ANNALES
POLONICI MATHEMATICI
XLVIII (1988)

The local boundary regularity of the solution of the d-equation

by PioTr JakoBczak (Krakdow)

Abstract. Let D be a domain of holomorphy on a complex closed submanifold of C” and
let E be an open subset of D, which is smooth and strictly pseudoconvex at every point. We
prove that, given & < 1/2, every d<losed dillerential form f on D with coefficients of class
€*(D U E) admits a solution u of the equation du = f, such that the coefficients of u are of class

%**¢(D U E). We give also applications to the extension and division of holomorphic functions
in pseudoconvex domains.

1. Introduction. In 1970 Grauert and Lieb [7] and Henkin [9] proved
that if f is d-closed differential form of type (0, gq) with bounded coefficients
in a strictly pseudoconvex bounded domain D in C" then there exists a
solution u of the equation du = f which also has bounded coefficients in D.
Henkin and Romanov [11] showed that the equation du = f for f bounded
admits a solution with coefficients which are 1/2-Holder continuous in D.
The corresponding result for forms with coefficients of class %*(D) (the
solution having coefficients of class ¢**!/2(D)) was proved by Siu [20] for
(0, 1)-forms, and by Lieb and Range {17] for arbitrary (0, g)-forms, g > 1.
Similar theorems, for strictly pseudoconvex, but not necessarily bounded
domains, were obtained by Tomassini [21].

In this note we prove a theorem which shows that these results are, in a
sense, of local character. Let D be a domain in a closed complex submanifold
M of C" and let E be an open subset of dD. We say that oD is smooth and
strictly pseudoconvex at all points of E iff the following holds:

(1.1)  For every ze E there exist a neighbourhood U of z and a function ¢
which is smooth and strictly plurisubharmonic in U, such that
do(s) # 0 for every seU, and DnU = {se U] a(s) <0}.

THeoreM 1.1. Let D be a domain of holomorphy in a closed complex
submanifold M of C" and let E be an open subset of 0D, such that 0D is smooth
and strictly pseudoconvex at all points of E. Suppose that f is a 0-closed
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differential form of type (0, q) with coefficients in ¢*(D U E) and smooth in D,
keNu !}, g=1,...,n Then for every ¢ with 0 <& <1/2 there exists a
differential form u of type (0, q— 1) with coefficients of class €***(D U E) and
smooth in D, such that ou = f.

[Here, as usually, #*(D UE), ke N (resp. €¥(DUE), t>0,t#1,2,..)
denotes the space of all functions k-times differentiable in D, such that their
derivatives up to order k extend continuously to D u E (resp. the space of all
functions f of class ¢)(D u E)), such that, given ze D UE and a coordinate
neighbourhood U of z in M, the derivatives of f of order [t] (computed in
the local coordinates in U) satisfy the H6lder condition with exponent ¢t —[¢]
in (DUE)NnU]

The idea of the proof is the same as in [21]. We construct an exhausting
sequence of strictly pseudoconvex and bounded domains {D;}2, in M such
that |J D; = D U E. On every domain D;, the equation 0u = f can be solved

i=1

with prescribed boundary regularity of solution, because of [17]. It is then
proved that the solutions u; can be chosen in such a way that ;. is, in a
sense, close to u; on a large partion of D;.

In the last section we give applications of this theorem to the problem of
extension of holomorphic functions from a submanifold to a domain of
holomorphy and to the problem of division of holomorphic functions,
vanishing on a submanifold of a domain of holomorphy.

We use the following notation.

Given an open subset U of M, ¢(U) denotes the space of holomorphic
functtons in U.

If K is a compact subset of U, the set IZ@(U) = {ze U| for every fe (O(U),
[f (@] <||fllx} is the holomorphically convex hull of K in U. (|| || is the
usual sup norm on K\

The complex hessian of the function fe #*(U) at a point ze U, acting
on a vector we C", will be denoted by [(Hf)(z)](w); in local coordinates

n

(€y5 ---» ¢ around, [(Hf)(z)](w) = Z & f] oz; 0z;(z) w; W;.
ij=1

If S and §’ are two smooth hypersurfaces in M (i.e, dimgS = dimgS’
= 2n—1, where dim¢ M = n), we say that S and §’ intersect transversally if,
for every zeSNS', ,S+ T,S' = T, M. (T, S denotes the real tangent space to
S at a point z.) ,

A domain D in M is called strictly pseudoconvex if D is relatively
compact in M and there exist a neighbourhood V of dD in M and a function
o, smooth and strictly plurisubharmonic in ¥, such that do(z) # 0 at every
point ze V and

(1.2) D =(D\V)uizeV| a(z) < 0}.

o is then called a (strictly plurisubharmonic) defining function for D in V.
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2. Preliminaries. We need a following lemma on the existence of a
strictly plurisubharmonic defining function for a strictly pseudoconvex hyper-
surface E, defined in a whole neighbourhood of E in M.

