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In the present paper we are concerned with the functional equation

(1) p(x) = H(my (P[f(w)]) ’

where ¢(x) is the unknown function, and f(x) and H(x, ?2) are known
real-valued functions of real variables.

Equation (1) is the most general functional equation of the first
rank and the first order (!) which does not contain superpositions of the
unknown function. It may be regarded as a generalization of the linear
functional equation

(2) olf (@)]—k(z)p(2) = F()

(where ¢(x) denotes the unknown function, the remaining functions are
known). Equation (2) finds applications in various problems of mathe-
matics (e.g. functional characterisations of certain functions, the theory
of continuous iterations, etc; comp. [12]) as well as in particular problems
of related sciences (e.g. in hydrodynamics [5]).

Equation (2) and its particular cases have often been dealt with and
many authors have been concerned with the problems of the existence
and uniqueness of its solutions fulfilling some additional conditions,
like boundedness, monotonity, convexity, continuity, etc. In particular,
theorems regarding the existence or uniqueness of continuous solutions
of equation (2) have been proved by A. Bielecki and J. Kisynski [3] for
k(z) =1, M. Kuczma [9] for k(x) = —1, and by J. Kordylewski and
M. Kuezma [8] for equation (2) in the general form.

The most important results concerning equations (2) and (1) and
their applications are collected in [12]. Here we shall quote only the
results regarding the continuous solutions of equation (1).

(*) A definition of the rank (German Stufe) of a functional equation may be found
in [1], p. 20, [12]. That of the order in [6], [12].
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As has been proved in [7], equation (1) possesses infinitely many
solutions which are continuous in an open interval (a, b) under the sup-
position that the function f(x) is defined, continuous and strictly
increasing in the interval (a,b), where a and b are two consecutive
fixed points of the function f(z) (i.e. f(a) =a, f(b) =b and f(x) # x
in (a, b)), and under some further suppositions regarding the function
H(z, z).

The situation becomes more complicated when one requires the
solution to be continuous in an interval closed on one side: (a, b or <a, b),
the hypotheses regarding the function f(z) being analogous to those in
the previous case. M. Kuczma [10], [11] established the conditions of
the existence of exactly one, or at most one, or infinitely many solutions
of equation (1), continuous in the considered interval. These conditions
involve the function H(z, 3).

From other results concerning equation (1) we mention here a theorem
on the existence and uniqueness of bounded solutions, proved by M. Baj-
raktarevié [2].

In the present paper we discuss the problem of the existence and
unigueness of solutions of equation (1) that are of class ', 1 < < oo,
in the interval (a, b> or (a,b), where a and b are two consecutive fixed
points of the function f(z). The assumptions will be similar to those occur-
ring in [10] and [11] in the case of an analogous problem for continuous
solutions of equation (1).

The problem of regular solutions of equation (1), as it was formulated
above, has not been considered in the general case. However, A. H. Read
[15] treated equation (1) on the complex plane and found its analytic
solutions. A. Pelczar [14] proved the existence of a solution of equation (1)
in the class of functions satisfying the Lipschitz condition with a common
constant. A theorem regarding the solutions of equation (2) with k(r) = 1
which belong to class C!' is to be found in [3].

The existence and uniqueness of differentiable solutions has been
proved by M. Kuczma [13] only for linear equation (2). For equation (1),
however, only the problem of the solutions of class C” in the open interval
(a, b) has been solved ([4]; comp. Lemma 8 below).

In §1 we formulate the hypotheses, prove some lemmas and
quote the results contained in papers [8], [11] and [4], as we shall need
them in our further considerations. In § 2 we prove Theorem 1 regarding
the existence of a solution of equation (1) which is of class C” in the in-
terval (a, b>. § 3 contains Theorem 2 concerning the existence and unique-
ness of the ¢ solution of equation (1) in (a, b>, and two corollaries from
Theorems 1 and 2. The case where there is an infinity of C” solutions
of equation (1) in (a, b) is discussed in § 4 (Theorem 5). Finally, the
theorems corresponding to Theorems 1-5 and concerning solutions of
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class C" in the interval {(a, b} as well as some final conclusions and remarks
make the contents of § 5.

§ 1. We shall consider the problem of the existence and unigueness
of differentiable solutions of equation (1) under the following hypotheses
regarding the functions f(x) and H(z,z) (r denotes here an arbitrary,
but fixed positive integer):

(I") The fmwtion j ) is defined and of class C” in an inlerval <{a, b>
such that f(a) = a, f(b) = b. Furthermore, the following inequalilies are
fulfilled:

fl®)>=x for xe(a,bd),

f'le) >0 for ze(a,b).

(I1") The function H(xz,z) is defined and of class C" in an open
region L2, normal with respect to the x-axis (*), and

oH (z, 2)
oz

0 for (z,2)ef.

(ITII) Q, # @, I, = Q. for x e {a,b)>, where Q, denotes the xz-section
of the region L2 of the form:

at {z: (j—l(m), 2) € .Q}

(f (@) is the function inverse to the function f(x)), @ is the empty set, and I,
denotes the set of the values of the function H(x,z) for z € Qyz), t.e.

I‘IE{ : Z(ZGQM» y = H(z, z))}

(IV") There exist a number d such that
(3) d=H(b,d)
and (b, d) € 2 and numbers d,, d,, ..., d, such that -
(4) dp = Hy(b,d,dy, ...idx), k=1,..,7,
where the functions Hy(x, 2, 2y, ..., 2x) are defined by the recurrent relations:

Hy(@, %, %) L Bz, )+ Hiz, 2)f (@)%,

at aHk-}-f( )(aH,, OH,, ),

(5) Hy (@, 2,21y ooy 2p41) = 2+ .. + —— zk+1

k= 1, vy 7 —1 .

() I.e. every z-section of the region £ is either an open interval, or an empty set.
o*
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In the sequel d will always denote a fixed root of equation (3) such
that (b, d) € Q2.

Hypotheses (I'), (II') and (IIT) guarantee the existence of an infinite
number of solutions of equation (1) which are of class ¢ in the interval
{a, b) (comp. Lemma 8). In particular, assumption (IIT) is essential for
the existence of this solution in the whole interval (a, b) (comp. [7]).
Assumption (IV") establishes a necessary condition of the existence of
a solution of equation (1), of class C" in the interval (a, b)> (it will be
proved later, in Lemma 4).

