian and M is totally geodesic, then Wy =0, VP =0,
Vf =0, DF =0 the almost product structures (&, %), (6, 4") are parallel
and the subbundles sy, .4 # are parallel.

We shall say that a generic submanifold in an almost Hermitian
manifold satisfies the condition:

(A) 1f the distribution 7 is integrable and its leaves are totally geodesic
in M,

(B) if the distribution < * is integrable and its leaves are totally geodesic
in M.

Assume now that M’ is Kidhlerian. B-Y Chen proved, [2], that if M
satisfies A, then x(X, Y)e. 1 . # for any X, Ye7. B-Y Chen remarked also
(without giving a counterexample) that the converse is not true in the case of
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an arbitrary generic submanifold. But the converse seems to me to be true.
Assume that a(X, Y)e. 1 # for any X, Ye¥. Let X and Y be vector fields
belonging to %. Since M’ is K#hlerian a(X,J' Y)+VyJ' ' Y=Ja(X, Y)+
+J' VyY. But a(X,J'Y), Ja(X,Y)et' # and J'VyY, VyJ' ' YeH so
VxJ'Y =J Vy Y. It means that Vy Y € & for any vector fields X, Y belonging
to <. Therefore [X, Y] =VFy Y=V, Xe& if only X, Y belong to . Conse-
quently 7 is integrable. Let M, be the maximal integral submanifold of &
passing through a point x and let X, Y be vector fields on M,. They belong
to &, s0 VyYew, ie, VyYeTM,. This means that the leaves of < are
totally geodesic in M. It is also easy to prove the converse of Lemma 3.5
from [2], which states that if M’ is Kihlerian and M satisfies B, then
a(X, Y)e.4 ' # for any X e~ * and Ye<&. Assume a(X, Y)e. 1 # for any
Xeo*and Ye?. Let X, Y be vector fields on M belonging to ~* and ¥
respectively. Since VyJ' Y+o(X,J'Y)=J"VyY+J a(X, Y) and a(X,J'Y),
JoaX, Ve t' A, VxJ' Y, J'PyYe# so VyJ'Y=JVyY Hence VyYe7.
Let Z be a vector field on M belonging to “* We have 0= X (Y, Z)
=(PyY, Z)+(VyZ,Y). Since VyYe” and Ze¥* (VyY,Z)=0 so
(VxZ,Y)=0. Consequently VyZe”s for any X, Ze~* and like in the
previous case we obtain that & is involutive and its leaves are totally
geodesic in M. So we have

ProposITION 2.15. Let M be a generic submanifold in a Kdhlerian mani-
fold M'. M satisfies (A) iff a(X, Y)e AN # (equivalently a(X,J'Y) =J a(X, Y))
for any X, Ye&, M satisfies (B) iff a(X, Y)e. A" # (equivalently a(X, J'Y)
=Ja(X,Y) for any Xe&* and Ye 7.

CoRrOLLARY 2.16. Let M’ be a Kihlerian manifold and let M be a generic
submanifold in M’ satisfying (A) and (B). Then Vf = 0.

Proof. It follows from Propositions 2.15 and 2.7.

In the case where M’ is Kidhlerian and M is a submanifold in M’ we can
write scheme 1.

3. Generic submanifolds in some special Kihlerian manifolds. Let M be
a generic submanifold in an almost Hermitian manifold M'. Suppose, more-
over, that M is proper, i.e., both distributions & and %~ are non-trivial. Let X
and Y be unit vectors belonging to %* and & respectively. By the Gauss
equation,

R(X,Y, X,Y)=R(X, Y, X. V)+(a(X, Y). (X, Y))—(a(X. X), 2(Y, Y))
and

R(X,JY, X, JY)=R(X,J'Y, X, J'Y)+(a(X, J'Y), 2(X, J' Y))—
—(@(X, X), a(J'Y, J'Y)).
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Scheme 1