LEmMMA 2.1. Let M, D and E be as in the assumption of Theorem 1.1.
Then there exist a neighbourhood U of E in M and a function 6, smooth and
strictly plurisubharmonic in U, such that do # 0 at every point of U and
DnU = {zeU| a(z) <0}.

Remark. The existence of such a function is well-known e.g. if E = 0D,
where D is a strictly pseudoconvex and relatively compact domain in M (and
hence E is compact). In our case, E need not be a compact subset of M.

Proof. The proof ts a simple modification of the construction from [8].
For every zeE, there exist a neighbourhood U, of z and a function o,
defined in U, with the properties listed in (1.1). Choose a family -{Uzj}j‘;l of
sets of this type and family of functions {¢;}2, such that {Uzj} 1s locally

finite, qoje‘é“(U,j), supp ¢; 1s compact In U,j for all j and

ac a0
E c | int(supp ¢;). Set ¢ = Y o; 0y (where ¢; o, is understood to be zero
j=1 i=1
outside Uzj). Choose a sequence {E;}2, of open relatively compact subsets of

E such that E, cE;,,, i=1,2,..., and |J E; = E. Exactly as in [8],
i=1
Proposition IX.A 4, one can prove that for every ie N there éxists ¢; > 0 such
that, for every function A defined and smooth in a neighbourhood of E; in
M, fulfilling the inequality 4 >c¢; on E;, the function e?®p is strictly
plurisubharmonic in some neighbourhood of E;. It follows that if we choose
A to be a smooth function defined in a neighbourhood of E, such that 4 > ¢;
on E\E;_,,i=1,2,...(here E, = (), then the function ¢, = e*¢g is strictly

plurisubharmonic in some neighbourhood U; of E in M. Moreover, the set
o

U, = | int(sup ¢;) is a neighbourhood of E such that MnU,

j=1

={zeU,| o,(2) <0}. Also, since do, = e"¢ ) @jdo; # 0 on E, there exists
X j=1

a neighbourhood Uj; of E with U, = U, such that do,(z) # 0 for all ze U,.

We then see that U = U, nU; and ¢ = g,|, satisfy the assertion.

The next lemma is a slightly modified version of the result from [21] on
the smoothing of the intersection of two strictly pseudoconvex hypersurfaces.

LEMMmA 2.2 ([21], p. 244). Suppose that U is an open subset of M and let
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0;, i =1, 2, be smooth and strictly plurisubharmonic functions in U such that,
for every zeU, do;(2) # 0, i = 1, 2, the hypersurfaces N; = {ze U| a;(z) = 0},
i=1,2, intersect transversally and N, N, is compact in U. Let A;
= {zeU| 0;(z) <0}. Then there exists a neighbourhood W of N; "N, such
that W < U and an open subset A of U such that

(21) (A4, nA)\WcAcA, nA,, (JA~RU\(N,UN,)cW and 04 is
smooth and strictly pseudoconvex at all points of AN U.

The proof of the above lemma is similar to that in [21].

We will also use the well-known fact that if N is a Stein manifold, then
there exists an increasing sequence of strictly pseudoconvex subdomains
{N;]%2, of N such that

(22) N,cN;yy, i=1,2,..., UN;=N, and for every n, ke N with
_ _ i=1
n <ka (Nn),(:?(N,‘.):Nn'

We need a lemma on the transversal intersection of a strictly pseudocon-
vex domain with a hypersurface; this lemma seems also to be well-known,
although we cannot give any exact reference.

LemMA 2.3. Let D and N be a strictly pseudoconvex domain and a smooth
hypersurface, respectively, in a closed complex submanifold M of C". Let U be
a neighbourhood of 0D N N. Then there exists a strictly pseudoconvex domain
C in M such that C c Du U, C\U = D\U and 0C intersects N transversally.

Prool. Let ¢ be a strictly plurisubharmonic defining function for D in
some neighbourhood V of ¢D. We may assume that U < V. There exists
¢>0 such that, for every teR with |t|<e the domains D,
=(D\V)u{zeV| a(z) <t} are strictly pseudoconvex. Let W be a neigh-
bourhood of dD N N, relatively compact in U. Diminishing ¢ if necessary, we
may assume that éD, "N < W for |t| <e. It follows from [6], Lemma 4.6,
that for almost all te[ —e, ¢] (with respect to the Lebesgue measure) the
hypersurfaces 0D, intersect N transversally. Choose a function ¢e €*(M)
such that 0 < ¢ < 1, supp ¢ < U, and (p/= 1 on W.Set 1, =(1—¢@)a+(c—1),
|t] < & (observe that 6 —t is a defining function for the domain D,) and let C,
=(D\V)u{zeV| t,(z) <0}. Then éC,AN = 6D, " N, and (in local coordi-
nates) dt, =do—tdep and H(t) = Ho—t-Ho, ie., 1, is strictly plurisubhar-
monic and dr, # 0 in a neighbourhood of dC, if ¢ is sufficiently close to 0.
Therefore, any domain C = C, with t sufficiently close to zero satisfies the
assertion.