Now we introduce further notation.

We denote by G(z, y) the function inverse to the function H(«z, 2)
with respect to the variable z, i.e.

2 =G(z,y) =y =H(z,2).

This function exists according to assumption (II") and is of class € in
the region

Q' L A{(@,y): wela, by, yely}.
Further we put

Gi(@, y, y) [ (@) (Gulx, y) + Gofw, ¥)y1)

, _1[0G;. oG o@@
(6)  Geri(®y ¥y Y1y ey Y1) = [f(2)] 1(8—;+ T;.%+---+ ay:yk+l) ’
k=1,..,r—1.

The expressions defined by formulae (5) and (6) have some properties
which are expressed in Lemmas 1-3.

LEMMA 1. Let hypotheses (17) and (I17) be fulfilled. Then the expressions
Hy(x, 2,21y ...y 2k), k =1, ..., 7, are functions of the variables (r, 2z, 2y, ..., 2)
defined and of class C% for (x,2) e 2 and arbitrary z; (i =1, ..., k).
Moreover, we have

() Hilw, 2,214 ..., 2) = Pul@, 2, 21) +Qul@, 2, 2,) + Bi(®, 2, 21y oy 2k-1)

k=2,...,7,
where .
®) Fo, 5,5 = O, (4) D oy
=0
(9) @, 2,50 = B LD gy,

(10) Bi(w, 2, 24 ...y 2k—1) 18 @ polynomial of the variables z,, ..., zx_1, whose
coefficients are functions of the variables (z, z), of class C"™* with respect
to & and of class C" ™' with respect to .
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Proof. At first we shall prove (7). For k¥ = 2 equality (7) follows
from definition (3), and since in this case R,(x,z,z2,) = f"'(x) Hy(x, 2)2,,
(10) evidently is fulfilled. If (7) holds for ¥ = p, 2 < p < r, then we get
by (5) according to (8) and (9) (k = p)

Hy 2y 2y 21y vy Zp11) = Ppia(®, 2, 21) +Qp1a(®, 2, 2p1a) +
oR oR, P,
[T 1) (G2 b o g ) (0 5 2+
p—1

+2f ( ) Zﬁ afa;)[f (@) e 4+ 2 Q” + (@ Qp ]

Let us denote by R,ii(x, 2,2, ..., 2p) the expression in the paren-
theses on the right-hand side of the above relation. In order to prove
that relation (7) holds for & = p +1 it is enough to show that the ex-
pression R,,, thus defined fulfills (10). But R,4, really is a polynomial
of the variables (z,, ..., 2,), because R,, @, and P, are polynomials of
the variables (2, ...,2,-1), 2, and z,, respectively. The coefficients of
this polynomial are functions of the variables (z, z), of class ¢" ™' with
respect to z and C"~° with respect to z, because the coefficients of the
polynomial R, are with respect to x, and = of class ¢""? and 0" 7", res-
pectively, and the remaing components that do not contain R,., are at
least of class " F with respect to z and 2. Thus relation (7) holds for
k < r. The rest of the assertions of the lemma follows immediately from
(7)-(10). This completes the proof.

For the expressions defined by formulae (6) we have the following

LEMMA 2. Let hypotheses (1I") and (IL") be fulfilled. Then the expressions
Gz, Y, Yy ...y Yr) are functions of the variables (x,y, Y, ..., Yx), defined

and of class C" % jor (z,y) € Q' and arbitrary yi, i = 1, ..., k. Furthermore,
we have

oG
ayk

If, moveover, the relations

(11) = Gy, PIf' @], k=1,..r.

(12) y=H(z,z?), Yi=Hdz, 2,2, ..., %), t=1,..,r
hold, then we have also
(13) Gu(@y Yy YryoesYu) =2y k=1, .40

Proof. The first part of the assertion of th> lemma is a consequence
of the fact that the function G(z,y) is of class " in 2’ and that the function
f(z) is of class C" in <(a,b). A more precise proof would run similarly
as the proof of Lemma 1.
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Now we are going to prove relation (13). For k = 1 it results from (3)
and (6) and from the relations between the first derivatives of the func-
tions H(x,?) and G(z,y) (where y = H(x, 2)):

Gz, y) =[Hyz,)]™", Guz,y) =—Hiz,?)[Hiz,2)]"
If (13) holds for k=1, ...,p, p <7, then we have
Gp(w’ H(z,z), H\(z, 2, %), ..., Hy(x, 2, 2, ..., zp)) =2Zp.

We differentiate both the sides of the above relation with respect to
Z, 2,2, ..., %p, consecutively. After suitable calculations we get on aecount
of (5) and (12) (applied for k =1,...,p+1)
6G,D+ 9G, Y1+t 5 6G, 2 Ypr1 = f(®)2p41 -
% OYp

Hence, dividing both the sides by f'(z) and making use of (6), we obtain (13)
for k =p+1.

Almost evident relation (11) also can be easily proved by induction.

The next lemma expresses the relation between a solution of equa-
tion (1) and the functions H; and Gy.

LEMMA 3. Let hypotheses (1), (II") and (ILI) be fulfilled, and let ¢(x)
be a C” solution of equation (1) in an interval I C (a,b) such that ¢(x) € 2,
for welI. Then the functions Hy(z, ¢[f(z)], ¢’ (f(®)], ..., o®[f(x)]) and

G (2, p(2),9'(@), ..., 9™(x)) are of class C"* in the interval I and the de-
rivatives ¢ x) of the function @(x) fulfill the equations

(14) ¢¥(x) = Hy, (.’I), olf (@)], ..., fl""’[f(w)]) ’ k=1,..r,
and
(15) p®[f(2)] = Gk(x ¢(z), ¢'(z), ..., ‘P(k)(w)) y k=1,.,7.

Proof. The first part of the assertion of the lemma follows from
Lemmas 1 and 2 on account of the assumptions regarding the function ¢ ()
and of hypothesis (II1). Formulae (14) result from the relations

Henlo, 9lf (@], ., ¢4 (@) = & Hyle, pli (@), ..., 9 (@)

that hold for k¥ = 1, ..., r —1. Finally, if (14) is fulfilled for £ =1, ..., p,
then, according to (13), also (15) is fulfilled for % = p. Since p may be
any one of the numbers 1, 2, ..., r, the lemma has been completely proved.

