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Reduction of invariant differential operators
and expansions of conical distributions for SO, (n, 1)

by ALEKSANDER STRASBURGER (Warsaw)

Abstract. We rtegard the unit d-dimensional sphere S? as the homogeneous space
SO(d+1)/SO(d) and propose a construction of radial parts for systems of differential oper-
ators transforming like a vector under the action of SO(d). This is applied to give a short
self-contained proof of all basic facts concerning conical distributions and intertwining operators
for the spherical principal series representations ol SOg(d +1, 1).

Introduction. Let G be a connected semisimple Lie group of real rank
one, G = KAN an Iwasawa decomposition of G and § = K/M the maximal
boundary space of the symmetric space G/K. Set Go = SU (2, 1) unless G 1s
locally isomorphic to SO(n, 1) in which case set G, =SU(l, 1) and denote
by S, the maximal boundary space of G,/K,. Helgason's SU (2, 1) reduction
implies that there are compatible imbeddings G, -G and S, —S, ie,
denoting by S* the image of S, in S, the action of G, on §* by means of the
former imbedding is equivalent to the action of G, on S,.

By virtue of Kostant double transitivity the natural map M x§* —»S§ is
surjective; hence every function on S of a given M-type (i, such that M
acts by a multiple of a given irreducible representation on the space spanned
by M-translates of the function) is determined by its restriction to S*, the
same being true in an appropriate sense for distributions. Thus one might try
to use M-covariance to reduce some questions concerning G to questions
concerning much simpler group G,. In an intended series of papers, of which
the present one is the first, we plan to use this method of reduction to study
problems in the representation theory connected with conical distributions.
This is motivated partly by Lepowsky’s algebraic transference [or conical
vectors [16] and partly by the desire to put on a firm footing our earlier and
somewhat ad hoc approach to determining conical vectors for SO, (n, 1) [20].
Two earlier closely related constructions are in [10], namely the computation
of the Poisson kernel for rank one symmetric spaces by means of SU (2, 1)-
reduction (cl. also [19]) and the construction of conical functions for not
necessarily rank one semisimple Lie groups by extending conical functions
for SU(1, 1). However, in those both cases the reduction has been used for
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M-invaniant smooth functions only, whereas we apply it here mainly for
invariant distributions.

[n the previous paper [20] we proposed a differential equation, or rather
an M-invariant system of equations, whose M-invariant distribution solutions
were precisely conical vectors. These were then found for SO, (n. 1) by an
explicit calculation. which by use of suitable coordinates reduced the system
to a single equation on the circle S'. Here by using the coordinate-free
functorial description of M-invariant distributions based on [8] we show this
reduction is a particular case ol a construction of radial parts of invariant
systems of differential operators, or, as we prefer to view things, of invariant
operators acting on vector valued functions. The radial parts turn out to be
scalar differential operators (in general singular) on S*. This approach is
taken from the forthcoming paper of the author [217] and is presented here
without proofs in Section 2. Applying this construction to gradient-like
systems obtained from the infinitesimal spherical representation of SO (1, 1)
(we consider here those corresponding to M-irreducible subspaces of «
appearing in the restricted root spaces decomposition) we show these radial
parts to be precisely the operators of the infinitesimal spherical represent-
ation of the group G, = SO, (2, 1) * SU(1, 1). This opens the way to a short
proof of all the main facts concerning conical vectors for SO (n, 1), which
were established previously in [9], [10], [13]. By using ultraspherical ex-
pansions of generalized functions on S$* representing conical vectors we
obtain at the same time the diagonalization of intertwining operators for the
spherical principal series representations ([14], [23], [25]) together with some
Sobolev type estimates for intertwining operators. This is done in Section 3.

Some more details concerning the content of the paper can be read off
at the beginning of each section. In an immediate sequel to the paper we shall
discuss the analytic counterpart of Lepowsky transference for conical vectors
by using the present formalism.
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for this constant moral s

I. Notations and structura! preliminaries. For an integer d > 1, we
shall d2rote by $¢ the unit -“'¢ in R**' and by G =G“ the group
SO, i+t 1), 1e, the idew v comporent of the group of all
autemorprisms of RY*2 which preserve the bilinear form
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d
[Xl_}’] = Z XiYi—Xg+1 Va+1-

i=0

We shall write elements of G in the matrix form (superscript t denoting
transposition)

i
(L.1) g= [,W "J

with AeM,, (R), u,weR**" and zeR (satisfying appropriate conditions
assuring invariance of the form []-]). It is well known that G is isomorphic
to the group of orientation-preserving conformal (with respect to the stan-
dard riemannian metric) diffeomorphisms of $Y — Mg&bius transformations
when §? is regarded as R? U {oc!. We fix matters by defining an action of G¥
on §% by transfering to S the projective action on the upper sheet of the
cone ‘xeR!*?—10} [x| x] =0!. Explicitely, given heS? we denote b
= (b, 1)eR**? the corresponding point of the cone and for g eG“® we set

(1.2) g-b:=|less1| gbl 'gb

(here ¢;, i =0, ..., d+ 1. denotes vectors of the standard base for R?*? and
R**! is considered as the hyperplane x,,, =0 in R‘*?).