The next lemma is a kind of Andreotti-Grauert’s “bumps lemma” [2]:

LeEmMMA 24. Let M, D and E be as in the assumption of Theorem 1.1.

Then there exists a domain of holomorphy C in M such that D UE < C and
0D\ E < dC.

Proof. Choose an increasing sequence {K;}2, of compact subsets of E
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such that U K; = E and a neighbourhood U of E in M such that U n¢D

=E and Ur'\aD E. We construct a sequence {C;}2, of domains of
holomorphy in M such that

23) D=CocC,cCyc..., DUK;cC(C;,, OD\EcdC;, 0C,\oDb c U,
and 0C;\(6D\E) is smooth and strictly pseudoconvex at every point.

Suppose that C,, ..., C,, are already constructed. Since dC,,\(0D\E) is
smooth and strictly pseudoconvex, there exist, by Lemma 2.1, a neighbour-
hood V of 0C,,\(éD\E) in M and a smooth and strictly plurisubharmonic
function ¢ in V such that do 0 in V and {ze V| o(z) <0} = C,,n V. Since
0C,,\0D < U, we may assume that V < U. Choose ¢ec ¥ (M) such that
supp ¢ = V and ¢ > 0 in a neighbourhood of K,,,; nC,,. Then the func-
tion o0 =¢p, ¢ >0, is smooth and strictly plurisubharmonic in V and
dico—ep)#0 in V, provided that ¢ is sufficiently small, and K, ,,
cCpulzeV| (6—ep)(z) <0}. Set Cpiy=C,ulzeV| (6—¢@)(z) <0.
The sequence {C;! constructed in this way satisfies (2.3).

The set C = (J C; 1s a domain of holomorphy, being a union of an
i=1
increasing sequence of domains of holomorphy C; on a Stein manifold. It is
easy to show that the conditions DUE < C and JD\E < dC are also
satisfied. (The last one can be verified by use of the properties U " dD = E
and UnédD =E)

LEmMMA 2.5. Let M, D and E be as in the assumption of Theorem 1.1.
Given a compact subset K of DUE, there exists a strictly pseudoconvex
subdomain N of M such that K c NcDUE, KnéN cE, 0N oD c E, and
ON N 0D is a neighbourhood of K n oD in dD.

Proof. By Lemma 24, there exists a domain of holomorphy C in M
such that DUE c C and 0D\E < 0C. By (2.2), there exists a sequence

{C;}2, of strictly pseudoconvex subdomains of C such that | C; =C.

Choose a neighbourhood U of E in M and a strictly plurisubharmonic
function g, defining for D " U in U, according to Lemma 2.1. Choose also
a connected and compact subset L of Du E, which is a neighbourhood of
K in D UE, a positive integer i so that L < C;, and a neighbourhood V of
dC,NE such that VnL=@ and V < U. By Lemma 2.3, there exists a
strictly pseudoconvex domain C’ in M such that C' = C;u 'V, C'\V = C |\ V,
and 0C’ and E intersect transversally. Choose a defining strictly plurisubhar-
monic function t for C’ in some neighbourhood W of dC’. By Lemma 2.2,
there exist a neighbourhood U, of C'"E with U, =« ¥ AW and an open
subset A of VW such that (C'nDNVAW)\U,cAcCnDVW,
ANV AW)\(0C'u 0D) < U; and 04 is smooth and strictly pseudoconvex
at all points of ANV W Let N be the connected component of
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[(C'"D)\U,;Ju A containing L; then N has the properties listed in the
assertion of the lemma.

CoRrROLLARY 2.6. There exists a sequence of strictly pseudoconvex domains
PO a
D}, in M such that D, <D, c..., _L=jl D; =D, 'L=jl D;=DUE, and for

every ie N, 6D, "D c E, 6D,néD;,, < E and éD;,, n oD is a neighbour-
hood of 0D; n oD in 0OD.

Prool. Choose a sequence {K;}2, of compact subsets of D UE such

that K, c K, c...,and |J K; = DUE. Let D; be constructed as in Lemma
i=1
2.5 with respect to K;. Then proceed inductively, by constructing D;,, as in
Lemma 2.5, with respect to K;,, uD,;.
We need also a technical lemma on the approximation by holomorphic
functions.

Lemma 2.7. Suppose that G is a domain of holomorphy in M and F is an
open subset of 0G such that 0G is smooth and strictly pseudoconvex at every
point of F. Let C, C; and C, be domains of holomorphy in M such that
GUFcC, 8G\F c éC, and C, =« C, =« C, = C. Suppose also that W is a
neighbourhood of C, such that (C,)sw, = C,. Then there exists a neighbour-
hood U of G N C, such that every function holomorphic in a neighbourhood of

G N C, can be approximated uniformly on G ~C, by functions holomorphic
in U.