The next lemma, which has already been announced, concerns
the role of hypothesis (IV’).
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LEMMA 4. Let hypotheses (I') and (IT") be fulfilled.
1° Hypothesis (IV") is a necessary condition of the existence of a solution
of equation (1) that belongs to the class C™ in (a, b).

2° If numbers d, d,, ..., d, fulfill relations (3) and (4), then they fulfill
also the relations

(16) d=G(b,d), dp=Gib,d,dy,...;ar), k=1,..,7r.
3° If
(17) |HAb, I[f(B)] >1,
then there exists one and only one system of numbers d,, ..., d, fulfilling
relations (4).

Proof. 1° If a function ¢(x) is of class C” in the interval (a, ) and
satisfies equation (1) for x € (a, b), then its derivatives ¢®(z), k =1, ..., 1,
satisfy equations (14) in this interval (c¢f. Lemma 3). Setting in (14) z = b
we obtain in view of the equality f(b) =b

@®(b) = Hk(b’ ¢(b);¢'(b)1 ey ‘P(k)(b)) *, E=1,..,7r.
This means'that the numbers d = ¢(b), d, = ¢'(b), ..., d, = ¢"(b) fulfill
equations (3) and (4), which proves the first assertion of the lemma.
2° Relation (16) follows from (3), (4) and (13).

3° According to (4) and (7)-(10) the numbers d,, ..., d; are roots
of a system of 7 linear equations (with » unknowns). The determinant D
of this system has the value

D= [[(1—Hyp, iy .

But on account of hypothesis (I') f'(b) < 1. Hence it follows by (17) that
\Hyb, d)|[f(D)]'>1 for i=1,..,7.

Consequently D # 0 and system (4) has exactly one solution.
Thus the lemma has been completely proved.

Remark. From the proof of Lemma 4 we see that in general (unless
something like relation (17) is supposed) it can happen that there exist
infinitely many systems of numbers d,, ..., d, fulfilling (4) or that such
numbers do not exist at all. Therefore we had to make hypothesis (IV").

(®) The symbols ¢*(b) denote here the left-side derivatives of the function ¢(x)
at the point b.
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We assume also the following convention:

U(n,d) will always denote the neighbourhood of the point (b, d)
of the form

(18) U(n,8) =<b—n,b)xd—d6,d+d),
where # and 6 are some positive numbers.

Now we shall prove the following

LeEMMA 5. Suppose that hypotheses (17), (II') and (III) are fulfilled
and that there exist a neighbourhod U (7, d) and constants O and L such that
(19) |Hy(@, 2)|[f'(®)]"< @ for (2,2)eUln,d),

¢'H(w,2) & Hz,?2)
oxkozr—k oxk osT—k

(20)

for (,2),(x,2) e U(n,8), k=0,1,...,7.
Then the function HAz, =z, 2, ...,2;) given by formulae (5) satisfies
a Lipschitz condition with respect to the variables z, 2y, ..., 3, in the set

(21) e Z 2 Uy, 8) X Cag, Br> X oo X Lary frd

where — co < e < B < + oo (k =1, ...,7) are arbitrary real numbers.
More precisely: There exist constants Ly, L,, ..., L, independent of x
such that for (Z,Z, Zyy ...y Zr)y (®, 2,2, ..., 2r) € Z we have

(22) |Hy(=, %, 2, ..., 2r) — H/(x, E’v Eu vy Z)| S Lylz—2] + ZLkﬁk'—ék
k=1

and moreover (cf. (19))
(23) L, = 0.

Proof. Let us fix arbitrary numbers a; < f; and let us consider
the function H,(x, z, 2, ..., %) in the set Z defined by (21). In virtue
of Lemma 2 this function is defined and continuous in the set Z and
can be expressed in the form (7). Thus the function H, fulfills a Lipschitz
condition with respect to the variables z,,...,2, in the set Z, viz. it is
a polynomial of these variables with coefficients which are continuous
functions of the variables (z, z) in the closed set U(#, ). It remains to
prove that the function H, satisfies also a Lipschitz condition with respect,
to the variable 2. But this is a consequence of formulae (7)-(10). In fact,
on account of (8) and (20) the function Pz, z,?;) fulfills a Lipschitz
condition with respect to z, and the functions @.(x, 2, 2;,) and Rz, 2,
21 ..., 27) are at least of class C! with respect to z and at least continuous
with respect to the remaining variables (cf. (9) and (10)).
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Finally, (23) results from (7), (9) and (19), which completes the proof
of the lemma.

In Lemmas 6-8 we quote some theorems, which were proved in [8],
[11] and [4] (under assumptions weaker than (I") and (IL")). The following
Lemma 6 concerns equation (2) and its proof is to be found in [8]:

LeMMA 6. Suppose that

(1) the function f(z) fulfills hypothesis (17);

(2) the functions k(z) and F(x) are continuous in the interval (a, b),
and k(z) # 0 in (a,bd);

(3) there exist numbers > 0 and 0 < ¢ <1 such that the inequality
lk(z)| <& holds for e (b—n,b).

Then every funclion @(x) satisfying equation (2) and continuous in
the interval (a, b) is also continuous in the interval (a, b).

LEMMA 7. Let hypotheses (I'), (II") and (IXI) be fulfilled. If |H (b, d)|
< 1, then equation (1) possesses exactly one solution @(x) that is continuous
in the interval (a, b> and fulfills the condition ¢@(b) = d.

The proof of this lemma is to be found in [11].

LEMMA 8. If hypotheses (I"), (I1") and (III) are fulfilled, then for
every point Z, e (a, b) and every function @(x) which is of class O in the
interval {x,, f(x,)> and fulfills the condilions

P(x) € for @ eZo, [(@)), @(x) = H(moy &U(mo)]) )
@¥(z,) = Hk(mo: olf (@)1, ..y g[S (370)]) y k=1,..,7,

there exists exactly one function @(a) defined and of class C" in the interval
(@, b), satisfying equation (1) and such that

pl2) = @(x) for x ez, [(z)) .
This lemma has been proved in [4].