The formula make sense also if heB = |xeR‘"!| ||x|] < 1!, the open
unit ball in R**! and the thus arising action of G on B gives rise to a
realization of G as the connected component of the isometry group of the
(d + 1)-dimensional real hyperbolic space (cf. [12]).

Let K =K“ be the isotropy subgroup of G“ at 0eB: clearly, K
consists of matrices

R 0]
‘“0 [ | ReSO@+1

and acts transitively on $% Denoting by M = M'® the isotropy subgroup of
K at e, eS8? we see that M = SO (d) and $¢ = K/M. Let now q, {, m denote
the matrix Lie algebras of G, K and M, respectively, and let us further define

(1.3) g |0 o
' e 0 )
eo €RM Y (cf. (1.1) and
0'x0 | 0'x0
(1.4) Zx)=| -x0 x|, Z(=|x0 x
0'x 0. 0'x0

for any x€R?. Then
[H,Z(x)]=Z(x). [H.Z(x)]=—-Z(x). =R
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Setting a:= RH, n:= !Z(x)| xeR*!, n:='Z(x)] xeR, we have the de-
composition of Iwasawa

a=1t+a+n
and the restricted root spaces decomposition
G =+ m+a+n.

We note that n and n are abelian Lie algebras isomorphic to R? and that in
terms of the parametrization (1.4) the action of M on n (i, resp.) via adjoint
representation is just the natural representation of SO(d) acting on R
Moreover, the restricted root spaces decomposition is a decomposition into
M-irreducible subspaces.

Let A, N, N denote the analytic subgroups of G with Lie algebras
a, n. . resp. and set

Then we have (global) Iwasawa decomposition G = KAN and the Bruhat
decomposition G = MAN U Nm, MAN (disjoint union). Observe that MAN
=:P is the isotropy subgroup of GV at the point e,€S?. We shall write
g =k(g)expt(g) Hn with k(g) €K, expt(g) He A, neN, and observe that

(1.5) e = f["aﬂl g(€0+ed+1)]|,

(1.6) g -keq = k{gk)e,.

Assume now d > 2 and consider the embedding GV 29 —g* eG? obtained
by defining g* to be identity on the subspace of R’*“ spanned by e, ..., e,

and g on the span of e, e,, ¢;.,. Further, let X — X* denote the correspond-
ing imbedding of the Lie algebra oV into q®:= q and let i: S' > 8¢ be
given as S'3s —i(s) =(s, 0, ..., 0)S%. Then these imbeddings are compat-
ible in the sense that

(1.7) g* - 1(s) = 1(gs),
for all yeG, seS! (cf. [12]) and furthermore the mapping
M xS'=(m, s) >m-i(s)eS?

is surjective. Note the obvious relation of the latter map to the system of
spherical coordinates on S$°.
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2. Invariant distributions and radial parts of invariant systems of differen-
tial operators. We state now some results taken from [21], concerning a
method of reduction for M-invariant systems of differential operators. They
are motivated chiefly by the application to conical vectors, to be discussed in
the following section, but since such systems occur rather frequently in the
recent literature (cf. [7] and the references there), we do not restrict ourselves
to the particular system determining conical vectors. Our approach is based
on an explicit representation of M-invariants in distribution spaces on 5% in
terms of their (appropriately defined) restrictions to the maximal torus
$' < §% and consists in associating to each M-invariant system of differential
operators on S a single diflerential operator, possibly with singularities,
acting between spaces of these restrictions. This resembles the coordinate-free
description of the radial part of a single differential operator (cf. [11]} and, in
fact, is a natural extension of that construction. For more details we refer to
the forthcoming paper of the author [21].

We use standard notation &(S9), &'(89), resp., for the space of smooth
(complex valued) functions on $° taken with its customary (Schwartz) topo-
logy and resp. for the space of distributions (usually endowed with the weak
topology). Also we shall denote by &(§%; €%, resp. &'(S*; CY), the space of
C?-valued smooth functions on S* with the natural topology, resp. of (“-
distributions, i.e., continuous linear functionals on &(S?; C%). In the sequel
one uses substantially the fact that &(S% and &(S?; C%) are Fréchet spaces.
M is acting naturally on £(S% and also on & (S%; €9, the latter action given
by

(2.1) m-F(b) =mF(m™'b), beS’,

where on the right-hand side the natural matrix action of M =~ SO (d) on *
is denoted by juxtaposition. In the respective distribution spaces we shall
consider dual actions of M. Note that we can imbed & (S%) — &’(57) using the
canonical rotationally invariant measure db on $¢ (which we shall always
assume normalized by vol(S%) = 1) and similarly we imbed &(S¢; ¢Y)
— &'(8%; (%) by means of the bilinear pairing

(22)  &(S% CYyx (84 CYa(F, H) = <(F,H):= [(F(bH(b))dbeC,

sd
where (:|) denotes both the standard inner product on R* and its complex
bilinear extension to (Y’

These imbeddings are compatible with the action of M.