Proof. By Lemma 2.5 there exists a strictly pseudoconvex domain N in
M such that GNnC, cNcGuUF, d(GnC,)\dG < N, and INNn &G c F.
Let ¢ be a strictly plurisubharmonic defining function for N in some
neighbourhood V of dN. We may assume that V < C. Then for some ¢ > 0
and for every t with 0 <t <¢, the sets N, = Nu {ze V| a(z) <t! are strictly
pseudoconvex and N, = C. It is ‘well known that (N);, =N for 1> 0.

Choose any r with 0 <t_<s_and set U=WnN,. Since by assumption
(C)ewy = Cy, we have (GNCy)ayy =GnC,. The assertion now follows
from [12], Corollary 5.2.9.

3. Proof of Theorem 1.1. As in [21], we consider separately the cases
g>2and q=1. Let us first assume that g > 2. Choose a sequence {D;},
of strictly pseudoconvex domains in M with the properties listed in Corollary
26. Set N;=D,;_,, P,=D,, i=1,2,... We shall construct a sequence
{;}2, of differential forms such that

(3.1) u"eféfofqlizl)(f’i) M (6(68.4—”(Pl')’ Eu,- - f in 13,-, and u.'+ llﬁl. = uilﬁi‘

Suppose that u,, ..., u, are constructed. By [17], Theorem 2, there exists
ve Gy M2 (Ppiy) O 6% - 1)(Pmsy) such that dv = f in P, . Then &(u,—v)
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=0 in P,. Therefore, again by [17], Theorem 2, there exists
WE blog % (Pm) N6 q-2(Pa) such that 0w = u,—v. Choose a function
€€ (M)such that 0<y <1, y=1o0on N,, and y =0 on D\P,. Then the
form yw, extended by zero to all of D, is in €5 % (D)6, -2 (D), and
Cw) = (3x) A W (U —0)€ Bl g%y (D) N6 4- 1) (D). Set up,y = v+ d(xw)
on P,.,. Then u,,, satisfies (3.1).

The desired solution u is defined by setting u = u,, on N,,.

The case g = 1 is more complicated. Fix ¢ with 0 <¢ < 1/2. By Lemma
3.4 there exists a domain of holomorphy C in M such that DUE < C and

0D\E < éG. Choose an increasing sequence [K;}2, of connected open
subsets of DU E such that |J K; =DUE. Let {C;}j2, be a sequence of
i=1

strictly pseudoconvex and bounded subdomains of C satisfying (2.2). Set P,
=C;3_5, RR=C;;_yand §; =C,;,, i =1, 2, ... We may assume, choosing a
subsequence of {C;} if necessary, that for every i, K; < §;.

Given ie N, let V be a neighbourhood of dS; " E in M such that V is a
relatively compact subset of P;,, and V,nR; =(. By Lemma 2.3, there
exists a strictly pseudoconvex domain T; such that T, c S; 0 V, T\V =§;\V,
and 07T, intersects E transversally. It is easy to see that then D n T, has only a
finite number of connected components, say Ti", ..., T}, and that T N T\"
= ( for m # n. Since K; is connected, there exists an integer I, 1 < I, < n;,
such that K; =« T, Set L) = ¢TNENTY, m=1,...,n. Let X and Y be

neighbourhoods of E and ¢7; in M such that there exist strictly plurisubhar-
monic functions ce $*(X) and 1€ ¢*(Y) defining for DN X in X in the
sense of Lemma 2.1 and defining for 7; in Y in the sense of (1.2), respectively.
Choose a neighbourhood U of L’ such that U c VXY, Unk, = 0.
and UNnTY =@, m=1,....n, m#1L. Apply Lemma 22 to U, A,
=:DnU and A, =: T, nU, and let W and A be as in (2.1). Then the set B
=(T"\ W)L A is a domain of holomorphy in M such that K; = B and every

connected component of B is strictly pseudoconvex. Let N; be the compo-
nent of B which contains K;. Then the sets N; just constructed are strictly
pseudoconvex, and since K, < K;,, for i=1,2,..., it follows that
N,cN,c...

Choose a sequence {n;}2, of positive real numbers such that ¢+#;
<1/2, n, >n,>..., and lim 5, =0. We shall construct a sequence of

n—a

functions {u,-},-“iz such that
wed "TN(N)NG*(N), dy=fin N;, and
(3.2)

”ui_ui—lllﬁi_z,k+z+y,‘- <2, = 33 4, ...

[Here, given teN, t >0, the norms || ||5,, are understood in the
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following sense: Let {U;}2, and {W;}2, be two coverings of D U E by open
sets such that every U is a coordinate patch, W, is relatively compact in Uj,
and such that for every ie N, only finitely many sets U,’s intersect N;. For i
=1,2,..., let I, =%jeN| W;nN;# Q}. Then, given ge 4'(N)), set

33) gl =X ( )3 sup_|D*DPg(2)l+

jeli Ma|+|g| <[r) zeW joN;

by s PDED 5ﬂg(z')l>
fal + 18l =11] z.z'eW;nN; |z =zt~ ’
where, for a = (&, ..., x))eN", o] = a; + ... +a,,
Jlal ) gl |
r=—""_ b= ) n=dimeM,
oyt ... oz o7 o

and all the derivatives are computed with respect to the local coordinates in
Uj; in the case of te N, the second sum in brackets on the right-hand side
of (3.3) is to be left out. Any other choice of the families {U;} and {W;} with
the same properties yields equivalent norms in 4'(N,) for every i.]