M totally geodesic

L

Ky =0 7= 0 7P=0 feef K, =0 | K, symmetnig

h \
] M-CR-sub- M generic M generic M generic M generic|  |6.% ‘edis-
Kysymmetricke > manifold | | 01, ##)=0 DF=0 vF=0 (20| | edtions
M- mixed foliate M generic, M generic,
CR - submanitold Ay X=JAgX a(X )Yz alX Y]
for ¢ e/ HXTM] for YD, XeTM

-

M generic, M generic, M generic,
e(TM24c 2, a(TM, 2 )C 4F [<—{M satisties(Al,
(B]

M generic, mixed totally geodesic|

M generic
Msatisties (B)

If M’' is Kéhlerian and Ff — 0 (equivalently the almost product structure
(7, %) is parallel), then

(3.1 Hp(X, Y)=2lja(X, Y)>.

In fact, by virtue of Proposition 2.7 a(X, J'Y) =J'a(X, Y) and a(J' Y, J' Y)
= —o(Y, Y). The formula above follows now from

Lemma 3.1 ([5]). Let T =(T,, T;) be an almost product structure on a
Riemannian manifold M. If T is parallel with respect to the Riemannian
connection V on M, then R(X, Y, Z, W) =0 if two of vectors belong to two
different distributions of T.

In paper [2] the following definition was given.

DeriniTION 3.1, A real submanifold M in a K#hlerian manifold M’ is
called a generic product if it is locally the Riemannian product of holo-
morphic submanifold M7 and a purely real submanifold M* of M’

M is a generic product if and only if the almost product structure
(%, 2% is parallel, ie., iff ¥f =0. Hence formula (3.1) was discovered by B-Y
Chen; see Lemma 6.2 [2].

By formula (3.1) and Theorem 2.14, (2) and (3), we obtain
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CoroLLARY 3.2. Ler M be a real submanifold in a Kdhlerian manifold M’,
passing through a point in which bisectional holomorphic curvature of M’ is
negative. If Vi =0 (equivalently K, =0) or VP =0 (equivalently K, =0),
then M is holomorphic or purely real.

This statements generalizes Proposition 5.9 and partialy Theorem 5.3
from [2].

In the case where M’ is only almost Hermitian we have

CoroLrLary 3.3. Let M be a generic submanifold in an almost Hermitian
manifold M', passing through a point in which Riemannian sectional curvature
of M’ is negative. Suppose, moreover, that the almost product structure (7, &)
is parallel and both Hermitian fundamental forms vanish. Then M is holo-
morphic or purely real.

Proof. If K, =0 and K, =0, then by Proposition 2.6 a(X,J'Y)
=J'a(X,Y) lor any Ye%. Suppose that the almost product structure
(&, /) is non-trivial.

Let 0# Xe¥", 0# Yev. Then

R(X,J'Y,X,J'Y)=R(X,J'Y, X, J )+(a(X, V), (X, Y))+

+(x (X, X), 2(Y, Y)).
So
R(X.Y, X, )+ R (X,J' Y, X,J'Y)
=R(X,Y, X, V)+R(X,J'Y, X,J Y)+2|«(X, Y)|*.
Since V(7, v =0, R(X, Y. X,Y)=R(X,J' Y, X,J'Y)=0. So
R(X,Y, X, V)+R(X,J'Y, X, J'Y)=2|la(X, V)

By the hypothesis on the curvature of M’ the left-hand side is negative.
Hence a contradiction which completes the proof.

If M’ is Kidhlerian, we have also

CoroLLARY 3.4. Let M be a generic mixed totally geodesic submanifold in
a Kdhlerian manifold M'. Assume that M passes through a point of M’ in
which bisectional holomorphic curvature of M’ is non-zero for any pair of
J'-invariant planes. If Vf =0, then M is holomorphic or purely real.

As a corollary of given assertions we obtain

THEOREM 3.5. Let M be a Kdhlerian manifold and let M be a real
submanifold in M’, passing through a point in which M' has positive or negative
Riemannian sectional curvature.