Let &(SHM, £(S¢; C)M be the subspaces of M-invariant elements in
£(SY) or &(S%: ¢Y), respectively, and denote the subspaces of M-invariant
distributions accordingly by &’ (SH™, &'(SY; C™. Also consider the action of
the group Z, of integers mod2 on the torus S' < R* which for the
nontrivial element w e Z, is just the reflection in the x, = 0 axis. Usually we
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shall regard S' as contained in $¢ via the imbedding 1 from Section 1 and
then this action is just the action of the Weyl group of (K, M), W = M /M,
on S', where M7, M, are the normalizer, respectively, centralizer of S in M.
Regarding the induced action of Z, on the space of &(S') of smooth
functions on S', we shall write &, = ¢, (S!) for the subspace of Z,-invariant
(ie.. even) functions and &_ = #_(S') for the subspace of odd functions
which we consider with their respective subspace topology.

Lemma 2.1. (i) The map 6*: &, (S') - £(S)M defined by
(2.3) 0* f(mi(s)):= f(s), seS', meM,

is a topological isomorphism.
(1) Let OF: &_(SY) = &(8Y; ¢Y) be defined by
2.4) 8 f(mi(s)) = f(s)me,, seS', meM.

Then, for d > 2, OFf is a topological isomorphism onto &(S%; CYM and for
d =2, 6F is a topological isomorphism onto &(S%; COM. where M =O(2) is
considered as the isotropy subgroup of O(3) at the point e, €R> and its action
on &(S%; €Y is still defined by (2.1).

Part (1) 1s a special case of Dadok’s result characterizing functions on
symmetric spaces invariant with respect to the isotropy group [2]. For
functions on spheres invariant with respect to other subgroups of the
crthogonal subgroup see [5] and for an extension of (ii) to other irreducible
representations of M see [21].

The corresponding parametrization of invariant distributions is obtained
as follows. The invariant integral on $? can be written in the form {essentially
expressing the integration in the spherical coordinates)

(25) [ £(Bydb = | 8(s) | f (mu(s))dmds,

sd sl M

where dm is the normalized Haar measure on M, ds the normalized Lebesgue
measure on S! and & is the density function (recall the coordinates on S* are
o = (s|ep) and s, = (s|e;))

(2.6) 8(s) = cq|(sle))’ ™",

where
d+1\/_/d
Cy = 1'[1/2 r (—2—>/r (5)

is the normalization facter, I'() denoting the Euler gamma function. Now
introduce the spaces .#, (S') = #* (S') and #_(S') = .#" (S") consisting
respectively, of all functions of the form f = 8f,. fo €&, (SY), resp., fo€&_ (S,
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endowed with the topology carried over from &, (S'), é_(S') resp, by
means of the multiplication with d. By <-,-) we shall denote the nonsingular
pairing between &, (S') and .#. (S'), resp. between ¢&_(S') and .#_(S')
given in each case by the integration over S'. ie.

(2.7 fohyi= | fhds.
sl

One sees casily that the dual map to #* denoted 8,, maps continuously
4 (S onto #%(S') and similarly the dual 6,, to 6% maps continuously
(84, €Y onto . /% (S'). Let now .# (S'), .#_(S"') be the spaces of con-
tinuous linear functionals on .#,(S'), resp., -#_(S'). Denoting dm,(s)
:=i(s|el)|2’ds, a=(d—1)/2, we consider the subspaces L' (S!,dm,) and
L' (S',dm,) in L'(S', dm,) consisting of even, odd, resp., functions and
observe that via (2.7) they can be considered 4s subspaces of ./ (S'), resp.,
A (SH).

ProrosiTion 2.2. (1) The dual 1o 0, maps isomorphically /', (S') onto
& (SHM .

(i) The dual to 8,, maps isomorphically .#" (S') onto &'{S*: CYM for
d>2 and onto &' (S C4M if d = 2.

Since these maps extend 0*, resp. 9F, defined previously on smooth even,
odd, resp., functions on S, we shall continue 1o use 0%, resp. 0F, 1o denote these
extensions as well.

Remark. One can view the maps 9*, 0% as “pull-back”-maps and
8,, 0,, as “push-forward” maps with respect to the orbit map6: S
— M\S8" x~ 8'/Z,. See [8], Chapter VI, for the terminology and the construc-
tion in great generality.