Take for u, any solution of the equation 0u = f in N, such that

u,e 6T (N) A 6=(N,) (it exists by [17], Theorem 2). Suppose that
U,, ..., U, are constructed. By [17], there exists ve ‘6‘””""‘(]\7,,,+ JNEF(Npsy)

such that @ = f. Then u,, —ve O(N,) n € *""™(N,). There exists a neighbour-
hood Z of N,, and a function we (/(Z) such that

(34) W — (= Ol Fpk et mp gy <270

This can be shown, e.g. as follows: By Fornaess’ embedding theorem ([5],
Theorem 9), there exist a neighbourhood U of N,, in M, an integer p > n
=dimcM, a holomorphic mapping ¢: U — ¢ (U) « C?, which maps U
biholomorphically onto a closed complex submanifold ¢ (U) of C?, and a
strictly convex domain G < C?, such that y(N,) <G, y(U\N,) = C°\G
and ¢ (U) intersects 0G transversally. The function h = (u4,,—v)oy ! is holo-
morphic on Y (N,,) and is in ‘6“”"’"(:/1(!?,,,)). By [13], Theorem 1, there
exists a function He €(G) n %" "*"™(G) such that H|yw,, = h. We may assume

that 0e G. Since 5,41 < N, it is €asy to see that the functions H,(z) =: H(rz),
0<r<l, tend to H in the || |lgx+¢+n,, ,-nOrm, as r— 1. Hence also

H,0Y = tp—v in || |5, k+e+qpy, -NOrM, and one can choose w to be a
convenient function of the form H,oy.
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Choose a neighbourhood Q of R,NE r\ff"_’ in M such that
Q c CNnXNZ (recall that X is a neighbourhood of E in M with a defining
strictly plurisubharmonic function ¢ for X N D), Qn((Rmmﬁ)\@)=®,
and QndD cdDnN,, and a function ¢e%®(M) such that supp ¢ = Q
and ¢ >0 in a neighbourhood of R, NE m@' Consider the functions

o—ne, n>0. We see that if 5 is sufficiently close to 0, then the set G
=Du{ze X] (6—n9)(z) <0} is a domain of holomorphy in M such that
DcG, D\Q=G\Q, G\D<Q, and 8G\(dD\E) is smooth and strictly
pseudoconvex at every point. Also, GNR,=KuUL, where K
=GNR,N(N,uQ) and L=G R, ~(T,\T™) are both compact in M
and disjoint. Let U, and U, be neighbourhoods of K and L, respectively,
such that U; < Z and U, nU, = Q. Define we O(U, L U,) by Wy, = wiy,
and W|y, = 0. Now apply Lemma 2.7 to G, F =:3G\(dD\E), C, C; =: R,
C,=:P,,,, and U=:U,uU,. It flollows that the function W can be
approximated uniformly on G N R,, by functions, which are holomorphic in a
neighbourhood of G N P, ,. But, by construction, N,,_; = G R,,. It is well
known that then the function w can be approximated on N,_, by functions
holomorphic in a neighbourhood of N,_, in any one of the norms

| lI§,_ s $>0; in particular, also in || llg, _, k+c+n,,,NOTmM. Moreover,

Ny Pp, It follows that there exists a function ¢ holomorphic in a
neighbourhood of N,,,, such that

(3.5) llt—wlls,. <2 m+D)

—pktetnm, g

Hence, by (3.4) and (3.5),

It —(tm— VN5, ktetnpme, <2

Set Upyy =t+v on N,.;. Then Upser€ @ T YN, L), e, =f on
N,.,; and N+ 1 — Ul 5, kot ety S 277 and so (3.2) is satisfied.

It follows that the sequence {u;}2, converges in the space ¢*"*(D U E)
to a function ue 6**¢(D U E) n $®(D) such that du = f.