§ 2. In the present section we shall formulate a theorem on the
existence of solutions of equation (1) which are of class ¢” in the interval
(a, b>. For the sake of clarity and in order to avoid burdensome calcula-
tions we shall present the proof only in the case r =1. For r > 1 the
theorem can be proved by the same method, i.e. by an application of
Schauder’s fixed point theorem.

THEOREM 1. Suppose that

a) hypotheses (17), (II"), (III) and (IV") are fulfilled;

b) there exists a positive number n such that

(24) i) <1 for  we(b—7,bd;
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c) we have
(25) |H(b, d)|[f' (D)) <1.

Then for every system of numbers d,, ..., d, fulfilling (4) there exist
at least one solution g (x) of equation (1) that is of class C" in the interval
(a, by and fulfills the conditions ¢(b) = d, ¢'(b) = dy, ..., ¢"(b) = d,.

Proof. Let » = 1. We assume hypotheses (I!), (I1?), (III) and (IV?),
and we fix numbers d and d,. Inequality (25) takes now the form

|H:(b, d)|f'(b) <1,

from which it follows that there exist a number & < 1 and a neighbourhood
U(7yy 0o) of the point (b, d) (cf. (18)) such that

(26) \Hoz,2)|f(2) <O <1 for (x,2)e U(na,d).

Let K be an arbitrarily chosen positive number, in the sequel re-
garded as fixed. We put

1-0)K
2 K, & 1—O)K
(27) 0 1+ |d,|

We may assume that the neighbourhood U (#,, d,) has been chosen in
such a manner that the inequalities

|Hz(2, 2) — Ha(b, d) 0)

(28) | < K,
|Hz(x, 2)f'(2) — H:(b, d)f'(b)] < K,

hold for (z,2)e U7, dy). Such a neighbourhood can be found for any
number K, > 0, since the first derivatives of the function H (x,2) are
continuous at the point (b,d) and the function f'(z) is continuous at
the point b. We put also

(29) M2LK+|d,.
N:OW we introduce the interval
15 b—n,by,
whose length # is chosen to fulfill
(30) 7 < min(n, 1y, 1, d/ M)
and so that the set
(31) A2z, 2): f(m)el, |2—d| < Mlz—b|}

be contained in the set 0.

The inclusion A C 2 can be realized, since by (IV') (b, d) e 2. Let
us also notice that for x € I inequality (24) holds and for (x, 2) € U(n, dy)
C U(nq, ) inequalities {26) and (28) are fulfilled.
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Now we shall define an auxiliary set G of functions defined in the
interval I. Let ¢ be an arbitrary positive number and let us write

(32) ot (1—0)e

1+ M

The first derivatives of the function H(x,2) are uniformly continuous
in the closed set A (cf. (31)) and the function f'(x) is uniformly contin-
uous in the closed interval I. Consequently there exist positive numbers
7', 8" such that the inequalities

(33) P— =\ g = = =\ gr= ’
|H:(x, 2)f'(Z) — H (@, 2)f'(Z)] < ¢

hold for

(34) Z—Zl <% . 1z—z<é.

We put

(35) 5L min (3, 7),

the number 6 depends only on the choice of the number &.

DEFINITION. We denote by T the set of the functions a(x) which
are defined in the interval I and such that for an arbitrary number ¢ > 0
and for every 7,z eI and fulfilling the condition

(36) 1Z—%| < 6
(where the number é is defined by (35)) the inequality

(37) la(Z) —a(Z)| <
holds.

The set T is not empty and the functions a(x) € G are equicontinuous
in the interval I.

A fundamental part in the proof of our theorem will be played by
the function space F.

DEFINITION. We denote by F the set of all the functions which are
defined and of class C' in the interval I. To a function % ¢ ¥ a norm is
ascribed by the formula

(38) flull = maX(sgp [u(@)] , sup [w'()]) -

The space F is a vector space over the field of real numbers and
the convergence in the sense of norm (38) means the uniform convergence
of the functions and their first derivatives in the interval I. Hence it
follows that & is a Banach space.
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In turn we define a subset S of the space F.

DEFINITION. The set § is formed by those functions ¢ from the
set 5 which fulfill the following conditions:

(i) ¢b) =4d, ¢'(b)=4d,,
(ii) p(@) €2, for v e,
(iii) [p'(x)—d,| < K for x eI,
(iv) ¢'(x) € G.
Let us notice that if p, €S and ¢, €S, then

(39) sup lpu(Z) — pal)| < Sup p1(z) — ga()|

In fact, the functions ¢;(z) and @,(x) are of elass C' in I and fulfill
conditions (i). By the mean value theorem we obtain

i) —po{ )] < nlpi(8) —@a(E)

where z < £ < b, whence
sup |py(@) — @o(@)] < psup lgi(§) —p2(£)] -
xel gel

Hence (39) results in view of (30). Thus we have accordingly to the de-
finition of the norm (38)

(40) llpr — @all = sup lpr(@) —gs(x)|  for ¢, €8, g, €8.
Tr€

Let us also note the following simple inequalities:
(41) p(x) <M for ge8,
(42) lp(x)—d| < M|z—b] for ¢@eS.
Now we shall prove that

() The set S is a compact, closed and convex subset of the space F.

The set 8§ is compact. Let {p,} be an infinite sequence of functions
of the set §. Consider the sequence {p,(z)}. It follows from (41), (iv) and
the definition of the set G that the derivatives of the functions g8
form a set of functions which are equibounded and equicontinuous in
the interval I. Thus one can choose from the sequence {g,(x)} a sub-
sequence {@k,(x)} uniformly convergent in the interval I. By (40) the
subsequence {¢ } of the sequence {g,} converges in the sense of the
norm (38), which was to be proved.

The set 8 is closed. Let ¢, ¢ S and lim ¢, = ¢ (in the sense of the

n—>00

norm (38)). We shall show that ¢ € S. Evidently ¢ ¢ &, since the sequences
{pn(2)} and {@n(x)} are uniformly convergent in the interval I to the
functions ¢(x) and ¢'(x), respectively. The funection ¢(x) fulfills condi-
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tions (i), (iii) and (iv), which can be easily verified by passing to the
limit. It remains to prove that ¢(z) € Q2,. Let us fix an z eI and let
2n XL pu(w). It follows from (42) and definition (31) that (z, 2s) € A. The
set A is closed and thus (z,2) e A, where z 2L limz, — ¢(z). Further it

n—>00

follows from definition (31) that if » € I und (z, 2) € A, then (f7Yz), 2) € A.
Consequently (fYz), ¢(x)) e AC 2, i.e. p(z) € 2,, which was to be proved.