Due to the functorial character of those constructions the treatment of
invariant systems of differential operators is particularly simple. Let us
consider a system D;, i =1, ..., d, of (scalar) differential operators D;: &(S9
— &(S?) transforming like a vector under the action of M (= SO(d)). That is,
defining for a differential operator D the “shifted by meM™ operator D™ by

D" =t(moDot(m™}),
where t(m) is the translation ©(m) f(b) = f(m~ ' b) on &(S9), we assume that
d
(28) D,m = Z ”'lk,' Dkv
k=1
where the matrix m, = [n,;] €SO (J) is given by
1
m= sy eM.
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Then the differential operator D: &(S%) — &(S%; €% defined by
Df:=(D,f,....Ds[)

is easily verified to be M-invariant and so is its formal adjoint D*: &(S%. ()
— (8% defined by

(D*F,f>:=(F,Df>  Fe/(8: Y, fet(SY).

Therefore D (& (S)™) < & (8% €)M, so there exists a unique mapping of
&, (S to £_(S) such that the diagram below commutes

A(S")-Dw(s";(“)
T el
£ (SY) >4 (SYH

and there is a similar commutative diagram for D*, too. We shall denote the
mapping in the lower line by A(D), resp. by A(D*), and call it the radial part
of D, resp. D*, so that we have

DO* f =0*AD)f, feb.(SY.
D* 0t f = 0*A(D*) f, fed (SY).

Now note that the set i(S'), of regular points in the maximal torus ((S') < §¢
(that is, the torus ((S') with the two poles +e, deleted) satisfies the
transversality condition of Proposition 2.2 from [11], and hence there exists
a unique differential operator A(D,), the radial part of D,, defined on 1(S"),
and satisfying (the bar denoting the restriction to 1(S'),)

AD,) f =(D, f)~

for each f €& (S9)M. Actually this holds for much broader class of functions
which are locally invariant in an appropriate sense, but we shall not need
this fact.

To simplify notation in the following we shall identify the torus S' with
its imbedded image 1(S') in $¢ so we shall write S! instead of 1(S'), and
identify smooth functions on i(S') with elements of &(S'). Now we may
state the following proposition.

(2.9)

ProposiTioN 2.3. For every feé . (S!)
(AD) f)s} = AD)(fls)
and similarly, for every fe&_ (Sh.
(A(D*) f)st = 87" 0 A(Dy) 0 8(fls).

Here b is considered as an operator of multiplication by 8, which is obviously
smooth on S! and o denotes superposition of operators.
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This is a particular case of a more general result on radial parts of
covariant systems of differential operators proved in [21]. Consider now the
validity of the diagram as above for spaces of invariant distributions. We
argue the case of D, the other being completely analogous. By virtue of M-
invariance of D there is an operator which we call A(D)", for reasons to
become clear very soon, such that 6, D* = A(D)* 0,, . Its continuity follows
by applying the open map theorem to 8,. Formulas (2.9) and the elementary
properties of 6} and 6, imply that for each f €&, (S') and each he .#_ (S')

(AD) S, hy = {f, A(D)" h,

that is, A(D)" is dual to A(D) with respect to the pairings given by (2.7).
Taking the mapping of .#'. (S') into .#~ (S') dual to A(D)* we see that it
extends A(D): &, (S') = &_(S') and, so denoting it still by A(D), we obtain
commutativity of the diagram:

#6598 50

o1 ot

A(D)
ML (SY) o (Y.
For the sequel we shall need the following (standard) notation. If X e€q, then
the induced vector field on $¢ is denoted by X*:

d
Xt f():= 7 f(exptX -b).

t=0

ExampLE 24. Let 1< { be the orthocomplement (with respect to the
negative of the Killing form) of m. Then [ is Ad(M)-invariant and the
representation of M in | is equivalent to the natural matrix action of SO (d)
on R Let (X,) be an orthonormal basis for [ and assume that X, is tangent
to the torus S' at ¢, (= eM) €S Then the operators X; satisfy (2.8), and
hence the preceding applies to the operator D, = (X7, ..., X ). Letting o =
—D¥D, we see that, for each fed&(SY™, w(f)=L(f) where L is the
Laplace-Beltrami operator on S$% Since by functoriality we have A(D} D)
= A(D*) A(D)), we may immediately deduce from Proposition 2.3 the familiar
expression for the radial part of the Laplace-Beltrami operator.

Our main application of the preceding formalism is the case of differen-
tial operators arising from the infinitesimal action of G corresponding to the
spherical principal series representation of G in the so-called compact picture,
i.e, acting on functions on S?. Recall the Poisson kernel for the hyperbolic
space B = G9/K¥ given by P(gK, kM) = |[ges+,| k(eo+es.1)]| ™ and set

(2.10) o(g, b):=|[ges+:l B)}, g€G?, beSs,

where as in Section 1 we write b = (b, 1)€R**2. Then for any AeC one has
representation 1, = ¥ of G acting on 4(S%) by

1(9) f(b) =o(g, b2 f(g~'-b), geG?, beS’.

7 — Annales Polonici Math. XLIX. 3
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The infinitesimal representation of the Lie algebra o, which we denote by
the same symbol, is given by

(211) 5.(X) f(b) = (X" —(ir—d/2) (X, b)) f (b),

where for X eq® we have

d N
o(X.b)=—| olexptX, b)=[Xe,.,| B,
0

and satisfies (* denoting the adjoint with respect to the measure db on $9)
L, (X)*=—-1_,(X), Xeq.