(1) If M is generic, the induced f-structure on M is parallel and . V' # =0,
then M is holomorphic or purely real.
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2 If VP =0 and .+ # =0, then M is holomorphic or purely real.

(3) If M is generic, Vf =0 and DF = 0, then M is holomorphic or purely
real.

(4) If Wy = 0 (equivalently K, = 0), then M is holomorphic or purely real.

(5) If VP =0 and M is mixed totally geodesic, then M is holomorphic or
purely real.

(6) If M is totally geodesic, then M is holomorphic, totally real or purely
real such that J'TM .1 = 0.

(7) If M is generic satisfying (A) and M is mixed totally geodesic, then M
is holomorphic or purely real.

Proof. Let x be a point of M in which M’ has positive or negative
Riemannian sectional curvature for any plane in T, M.

(1) By Proposition 2.7 a(X, Y) =0 if only X or Y belongs to &,. If M
is proper generic and 0 # X €., 0 # Ye;, then by the Gauss equation
we have R'(X, Y, X, Y)=R(X, Y, X, Y) But R(X, Y, X,Y) #£0 and by
the assumption Vf =0, R(X, Y, X, Y) = 0. It means that M must be holo-
morphic or purely real.

(2) 1t follows from (1) and Proposition 2.13.

(3) By Propositions 2.7 and 29 we have a(X, Y)e.t #, if X or Y
belongs to 7, and a(X, Y)e ¥, if X or Y belongs to ;. It means that M is
mixed totally geodesic. The assertion follows now from Corollary 3.4.

(4) This assertion follows from (3) and Proposition 2.14, (2).

(5) This is a consequence of Proposition 2.14, (3) and Corollary 34.

(6) Since M is totally geodesic 'y = 0. So M is holomorphic or purely
real. Since VP = 0, the almost product structure (%, %) is parallel. Suppose
that (¢, %*) is non-trivial. Let 0# Xe€%, Then, by Lemma 3.1,
R(X,Y, X,Y)=0. On the other hand, R(X, Y, X, Y)=R(X, Y, X, Y).
The vectors X and Y are orthogonal because the distributions %, %' are
orthogonal. Hence R'(X, Y, X, Y) # 0. It means that (%, %) must be trivial.
If ©*=TM, then M is totally real. If 4+ =0, then JJ TM .1 =0.

(7) If M is mixed totally geodesic, then M satisfies (B) and by Corollary
2.16 Vf = 0. Therefore (7) follows from Corollary 3.4. The proof is complete.

Remarks. The statements (2), (4) and (7) of the theorem above gen-
eralize Theorems 5.5, 5.3 and Corollary 5.1 from [2] in the sense that in the
statements from [2] M’ is assumed to be a complex space form. Similarly, in
Proposition 54 from [2] it is sufficient to assume that M passes through a
point of M’ in which the sectional Riemannan curvature of M’ is positive. It
follows from Lemma 5.6 from [2], which states that if M is generic
submanifold in a K&hlerian manifold M’, the distribution ¥ is integrable and
a7, ¥4 <.t #, then
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Hy(X,Z)=R(X,J' X, PZ, Z)+2|la(X, Z)|I>+
+IVx PZ||* —|IPVx ZI|* — || 4y X]I?

for any unit vectors X in & and Z in 2*. In fact assume that M is a proper
generic submanifold in a Kihlerian manifold M’, M passes through a point
in which the Riemanmian sectional curvature of M’ is positive, & is inte-
grable and M is mixed totally geodesic. Let Z € #* be a unit vector such that
J'Z is normal to M, ie, Zeker P. By Lemma 5.6 from [2] we obtain

Hp(X, Z) = —(|PVx Z||* - |4z XII*

for any unit vector X. By the assumption on the curvature the left-hand side
of this equality is positive. It means that there is no non-zero vector Z such
that J'Z is normal to M, ie, kerP =0.
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