Remark. In the case of k = oo, one should replace condition (3.2) by
the requirement that y;e ¥'(N)) and |ly;—u; _4llg,_,; <2

Note. Using the linearity and continuity of the solution operator for the
d-equation in [18], we conclude from the abovVe proof that in the case g > 2,
¢ can be replaced by 1/2, and the operator f —u, solving the J-equation, can
be chosen to be linear and continuous (in the natural topology of
%%, (D U E), given by the norms || ||5,,). On the other hand, one can prove,
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by use of (the proof of) Lemma 5.4 in [18], that if D is a domain of
holomorphy in a closed complex submanifold M of C", E is an open subset
of dD and if there exists a point zoe ¢D\E such that ¢D is smooth and
strictly pseudoconvex in a neighbourhood of z,, then there does not exist
any linear and continuous operator L: % 1, (DU E)n %%, (D)nker ¢ > f
— Lf e 6™ (D) satisfying ¢Lf = f. (Hence, a fortiori, in such a case there exists
no linear and continuous solution operator for the d-equation from
k., (DUE)Y N3 (D) nker ¢ to ¢* (DU E)n 6™ (D))

4. Applications. In this section we give some applications of Theorem 1.1.
We first consider the problem of extension of holomorphic functions from
complex submanifolds to domains of holomorphy, in such a way that the
boundary regularity of functions after extension is preserved.

Given ke Nu oo}, a domain D with %' boundary in a complex
submanifold M of C" and an open subset U of ¢D, set 4*(D) = (D) n ¢*(D)
and A} (D) = (D) ¢*(D v U). We prove the following theorem, which is
an extension of [13], Theorem 1 and [14], Theorem 4.2 and 5.2.

THEOREM 4.1. Suppose that D is a domain of holomorphy in C" and let U
be an open subset of ¢D such that 0D is smooth and strictly pseudoconvex at
all points of U. Let D' be a domain in C" such that D u U < D' and suppose
that M’ is a complex closed submanifold of D'. Set M = M' nD, E=c¢Mn U.
Suppose that U and M’ intersect transversally. Then for every function
fe AL (M) there exists Fe A} (D) such that Fly = .

In order to prove this theorem we need the following result: its proof is
based on the method used in [3], Theorem 4.

ProposiTION 4.2. Let D, U, D', M' and M be as in the assumption of
Theorem 4.1. Suppose that f is a O-closed differential form of type (0, 1) with
coefficients of class €*(D u U) and smooth in D, such that fl,, = 0. Then, for
every & with 0 <& < 1/2, there exists ue 6***(D U U) smooth in D such that
ou=f and ulp = 0.

Proof. Choose sequences {D;}2; and {U;}2, of domains in C" with
the following properties: Every U, is strictly pseudoconvex, the family {U,} is

a a0

locally finite, | U; < D', |J U;néD = U, every D, is a domain of holo-
i=1

i=1 i=
morphy in C", D=Dy,cD,cD,c..., D,cDu O U;, oD;\(éD\U) is
smooth and strictly pseudoconvex at every J]_);int, 5,\D—,_1 < U,
DuUc G D;, U;nD,_, is strictly pseudoconvex and d(U; nD;_,) inter-
sects M’ ltzr:ansversally. (The existence of {D;} and {U;} can be proved by

means of the “bumps lemma” [1] and the method used in the proof of
Lemmas 2.3 and 24)
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Let ¢ > 0 be given. We will construct inductively sequences {f;}2, and
{w;};2, such that:

4.1) f; 1s a differential form of type (0, 1) with coefficients in
(D, u(dD;\(6D\U))), smooth in D;, f, = fi_, outside U, (where
,/0 = f)’ ﬁIDinM‘ = Ov a’; = 0! uie((”k-*c(Du U) N {6'(”(1))5 supp u;

. CU[ﬁD_, ui|M=0> al'ld ﬁ_,=ﬁ+(7)u,- on bi_ani.

By Theorem 1.1, there exists v, € €*"*(Du U) n®(D) such that ov, = f;

MOTEOVEr, 0V, |p = 0. Thus v, is holomorphic on U, nD M’ and of class

@*e(U;, nDnM). Since U, N D intersects M’ transversally, it follows from

[13], Theorem 1, that there exists Ve O(DnU,;)né***(D nU,) such that

k+
Vil npev, = Vilmcpnu, - Lot wy =vilpao, =V Then wye%* " (D Uy),

ow,=fonDnU,,and w, =0 on DU, nM'. Choose n,e%6§(U,) such
that n, =1 in a neighbourhood of D,;\D; further, define a function
fi on C, =D, u(éD,\(éD\U)) by f, =2[(1=ny)w,] in DU, ’iio
in D,\D, and f; = f on C;\U,, and a function u, to be n, w; on DNU,
and zero outside this set. It is easily seen, by the assumptions on #5; and
the fact that dw, = f on D nU,, that these definitions are compatible and
that f; = dw, —d(nyw,) = f—0u, on DNU,.

Having constructed f,, ..., /, and u,, ..., u,, we construct f,,., and
Un+, just as above, but now with respect to D,,, oD, \(¢éD\U), U,,,, and
D, ., m place of D, U, U, and D,, respectively.