Consider bases Z;:=Z(e), i=1,...,d, and Z;:=Z(e), i=1,...,d, for n,
n, resp., defined according to (1.4). For d = 1 write Z =Z(1) and Z = Z (1)
for the corresponding generators of n'", n'", resp., and h for the generator of
a). Note H = h*, and note also that in this latter case ¢ = a"+ o™ 4 nV.
It has been observed before that the action of M on each of n, i in terms of
the above-given bases is just the matrix action of SO(d) on R?; hence by
virtue of the M-equivariance of the mapping

ax &(8)3(X, f) =1, (X) fes8(8Y)
the sets !t,(Z;)! and {1,(Z;)! satisfy (2.8). We write
D, :=(v(Zy), ..., 1,(Zy), D,:= (H(Z—l), o T(ZY).

The following result systematizes an argument from [20].
ProrosiTioN 2.5. Given AeC, set p=A+io, oo =(d—1)/2. Then

(2.12) ADy) =1(Z), AD,)=1"(2), At (H)=1"(h).

In the last equation the radial part is that of a scalar differential operator.

Remark. To be completely precise we should have indicated that there
are restrictions to &, (S') on the right-hand side in each of the above
equalities, but we shall not do that in order to keep notation simple.

Prool. Using the notation from Section 1, if X*€a? is the image of
X e under the imbedding o’ — o), then the vector fields (X*)* on §¢
and X* on S! are i-related by virtue of (1.7). Letting o' to denote the

cocycle (2.10) for the action of G on S§!, a simple matrix computation
shows that

o(X*, 1(s) = 6'V(X, s).

Since Z, = Z*, Z, = Z*, H = h*, Proposition 2.3 and (2.11) give the result.

For the later use we shall record here the coordinate form of the
operators appearing in Proposition 2.5. If ¢ denotes the angular coordinate
on the torus S', then
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1 d . na
1(Z) = (1 —cos @) ———(in—73)sin ,
do
1) (7 d ; 1\ o}
(2.13) ©(Z) = —(1 +cos o)%—(m—f)sm o,

< (h) = s 91 (i~ cos o

Another useful application of the representation of M-invariant distribu-
tions in the form

(2.14) =0T Te.#. (S

is to analyse the operators &(S% — &(S% commuting with the action of K on
&(S9).

In fact, every such map assuming appropriate continuity can be written
as the convolution operator f — f*¥ with an uniquely determined
Ye & (S9M. Here * denotes the convolution on $¢ induced by the usual
convolution on K (cf. [10], p. 84) which is given explicitely for M-invariant
¥ by the formula

[ ¥(keo) = ¥(t(k™") f),

with T denoting the action of K on S by translation. Any such convolution
operator, regarded as an (in general unbounded) operator in L2(S%) with
domain &(S?) is diagonalized by the decomposition

(2.15) L[*(§%) = é H"(8%
n=0

in (surface) spherical harmonics (which is the decomposition of the represen-
tation T into irreducibies).

The actual diagonalization is achieved by using expansion of ¥ into
spherical harmonics or related decomposition of T. At first we observe that
the usual definition of ultraspherical expansions of functions defined on
[0, n] can be rephrased so as to apply to .#7 (S).

In fact, let P denote the ultraspherical polynomial of type a = (d—1)/2
and degree n,

Pgla)(x) — q(a’ n)(l _xz)—a+1/2 (‘i)ﬂ(l _XZ)n+a— 1/2,
dx

where the normalization constant g(«, n) is given as

(=2)"T(n+a) T (n+ 20)
nt T (2n+2)

q(a, n) =
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We recall that S¢3b — PP (1)"! P ((bjeo)) =: w,(b) are the zonal spherical
harmonics of degree n on S¢ normalized by w,(e,) =1 and that

[ 0,(B)2db = P2 (1)~ [ P ((s]eo))? 8(s)ds = dim (S~

o sl
We set
¥3:=dim .#" (5% =(2n+d—l)%.
Given Te.#' (S'), we define its ultraspherical Fourier coefficients by
(2.16) cnl(T) 1= (T, 8R3),
where

Ri(s) = PP (1) PP ((sleo)), seS',

a

and we call the series Z Yac,(T) R} the ultraspherical expansion of T, to be
n=0
denoted by
(2.17) T =3 vic.(T)R;.
n=0

Regarding even functions on S' as [unctions of the angular variable
¢ €[0, n], we recover the usual definition of the ultrasperical expansions (see
eg. [22)).

From the standard Sobolev-type estimates one sees that (2.17) is an
expansion of a smooth even function on §' if and only if ¢,(f) = o(n*) for all
natural k and that it is an expansion of Te.#’ (S') if and only if c,(T) have
at most polynomial growth.