The set 8§ is convex. We omit a simple verification of this fact.
Now we consider the transformation

(43) o[p] L H (2, ¢[f(2)])

for ¢ € S. We shall prove that
(%) @ maps the set S into itself, i.e. ¢ €S implies P[p] € 8.

(xx%) @ ds a continuous transformation, i.e. [pn—o@|—>0 implies
[P[@a] —2P[g]ll 0.

In order to prove (xx) we take a ¢ €S and we write wéié@[cp]. We
have

(44) y(z) = H(z, ¢[f (@),

(45) ¥'(@) = Hz(w, ¢[f (2)]) + Hi(z, ¢[f(2)])/ (=)¢'[f(2)] .

The derivatives on the right-hand side of (45) exist and are continuous
for z € I on account of hypotheses (1!) and (IT') and of the fact that ¢(x)

is of class C. Thus y e F. We are going to verify that the function p ()
fulfills conditions (i)-(iv).

Condition (i). Since ¢(x) fulfills .(i), we get from (44) and (45)
p(b) =H(b,d), 9'(b) =Hqgb,d)+ H,b,d)f'(b)d,.

By (3) and (4) we obtain hence y(b) = d, y'(b) = d,, which was to be
proved.

Condition (ii). If z eI, then ¢[f(2)] €2yy. In virtue of hypo-
thegis (II1) and relation (44) we obtain hence y(x) € 2, which was to
be proved.

Condition (iii). According to (4) and (45) we have
(@) — | < |Hz(z, ¢lf (2)]) — Ha(b, d)| +
+|dy| |Hi(, [f (@)]) /() — Hi(b, d)'(b)] +
+ |Hife, ol (@)]) 1'(@)l@'lf (@)] — | .
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By (42) we have |p(z)—d| < M7 for v e I. If an x € I, then also f(z) e I
and we obtain by (30) |p[f(#)]—d| < . Thus for eI and ¢ €8 the
point (a:,qa[f(a;)]) belongs to U(n,, é) and we may make use of inequal-

ities (26) and (28). Taking into account (iii) for the function ¢(z) and
definition (27) we obtain

ly'(z) —dy| < Ko+ |dy| Ky +OK = K,
which was to be proved.

Condition (iv). Let ¢ be an arbitrary positive number. Suppose
that Z,z eI and that inequalities (36) are fulfilled. We write shortly
z= p[f(z)], 2 = @[f(x)]. Thus we have

lv'(®) —y'(2)] < |Ho(Z, 2) — Hel@, 2)| +
+ 'l (@)1 |HAZ, 2)f(Z) — Hz, 2)f (%) +
+1'(®) | HAZ, 2)| o[/ (2)] — ¢'[f ()]
On account of inequality (24) we have
f(z)—f(z)| <|z—z| for Z,Zel,

and the function @[f( m)] fulfills the inequalities

(46) lplf (2)] - tP[f ONf (@) —f(2)] < M|z —2],

where £ 2L f(z ) +q[f(x f(“)] el, 0 < q<1. From the above inequalities
we conclude that: 1° the function ¢’[f(z)] belongs to G, i.e. for a(x) = ¢'[f(z)]

inequality (37) holds, 2° we may make use of inequality (33), since we
have by (46) and (36)

Z—2 < M6 <6 and [Z—3 <7,
i.e. inequalities (34) are fulfilled. Thus we have
W(E)—y(T) <e+Me +0c =¢

(comp. (32)). Consequently the function y'(z) € G, which was to be proved.
Assertion (xx) has been completely proved. We shall only outline
the proof of assertion (sxx).

We write y 2 &[¢] and y, = D[p,]. In order to prove that the con-
vergence |lg, —¢||—0 implies the convergence |[y,—¥||—0 it is enough
to show that y,(x) =v'(«) in the interval I. (This follows from relation (40)
in view of the fact that ¢ and ¢, belong to §.)

The uniform convergence of the sequence {y,(z)} to the function ¢’(x)
in the interval I results from the uniform continuity of the first derivatives
of the function H(z,2) in the set A and from the uniform convergence
oa(®) >@(2), @u(x)=>¢'(z), which is equivalent to the convergence
llpn — ol >0.
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Thus we see that transformation (43) is continuous (comp. (x%x%))
in a convex, closed and compact subset S of the Banach space F (comp. (%))
and maps the set § into itself (comp. (xx)). On aceount of Schauder’s
theorem there exists at least one invariant point of such a transformation
in the set S, i.e. there exists a function ¢(x) which is of class C! in the
interval I, fulfills conditions ¢(b) = d, ¢'(b) = d,, p(x) €2, for z¢I and
®[¢] = @. This last equality means that the function ¢(x) is a solution
of equation (1).

As follows from Lemma 8, this solution can be extended onto the
whole interval (a, b)>, the class C' being preserved. This completes the
proof of Theorem 1 for r = 1.

Remark. In the present theorem we have first proved the existence
of a local regular solution of equation (1) in the closed interval I. In order
to be able to extend this solution onto the whole interval (a, b> we had
to make use of Lemma 8 and consequently to make suitable assumptions.

It seems that some of the hypotheses of Theorem 1 could be weakened
if we required only local solutions, in a neighbourhood of the point x = b.
The same remark applies also to Theorem 2 below.

§ 3. In this section we shall prove a theorem on the existence of
exactly one C” solution of equation (1) in the interval (a, b) (Theorem 2).
We shall make hypotheses analogous to those of Theorem 1, in particular
inequality (25) turns out to be essential. Besides we shall be forced to
make an additional assumption, which did not occur in Theorem 1. On
the other hand, inequality (24) does not appear to admit the hypotheses
of Theorem 2. Two other theorems of this section are corollaries from
Lemma 7 and Theorems 1 and 2.