Then, by (4.1), for every me N we have [ = O(uy+us+ ... +up)+fn.
Since the family {U;} is locally finite, it follows from (4.1) that the se-
quences {u;+ ... +u,e-y and {f,}x-, converge respectively to
te (DU U)n%*(D) such that t[,, =0 and to ge %3, ,(C) (where C

= |J D;) such that g|c.p =0 and dg = 0, and moreover, f = dt+g on D.
i=1
Since C is a domain of holomorphy, there exists, by [12], Corollary 4.2.6,
a function se $*(C) such that s =g. But (0s).c = O; therefore sy ¢
is holomorphic. By the Oka—Cartan theorem, there exists Se ¢(C) such that
Slmnc = Slync. Then d(s—8) =g, s—Se$*(C) and s—S|y~c = 0. Hence
f = 0u, where u=1t+(s—8)p,pe6* (DU U)N%°(D) and u|y = 0.
Having proved Proposition 4.2, we return to the proof of Theorem 4.1.
Choose the family {U;}2, ol domains in C" such that:

(42) For every j, Ujc D is a strictly pseudoconvex domain such that
either U;n M = @ or 0U; intersects M’ transversally, oU; n 0D < U

and U int(8U; nU) = U (where the interior is taken with respect
ji=1 .
to U).

6 — Annales Polonici Math. XLVIIL1
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Let ie N and suppose that U; n M # Q. Since dU; intersects M’ transversaily,
there exists, by [13], Theorem 1, a function g;e A*(U;) such that gilu;nm

= flo,om- f Uin M =@, we set g; =0. Restricting the domains U, if

necessary we obtain a family {V,}2 of strictly pseudoconvex domains in C"
such that V; c U;, dV,noU; < U, each oU; nU is a neighbourhood in U of

oV.nU, and {J int(dV; " U) = U, where the interior is taken with respect to

i=]

U, as before. Then the function h =gy, is in A*(V)), and moreover,
he 6= (V, 2 (V\ U)).

Since |) V. is a neighbourhood of U in D u U, one can construct (by a
i=1
similar method to that applied in the proof of Lemma 2.4) a domain of

0
holomorphy V, such that Vo< D; D\ V.cV,, oVonU'=0Q, and
i=1

oVon | ¥ is smooth. By the Oka-Cartan theorem, there exists ge (O(D)
i=1

such that gly = f. Set hg = gly ~@vqop)- Then hg is holomorphic in ¥, and
smooth in V, u(8V,\ D).

Giveni j=0,1,...,set h; = h;—h; on ¥V, V,. Then, for every i, j. [e N,
h;; belongs to A*(V; " ¥)) and is smooth on the set (¥, n V) u(é(V,n V) N D),
hj; = —h;, and hj+h;+h; =0 on ¥,nV;n V. Choose a partition of unity
{01 %, on DU U subordinate to the covering (¥, n(aV, nU)}2, of DU U.
We claim that there exist functions f;e A*(V) n6*(V,Lu(dV;nD))i=1,2, ...,
and foe A% :p(Vo), such that

4.3) filviomr =0 and  fi—f, = h;.
Given seN, let ;e N be such that supp ¢, =V, L(dV, nU). Let u =

— Y @.hy (where @ by, is defined to be zero outside supp @), /=0, 1, ...

s=1
Then weE(V)n€=(V,u(dV,nD)), 1=1,2,..., ugeb®(V,u(dV,\ D)),
wly, o =0, 1=0,1,..., and u;—u; = h; on V,nV;. We are going to im-
prove the functions u, to be holomorphic. Since J(u;—u;) = oh;; =0 on
ViV, the (0, 1)-form G defined as du; on V, is well-defined and has coeffi-
cients of class %4*(D u U) and smooth in D; further, G is oO-closed, and we
have G|y = 0. By Proposition 4.2, there exists ue *(D u U) N %™ (D) such
that du =G and uly =0. Set f; = u;—uly,\pwy- Then the functions f; so
constructed satisfy (4.3). Now define F by F = h;+f; on V;\(éD\U). Since
hi—h; = h;; = f;—f;, on ¥, "V}, it follows that F is well-defined and Fe A4 (D)
because h; and f; are in A*(V) %= (V,u(dV.n D)), i=1,2,..., and h, and
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Jo arein A% \ap (Vo). Moreover, Fly: vy, = hily v, = flu v, since Sl av; = 0.
Hence Fly = f This ends the proof.

Note. In the case of the spaces A5’ (M) and A (D), Theorem 4.1 is valid
under a weaker assumption on the intersection of U and M’

THeEOREM 4.3. Let D, U and D' be as in the assumption of Theorem 4.1.
Let M' be a complex closed submanifold of D' such that U and M’ are
reqularly separated (i.e., for every zoe M' U there exist a neighbourhood
W of zo in C" and constants ke N and ¢ > 0 such that dist(z, W nU n M')*
< c dist(z, W M) for every ze W U). Set M =M nD, E=MnU. Then
Jor every fe AF(M) there exists Fe Ay (D) such that Fly = f.