On the other hand, for any W e &’(S%) there is an expansion in spherical

[« o}

harmonics, ¥ = Z ¥,, where W,e.#"(S% and the series converges in the
n=0
weak topology. The projection ¥ — W, e.#"(S%) is given by

q‘n (keo) = Y: <LP, T(k) (Dn>'
LeMMaA 2.6. Given ¥ = 0* T e &' (S)M, let c,(T) be defined by (2.16). Then

(1) the decomposition of W in spherical harmonics is

Y=Y dim #"(8%c,(T) o,
n=0
(ii) the convolution operator K,: f — f ¥, f€£(S* decomposes, with
respect to (2.15), as

[« 9

K"l’ - Z C’,(T)id,/n(sd)

n=0
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Convenient references for the basic facts from analysis on sphere S¢ are
[1] and [25].

Remark. Among other things the lemma enables the study of the
continuity properties of the operator K, to be reduced to the study of the
convergence of the ultraspherical expansion of Te.#' (S') representing ¥
via (2.17).

We shall use it this way in the next section to obtain Sobolev continuity
of convolution operators defined by conical distributions.

3. Expansions of conical vectors and intertwining operators. The reduction
technique of the preceding section will now be applied to derive most of the
known properties of conical vectors for SO, (d, 1) with d > 2 in a uniform
way. We show how the results of [10] and [13] establishing the dimension of
the space of conical vectors (cf. also [9], [4] and [20]) and their relation with
the representation theory of the groups SO (n, 1) (in addition to the papers
quoted, see [23], [25], [14]) follow easily by analysing the difference equa-
tion satisfied by the coefficients in the ultraspherical expansion of the general-
ized function Te .#. (S') corresponding to the given conical vector via
(2.14). Solving the difference equation by elementary methods produces
explicit expressions for the coefficients of basis vectors. As a byproduct of
these formulas we obtain the diagonalized form of the intertwining operators
for the spherical principal series representations which is basic for under-
standing such properties like reducibility, existence of the complementary
series, etc. We shall not go into this, as it is adequately covered in the
literature, and only record for subsequent use a simple estimate for inter-
twining operators and a characterization of the complementary series in
terms of the Sobolev spaces on §% results which do not seem to be available
in print although they are certainly known. (Almost identical estimates are
given in [18] for the case of SO(p, g) with p> 2, g > 2. Also the charac-
terization of complementary series was mentioned by J. Faraut in a discus-
sion with the author.)

We note that the approach in this section could be traced back to a
rather old idea of the author (On conical distributions for SU(2, 1), unpub-
lished research report dated 1976) of determining conical distributions for
SU(1, 1) by means of recurrence relations for their Fourier coefficients.

The following introduces the main object of the study in the sequel (cf.

(101, [16]).

DEeriNiTION. W e &7(S9) is called A-conical vector if
(3.1 T,(mn¥Y =Y, VmneMN.

The subspace of &'(S% consisting of all A-conical vectors is called the
conical space of the representation t, and will be denoted by Con(t,). Since A
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normalizes MN, the conical space of 1, is invariant under t,(A); a X-conical
vector which is also a common eigenvector for 1,(A) will be called an A-
homogeneous conical vector (conical restricted weight vector in the standard
terminology, cf. [16]).

Condition (3.1) is clearly equivalent to being an M-invariant solution of
the equation (cf. [20])

(3.2) D, ¥ =0;
hence from the preceding results we obtain the following proposition.

ProrosiTioN 3.1. 6* maps isomorphically the kernel of the operator
T4 (Z): M (S*) = 4" (S') onto Con(t). Moreover, smooth conical vectors
(i.e., elements of Con(z,) 0 &(S7) correspond this way to smooth elements of the
kernel (i.e., those represented by elements of &, (S') < .4 (S')).

Similarly, W = 0* T satisfies

T (exptH) ¥ =e* ¥
for some weC and all teR if and only if

(3.3) tY, (W T =uT.
We shall determine the solutions in .#% (S') of
(3:4) 1@ T=0

by determining the coefficients in their ultraspherical expansions. The com-
putations are based on the following relations for the ultraspherical polyno-
mials P®, which can be easily derived using [22], pp. 80-83. Let Z,
:= 10, 1, ...} (nonnegative integers).

Lemma 3.2. For any yeC and neZ,

d
(1) ((1 —X)F Y)P‘n"’

- ﬁ((y—n) PE* V42 (n+a) P —(n+ v+ 20) PES),

(i) ((1 + x) dd—\ - y) Py

= %o—t((n —Y) PET Y+ 2(n+a) PV +(n+ v+ 22) PED),

(lll) (35) ((1 _x2) (_Id;—‘- 'YX)PE?)

n+1 n+20—1
= —) PO 2a) P
2(n+a)('Y ") n+l+ 2('1+a) ("+'Y+ ) n—1»

where as usual we set P, = P®, = (.
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Now, substituting for Te.#', (S') expression (2.17),

T=73 yic, RS
n=0

where
R3(s) = PP(1)71 PP ((s]eo))
and using the coordinate expressions (2.13) we obtain:
W, (2)T=0
if and only if for each neZ,

(3.6) (ihr—0—n)c,+(20+2n+ )¢,y —(IA+e+n+1)cu 2 =0,

where we use for clarity the customary notation @ = d/2.