THEOREM 2. Suppose that hypotheses (I'), (II'), (III) and (IV') are
fulfilled, inequality (25) holds, and the partial derivatives of the r-th order
of the function H (x, z) fulfill a Lipschitz condition with respect to the variable z
in a netghbourhood U(y,d) of the point (b, d), i.e. imequalities (20) are
fulfilled. Then there exists exacily one function @(x) that is of class O in
(a, b, satisfies equation (1) in (a,b) and fulfills the conditions ¢(h) = d,
@'(b) = dy, ..., gP(b) = dr.

Proof. Inequalities (20) are fulfilled for (z,z)e U(n,d). We may
assume that also the inequality

(47) |H () 2)|[f'(®)]” < & <1

holds for (z, 2) € U(n, 8). (Such a number @ and a neighbourhood U (%, é)
exist on account of inequality (25) and the continuity of the functions
H:(x,2) and f'(2).)
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Let us fix a positive number K. It follows from lemma 1 that the
function H(z, d, d,, ..., d;) is continuous at the point . Then there exists
a number 7, > 0 such that the inequality

(48) \H{z,d,dyy ..., &) —Hy(b,d, dy, ..., d)| < 31 —O)K

holds for 0 < b—2 < #,, where the number O is that occurring in (47).
Let us put

r
(49) My = 2 di +K, k=1,..,r—1; M,=K,
i=k+1
and

(50) a Ld— M., BpTd+M., k=1,..,r.

On account of Lemma 5 the function H/{z, 2, 2, ..., 2;) fulfills a Lipschitz
condition with respect to the wvariables z, z,, ..., 2, In the set Z defined
by (21), where a; and f; are given by formulae (50). In other words,
relations (22) and (23) hold and now we have moreover @ < 1.

Now we choose a positive number ¢ in such a manner that the follow-
ing inequalities be fulfilled:

(51) ¢ < min(zy, 7, 1),
(52) D g, +K 1< 9,
k=l
r-1 r—k @)K
(53) Z;'ZLkldkm +AZL,- NPl
-—
and
ork
(54) ng("'__W+0<ﬁ,
where
(55) O<d<l.
We put
I&%b—0,b

and we define the function space R as the set of the functions ¢(z) that
are of class O in the interval I and fulfill the conditions

(56) pb)=d, o¢Ob)=dr, k=1,..,7,
(67) lg(z)—d,| <K in I,
(58) px) e, for xel.
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Next we define a metric ¢ in the set R putting
(59) olg1s o) = suplpi’(@) — gt ()]
Te€

for ¢,, ¢, € R. One can easily verify that the metric postulates are fulfilled.
In particular, conditions (56) guarantee that if o(¢,, ¢,) = 0, then ¢, = @,.
Moreover, we have for ¢, ¢ R and ¢, e R on account of the mean-value
theorem

: or K v v
sup g1”(2) —gt"(@)] < 5, sup 9i(@) — ()

zel + xel

for k=0,1,..,r—1, i.e. (comp. (59))

Or—k
(60)  suplgi(@) —g"(@)] < it e), k=0,1,..r.

The above relation shows that the convergence in the sense of metric (59)
is equivalent to the uniform convergence of functions and their derivatives
up to the order r (inclusively) in the interval I. Consequently the space K
with metric (59) is complete.

We shall show that transformation (43), regarded now as a transfor-
mation in the set R, maps R into itself and that

(61) o(P[e,], @[q)z]) < Bo(p1s @2)

where ¢ is the number occurring in (54). Thus we have according to (55)
# < 1, i.e. (43) is a contraction mapping. Hence, on account of Banach’s
fixed-point theorem it follows that @ has the unique invariant point, i.e.
that there exists exactly one function ¢(2) that is of class ¢ in the in-
terval I, satisfies conditions (56) and (58) and

¢(2) = Hiz, p[f(®)]) in I.

Thus we shall have the required solution in the interval I. But it follows
from Lemma 8 that this solution can be extended onto the whole in-
terval (a, b).

Thus the theorem will be completely proved if we verify that transfor-
mation (43) has the above mentioned properties.

Let ¢ e R and y 2= ®[p]. Since the functions f(x) and H(z,z2) are
of class O", so is also the function y(z). Further we have from (14) for
xel

(62) yB(z) = Hk(wa o[f(x)], ..., g®[f (:L‘)]) y k=1,..,r,
whence it follows that

pO(b) = Hk(by @(b), ..., ‘P(k)(b)) y k=1,..,7.

Annales Polonici Mathematici XV 10
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But the function ¢ fulfills conditions (56) and so we may apply (4) to
the above equality. Aeccordingly, taking also (3) into consideration, we
see that the function y fulfills conditions (56).

It follows easily from hypothesis (IIT) that the function 3 fulfills
condition (58). We must prove that it fulfills also (57).

Since ¢ ¢ R, we have for v el
o’k
r—k)!’
O<m<l, k=0,1,..,7r—-1.

lp®(2) —dx| < lp*D(b)[ 0+ ... + |97 (b +(x — b)) |(

Inequality (57) implies the relation

lg(z)} < |de| +K  for xel,
whence
r—k

(63) lp*N @) — d| < Z iy ] %4_ K

i=1

or_k

(r—k)!

for xel and £ =0,1,...,r—1. Hence we get by (51) (o < 1)

lp®(z) — di| < 2dk+i]+K, k=1, ..,7r—1.

Thus we have by (49) and (57) (for £k =r)
(64) lg¥Nz) —dp| < My for xel, k=1,..,1
On the other hand, we obtain from (63) for £ = 0

p(2) - Zldzl—JrK—
and hence by (52)

(65) p(r)—d| <6 for zel.
Now we have according to (62) and (4) (for k = v)
@) —di| = |H,(z, of (@)], ¢'[f (@)1, .., 9[f (2)]) — s |
< |Hilz, olf (1)1, @'l (@)], .., 9L (@))) — Hol, d, dyy oy dr)| +
+\HAx,d, dyy ey dr)—Ho(b, d,dy, ..., dr)} .