We claim that for each value of A the space of solutions of (3.6) is of
dimension 2. This is clear in the regular case, ie., if iA+0+n+1 3 0 and
ir—o—n # 0 for all neZ,, since then a solution is a linear function of the
initial values ¢, and ¢,. But if ix+ @ = —k for some integer k > 1, then every
solution is constant for all n <k, and hence is determined uniquely by
specifying initial conditions at k, k+ 1. Also if iA—@ =k for some keZ.,,
then every solution is constant for » > k and is likewise determined by its
initial values c, and c;. We note that, since the sum of the coefficients of
equation (3.6) is 0 for each n, a constant sequence is always a solution.
Therefore in each of the singular cases there is a solution vanishing over its
interval of constancy.

By virtue of the foregoing we identify the space of solutions of (3.6) with
C? — the space of initial values (c,, c,) if iL+ 0 is not a negative integer or
(i, cesq) if iA+ @ = —k. Since ©.,, (k) permutes the solutions of (3.6) be-
tween themselves, it induces a linear map of C? via this identification. Using
Lemma 3.2 (iii), it is not difficult to see that the map is given by the matrix
(with respect to the standard basis)

k, —iA—Q—k
H(\, k) = ,
(A, &) (—i)\.+Q+k, —20—k )
where k =0 if iA+ 0 1s not a negative integer and k = —(iA+ Q) otherwise.
The eigenvalues are »;, = —iA—9, %, = iA— 0 (independently of k) and the

matrix is diagonalizable unless A = 0. The solutions of (3.6) corresponding to
the eigenvectors of H (A, k) are: constant sequences for %; and multiples of
(c,(A) for %,, where

n—1¢: =
(3.7a) e,0y = ] =2 +0

— ; €Z,
j;o(_]+l)\.+Q)
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(the product of the empty family is 1) provided ik +90¢ —Z, and

0, n<k,

(3.7b) ¢, (W) = { " (—ik+0)
. -~ .o >ka

j=k+l(.]+l}‘+Q)

M iAr+0= —k, keZ,. However, for A = 0 the solution given by (3.7) 1s also
the constant solution and another independent solution can be obtained as
the one, eg. corresponding to the initial data ¢, =0, ¢y = 1.

We observe that c,(A) grow polynomially as n = oo (a precise estimate i1s
given in the course of the proof of the Proposition 3.6 below), unless iA—Q is
a nonnegative integer in which case only a finite number of them is different
from zero. Therefore the series in (3.5) converges to an element of .7, (S
and furthermore the sum represents a smooth function if and only if all but a
finite number of ¢,’s vanish and this happens, as we have just seen, precisely
when A—p 1s a nonnegative integer. Solutions of (3.4) with ultraspherical
expansions determined above will be denoted as follows.

x

(3.8) So= Y 1.R;
n=0

corresponds to the constant solution of (3.5). Note that 6*S, is the Dirac
delta at e, eS”. Further, let

(3.9) T =) Yic.(MR:,
n=0

where for A # 0 the coefficients ¢,(A) are those of (3.7a) or (3.7b) and for A
= 0 are determined from (3.6) and the initial condition ¢, =1, ¢, = 0.
Now, all the preceding can be summed up in the following theorem.

TrHeoreMm 3.3 (Helgason [10], cf. also [13], [9]).

(1) For every xeC dimCon(t,) =2. In particular, ® =0*S, and ¥,
= 0*T form u basis for Con(t,).

(2) The representation of A on Con(t,), obrained by restricting t,, is
semisimple if and only if X # 0. The basis |®, ¥,! of Con(z,) consists of A-
homogeneous vectors satisfying

(3.10) 1, (exprH) & = e~ +dI2n @
(3.11) 1, (exprH) W, = et 4/ ¥,

(3) There is a smooth vector in Con(t,) if and only if iN—d/2€Z,, in
which case it is a scalar multiple of P,.
One of the main reasons for interest in conical vectors is their relation

to intertwining operators. By the latter we mean an operator (linear, con-
tinuous) T: &(SY) — £(S?% such that
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(3.12) Tor (9 =1(9)oT

for some A, veC and all g €G. Since such an operator commutes with the
natural action of K on &(S9), it is necessarily a convolution operator f

—f*¥ with an unique Wed&'(S%)M. Then from the above one readily
obtains the following proposition.

ProrosiTion 3.4. Given X # 0, there exists a non-zero operator inter-
twining v, with T, if either v = A in which case the operator is a scalar multiple

of the identity or v= —k and the operator is a scalar multiple of the
convolution operator
(3.13) AN: f = =Y,

with W_, as in Theorem 3.3. In the latter case

i intd)d)
(3.14a) AW = 11 =527

if A# —i(k+d/2), keZ, (and with the usual convention that the product of
the empty family is 1) and

0, n<k,

(3.14b) A sty = { "1 (+id+d/2)
—I, n>k,

j=I:[+1 (U—ir+d/2)

if A= —i(k+d/2) for some keZ, .

If =0 then the only non-zero intertwining operators are the scalar
multiples of the identity.

Proof. If suffices to show that a convolution operator f — f » ¥ inter-

twines 1, with 1, if and only if ¥ is a (—A)-conical vector satisfying the
homogenity condition

(3.15) T_, (exptH) ¥ = e~ 412y,

In fact, using the M-invariance of ¥, we have that the convolution f * V¥ is
given by

[+ Wkeo) = W(t(k™") f);

hence, denoting s =exptHne AN, we get

\P(tx(s)f) = (‘t;‘(s)f)* W(eo) = T, (5)(f * W) (eo)
— e(i).-d/Z)lf* \P(eo) — e(i).—d/Z)t \‘P(f)
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Conversely, writing the Iwasawa decomposition g = k(g)expt(g) Hn(g) as g
= k(g)s(g) with k(g)eK, s(g)eAN, we have

(3.16) Ytk 19 f)=Y(ulg ' H )
=¥(rn(s@ k) k@ k) S)
— e(iv—d/2)r(g_1k) "l‘(‘t(k(g'l k))flf)

in virtue of (3.15). Upon comparing with the definition of 1, (cf. (1.5), (1.6))
the desired intertwining property is clear. The diagonalized form (3.14)
follows from (3.7) by applying Lemma 2.6. -

Remark. Formula (3.13) expressing intertwining operators for the
spherical principal series by means of conical distributions was given (for
arbitrary semi-simple G) in [10] (cf. also [9] and [15]). The diagonalized
form (3.14) was written down in [9] for SO (n, 1) groups and in [14] for all
classical rank one groups, however, for operators giving rise to the comple-
mentary series for SO (n, 1) (cf. below) was found already in [23] and [25].

CoroLLARY 3.5. The intertwining operator A(A) is hermitean if and only if
A is purely imaginary and is positive definite if and only if —df2 < ik <d/2.

In addition, for ik = k+d/2, keZ . and ih = —d/2, A(X) is positive semi-
definite.

The corollary follows immediately from (3.14a) and (3.14b), resp. For
those values of A where the (1,-invariant) sesqui-linear form on & (S9

(3.17) (f, B, := [ A(M) fhdb
o

is positive (semi-)definite by the standard procedure of Hilbert completion
(possibly after factoring out the null space of the form) one obtains unitary
representations of G (cf. e.g. [17]). The unitary representations so obtained
for he]—id/2, id/2[ are said to form the complementary series of the
spherical representations of G.

Following [6], we define the Sobolev s-norm of We&'(S?) (for seR) to be

(3.18) IS = (I(1=D72 W2 = ) (=1 (I,
n=0

where A, = —n(n+d—1) is the eigenvalue of the Laplace-Bettrami operator
L corresponding to #"(S%) and for Weé&'(SY) by W, we have denoted its
projection onto .#"(S%) and the norm ||-|| without subscript is the L2-norm.
The Sobolev spaces H® = H*(S%) are then

H = {Weds (89| IWI? < o).

We now state
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ProrosITION 3.6. The intertwining operator A(}) defined by (3.13) extends
to a bounded operator

A(M): H® — He+2m

for any real s. Further, if A =ic with c€R and |o] <d/2, then the norm f
—=(AM £, f)"'? of the complementary series representation is equivalent to the
Sobolev norm ||-]| ..

Proof. Let ¢,(}) denote the eigenvalue of the operator A () correspond-
ing to the space #"(S% (as we know, they are equal to the coefficients in
the ultraspherical expansion of the generalized function T_, € .4’ (S"), for
which W_, = 6* T_,). It suffices to prove

(3.19) A(l+n)~ 2™ <Je, (W] <A, (1+n)7 2™

for some positive constants A, 4, and sufficiently large neZ, . In fact, since

IAM) flIZe = Y =2 eI ILNZ <sup {1 =21 lea WP} A,
n=0 n

the right-hand side of the inequality in (3.19) implies the boundedness of
A(A) if t = 2Im\. The equivalence of the norms follows using similar estimate
on both sides.

Now, (3.14a) can be written as

T(—ir+d/2) T(A+d/2+n)

M = “Fotdn T(-n+d2+n

and from the known asymptotic behaviour of a quotient of two gamma
functions (cf. [3], 1.18(4)) we get

T(—ih+d/2)
T(iL+d/2)

what clearly is equivalent to (3.19). The case where A = —i(k+d/2), keZ,,
requires only a trivial modification and is therefore omitted. o

lca (M) ~ (@/2+n)~ 2
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