According to (31), (64) and (63), for x eI the points (z, o[f(2)], ...,

o ¢7[f(x)]) and (x,d, d;, ..., d,) belong to the set Z (cf. (21) and (50)).
Thus, since by (51) ¢ < 7, we may make use of (22) and (48). We obtain

r—1

) —dr| < Lolplf ()] —dl + D Lilg™[f ()] — il +
k=1

+61g0f ()] —dr| + 11 —O) K .
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Taking into account (63) and (57) we obtain hence

W) —de] < LoZuktk,Hf 7 +OK +

L AAK +2,Lk2|dk+, +2Lk —

i=1

r r—k
w__;jz 1l + 5 D0

This together with (53) y:elds
(@) —di < §(1+0)K+3(1-O)K = K,

i.e. the funetion y fulfills condition (57).
Now let us write p, = &[g,], y. == O[p.]. We have by (22)

k(@) — i (@)]
= |He(@, uls), @i(s); ooy 917(3)) — He(2, @ol8), 9i(5); -y 9(5))]

r—1

< Lojgr(8) — pals)] + Zkap"" (8) —¢¥(s)] + O g (s) — gi(s)|

135

(where s = f()), since by (51), (64) and (65) the points (z, @(s), ..., p(s))
belong to Z for every x € I and every function ¢ from the set R. Further

we obtain from the above inequality

o (w1, ve) < Op(@y, @2) +Losup gy (@) — @a()| +

el

+ Z Lisup|¢(@) —¢8(@)] -

el

We make use of (60):
r—1

otk
e(y1, v2) < Oplg, %)‘!‘ZLkm! o(@1; @) 5

k=0
and finally we get by (54)

o(y1, ) < dolgy, @) -

Consequently inequality (61) holds and the proof of the theorem has

been finished.
As a consequence of Theorems 1 and 2 we have the following
THEOREM 3. Suppose that

1° inequality (25) holds for a certain exponent r = p > 1
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2° hypotheses (I%), (I1%), (III) and (IV?) are fulfilled and q > p, so
in particular the functions f(x) and H(xz,z) are of class C%

3° inequality (24) is fulfilled.

Then for every fixed system d,, ..., dp, ..., d, there exists exactly one
solution of equation (1) that is of class C? in the interval (a,b)> and fulfills
the conditions

(66) p(b) =d, @®(b) =dy
jor k=1, ..,4q.

Proof. From 1° and 3° it results that (25) holds also for r == ¢. Thus
the assumptions of Theorem 1 are fulfilled (with » = ¢) and there exists
at least one solution y(z) of equation (1) which is of class C? in (a, b)>
and fulfills conditions (66) for k¥ = 1, ..., ¢. This solution is also of class C*¢
in (a,b) (since ¢ > p) and fulfills conditions (66) for k¥ =1, ..., p. Since
the function H(z, 2) is of class €% its derivatives of the order p satisfy
a Lipschitz condition in a suitable set. Thus it follows from Theorem 2,
in view of 1°, that there exists exactly one solution of equation (1) which
is of class C? in (a,b) and fulfills (66) for k =1, ..., p. Consequently
it must be identical with ¢(x) for x € (a, b), which completes the proof.

THEOREM 4. Let hypotheses (I'), (II"), (ILI) and (IV") be fulfilled.
If (24) holds and |H b, d)| <1, then there exists exactly one solution ¢(x)
of equation (1) which is of class C" in the interval (a, b) and fulfills con-
dittons (66) for k=1, ...,7.

Proof. We infer from Lemma 7 that there exists exactly one solution
@(x) of equaticn (1) which is continuous in (a, b> and fulfills the con-
dition ¢(b) = d.

Similarly as in the proof of Theorem 3 we conclude that this solution
is also the unique solution of class C” in the interval (a, b> fulfilling (66)
for k=1, ...

§ 4. The theorems obtained in the preceding sections concerned the
case where inequality (26) holds. The question arises, how essential is
this condition for the problem of the existence and uniqueness of dif-
ferentiable solutions of equation (1). It turns out that (26) ensures the
uniqueness. Namely we shall prove the following

THEOREM 5. If hypotheses (I'), (IL"), (III) and (IV") are fulfilled
and inequality (17) holds, then equation (1) possesses infinitely many
solutions that are of class O in the interval (a, b).

More precisely: There exist numbers n > 0, ¢ > 0 such that if g(x)
s a solution of equation (1) which is of class C" in (a, b) and fulfills the
condition

(67) p(w)—d| <& for e @y, f(w)>,
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where x, 8 an arbitrary point of the interval (b—n, b), then the function

@) for we(a,b),

af
(68) ?(@) = {d for x=b

is a solution of equation (1), which is of class C" in the interval (a, b)> and
fulfills the conditions ¢ (b) — d, ¢'(b) = dy, ..., ¢™(b) = d,, where the numbers
d,,...,d; are the unique roots of equalions (4).

Proof. The proof will be by induction. Let » =1, i.e. instead of
inequality (17) we have
|H(b, d)If'(b) > 1,

and then, since, by assumption (I'), f(b) <1, also

IH;(b, dy>1.
Hence it follows that

(69) |Gy(b, d)] <1,
since d = G(b,d) and Hyb,d) = [@)(b, d)]”". We have also
(70) G5, DB < 1.

Let a function ¢(z) satisfy equation (1) in (e, b) and be of class C!
there. According to (69) and hypotheses (I')-(III) we may apply a theorem
proved by M. Kuezma [10], from which it follows that there exist numbers
7> 0, ¢ > 0 such that if the function @(x) fulfills (67), then the function
¢(z) defined by (68) is a continuous solution of equation (1) in (a, b).

So we need only prove that function (68) is of class C! in (a, b). We
have by (15) for x ¢ (a, d)

¢'lf(@)] = Gi(z, p(2), ¢'(®))

which, if we put (cf. (6))
u(z, y) = Gz, @], o(@, 9) = Gz, @],
can be written in the form
¢l (@)] = u(z, p@)) + 2z, p(@)¢'(®) .
This means that the function ¢’(z) satisfies the linear equation
(71) 2 (@)]—v (2, p(@) x (@) = u(z, ¢(x))

in the interval (a, b). The functions u(z,y) and v(x,y) are continuous

in ' (Lemma 2), v (.cv, q)(a:)) # 0 for x ¢ (a, b), and inequality (70) holds.
Consequently there exist a neighbourhood U(7,,d,) of the point (b, d)
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and a number 4 <1 such that
lo(z, )| <& for (x,y)e Ulng, dy) .

The number 7, may be chosen so small that for @ ¢ (b —,, b) the point
(#, p(x)) belong to U(x,, d,), and consequently

o(z, p(@))| <9 for @elb—ne,b).

The above relation holds, since the function ¢(z) is continuous at the
point b and ¢(b) =d.

Thus we may apply Lemma 6 to equation (71) and we see that every
function satisfying equation (71) and continuous in (a, b) is also continuous
at the point b. Hence it follows that there exists the limit

(72) lim ¢'(z) = ¢ .

z—b—0
But by (71) we have g = u(b,d)+v(b,d)y, i.e. ¢ = Gi(b,d,g). Con-
sequently g = d,, since by Lemma 4 there exists the unique number d,
fulfilling the equation d, = H,(b,d, d,) and it is also the unique root
of the equation d, = Gy(b, d, d,).

Thus the limit (72) is equal to d; and, as results from the mean-value
theorem, it is also the value of the left-side derivative of the function ¢ ()
at the point b. Consequently the function ¢(z) is of class C* in (a, b), i.e.
for r =1 the theorem has been proved.

If our theorem is true for r = p > 1 and the function ¢ () is of class C?
in (&, 5> and of class C*' in (a, b), then we have according to (15)

POt () = Gpir (2, (@), ¢'(2), ..., P+ V(2)) .

This means that the derivative ¢®*+1(z) satisfies the equation

(73) 2[f(@)]— Bz, p(x)) x(2) = Az, p(2)),
where

A (:L', (P(w)) &£ Gp+1 (w, p(@), ..., ¢PA2), 0) ’
B(z, p(z)) L &, (z, ¢(@) [f'(@)] .

Relation (73) results from (6) and (11).

On account of the inductive hypotheses and Lemma 3 the functions
A(a:,«p(w)) and B(m,q)(w)) are continuous in the interval (a,d) and the
latter fulfills moreover the inequality (comp. (17) for r = p +1)

0<|Blr,p(@)|<th<1 for wmecb—n,b>.
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Similarly as in the proof in the case r =1 we deduce from Lemmas 7
and 4 that there exists the limit

lim ¢g®+9(z) = dp..,

r—b—0
and that the function ¢(z) is of class C**' in the interval (a, b).

We have proved that every solution of equation (1) which is defined
and of class C” in the interval (a, b) and fulfills condition (68) may be
additionally defined at the point b in such a manner that it will be of
class O in the interval (a, b>. The existence of an infinite number of
such solutions follows from Lemma 8.

This completes the proof.

§ 5. As a supplement to the considerations of §§ 1-4 we shall for-
mulate here Theorems 6-10, which are analogues of Theorems 1-5 for
the interval <(a, b) closed on the left side.

We must replace hypothesis (IV") by the following hypothesis

(V") There exists numbers ¢, ¢y, ..., ¢ such that (a,c) € Q' and
(74) ¢c=0G(a,c), cp=G0a,¢,¢,y.c50), k=1,..,7.

We shall denote by V (%, 6) the neighbourhood of the point (a, c)
of the form

Vi, d)Lca,at+y> xc—b,c+8>,

where 7 and 6 are some positive numbers.

In the sequel (in Theorems 6-10) we shall assume that hypotheses
(I"), (I1I7), (IIT) and (V") are fulfilled, which will be not repeated at every
particular instant. We make also the following convention: in the sequel
by a solution of equation (1) we shall understand a solution which is of
class € in the interval (a, b) and fulfills the conditions

pla) =c, p®(a) = ¢, k=1,..,r,

where the numbers ¢, ¢, ..., ¢, are an arbitrarily fixed system of roots
of equations (74).
THEOREM 6. If

(75) |H(a, c)|[f'(a)]" > 1
and if there exists a positive number n such that
(76) flwy=21  for zela,atn,

then there exists at least one solution of equation (1).

THEOREM 7. If (75) holds and if there exists a meighbourhood V (7, )
such that the derivatives of the r-th order of the function H (x, z) satisfy a Lip-
schitz condition for (x,2) € V(n, 6) with respect to the variable ¢ with a con-
stant L independent of x, then there exists exactly one solution of equation (1).
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THEOREM 8. If inequality (75) holds for an ry < r and inequalily (76)
ts fulfilled, then there exists exactly one solution of equation (1).

THEOREM 9. If |H (a,c)| > 1 and inequality (76) is fulfilled, then
there exists exactly one solution of equation (1).

THEOREM 10. If
|H(a, ¢)|[f(a)] <1,
then there exist infinitely many solutions of equation (1).

Remark 1. In order to prove e.g. Theorem 6 we write equation (1)
in the form

o[/ (x)] = G(z, p(2))
and then, putting

w(w) £ @), G@,y) %6 (@),y),
we transform it into
(17) p(@) = Gz, plw(@)]) .
Now, inequalities (75) and (76) imply that

Gyla, o)l [w'(@)] <1, w'(@)<1in {a,a+n,

Thus one may apply to equation (77) the method of the proof of Theo-
rem 1. Similarly Theorems 7-10 can be proved on the lines of proofs
of Theorems 2-5.

Remark 2. In hypothesis (I") it would be enough to suppose that
f(z) # « in (a, b), instead of assuming f(z) > z. In fact, if f(x) < x, then
f Y @) >« in (a, b), and transforming equation (1) into (77) reduces the
problem to the former one. But in this case Theorems 1-5 (with the
point (b, d) replaced by (a, ¢) in all the hypotheses) will be valid for in-
terval <a, b), and theorems 6-10 (now with (b, d) in place of (a,e¢)) for
the interval (a, b).

Remark 3. In Theorems 1-5 a may be equal — co as well as In
Theorems 6-10 b may be equal + oco. This results from the fact that the
theorem on solutions of equation (1) that are of class O" in the interval
(a, b) (our Lemma 8) remains valid if a = — oo or b = + oo.

Remark 4. Theorems 1-5 and 6-10 remain true under somewhat
weaker suppositions, viz. if in hypotheses (I') and (III) we replace the
interval <(a, b> by the interval (a, b> and <a, b), respectively.

Remark 5. The results of the present paper do not say anything
about the regular wsolutions of equation (1) if |H(b, d)|[f(b)] = 1.
Unfortunately, our methods cannot be applied in this case. Thus this
important problem remains open.
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