The proof follows the line of the proof of Theorem 4.1; therefore we
only point out the necessary modifications. In the proof of Proposition 4.2,
the condition “d(U; nD;_,) intersects M’ transversally” should be replaced
by “?(U; n D;_,) and M’ are regularly separated”, and to obtain the extension

VieA*(Di-, nUy) of vihgap—re; €A (M'nD;_y nU;) in the induc-
tive procedure from Proposition 4.2, we use [1], Theorem 1 instead of [13],
Theorem 1. Similarly, in (4.2), one should replace the condition “0U; inter-
sects M’ transversally”, and the reference [13], Theorem 1 (used in finding
gi€ A (U)) such that g;|y, . = f) by the regular separability of U; and M’,
and [1], Theorem 1, respectively.

Note. Given k =1, 2, ..., or a positive real number 1, t #1, 2, ..., and
a domain D = C" with %' boundary, let L=*(D) = {f e %* (D) all deriva-
tives of f of order k—1 are bounded in D}, H**(D) = L™*(D) n O(D), and
A, (D) = € (D)~ ¢(D). If D is a domain in C" and U is an open subset of oD
such that éD is %' at all points of U, we say that fe L®*(Du U) (resp.
e HP*(D) or fe(A,)y(D) iff, for every domain G < D such that ¢G is %!
and 0G N dD < U, fe L™*(G) (resp. f e H**(G) or fe A,(G)). The notions of
the spaces L**(D u U), H"*(D) and (A,)y (D), similarly to those of €' (D u U)
and A} (D), can also be defined for domains D with a %!'-open part U of
the boundary on complex submanifolds of C".

Claim. Theorem 4.1 is valid also if the spaces A%(M) and A} (D) are
replaced respectively by HP*(M) and HJ*(D), or (A)g(M) and (A,)y (D).

This claim can be proved similarly to Theorem 4.1. It follows from [16],
corollary 4.7.1, that if D is a strictly pseudoconvex domain in C" with a
smooth boundary then, given a c¢closed (0, 1)-form f with coefficients in
&' (D) and smooth in D, there exists ue ' *¢(D) N $*(D), ¢ < 1/2 arbitrary,
such that du = f. The method given in [15] allows to prove a similar
assertion for strictly pseudoconvex smoothly bounded domains in a closed
complex submanifold M of C". (A similar result for fe L&}, (D) €3.,,(D)
with ue €**V2(D)n 6= (D) satisfying du= f, k=1,2,..., can be found
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already in [17].) Applying the proof of Theorem 1.1, we obtain (in the
notation as in the assumption of Theorem 4.1) that

(44) for every e<'1/2 and every felL%h,(DUE)N¥%%, (D) (resp.
fe%b0.1y(DUE)N%% 1, (D) with o =0 there exists
ue 6€***(D U E) 6™ (D) (resp. uc %' **(D U E) n $*(D)) such that du
=_/:

Then the proof of Proposition 4.2 and of Theorem 4.1 as well apply
without a change.

Theorem 4.1 can be applied to the approximation of holomorphic
functions in pseudoconvex domains. Suppose that D is a domain in a
complex closed submanifold M of C" and E is an open subset of 0D such
that oD is #' at every point of E, and let ke N be fixed. Equipe A% (D) with
the Fréchet space topology defined by the family of norms || ||5, & (see (3.3)),

where {D;}Z, is any sequence of subdomains of D such that dD; are %',

D,cD,c..., UD D and UD D UE. (Any other choice of the

i=1 i=1
sequence {D;} and of the coverings {U;} and {V}} in (3.3) gives the same
topology.)

THEOREM 44. Let D be a strictly pseudoconvex domain in a closed
complex submanifold M of C" and let E be an open subset of éD. Fix ke N.
Then every fe A%(D) can be approximated in the topology of the space A% (D)
by holomorphic functions defined in a neighbourhood of D in M.

Proof. By Fornaess’ embedding theorem ([5], Theorem 9), there exist a
Stein neighbourhood N of D in M, a non-negative integer m > dim¢M, a
holomorphic mapping h: N — h(N) < C", which maps N biholomorphically
onto a closed complex submanifold h(N) of C", and a strictly convex domain
C < C", such that h(D) = C, h(N\D) = C"\C and h(N) intersects dC trans-
versally. Let f'e A5 (D). Then g = f oh™ '€ Aj g, (h(D)). By Theorem 4.1, there
exists Ge A \x(C) (Where K = h(éD\E)) such that G|,p =g. We may as-
sume that 0eG. Then the functions G,(z) = G(rz), r <1, tend to G in the
topology of the space A% \x(C), as r ~ 1. It follows that the functions f,
= G,oh are defined in a neighbourhood of D in M and tend to f in the
topology of the space A% (D) as r ~ 1.

Now, we show an application of Theorem 1.1 to the proof of some
results on the decomposition of certain ideals in algebras of holomorphic
functions.

Bonneau Cumenge and Zériahi have proved the following division
theorem.

- TueoreM ([4], Theorem 1). Let D be a strictly pseudoconvex domain in
C" with a boundary of class %', | > 2, given by D = (D\V)u {ze V| 6(z) <0},
where o is a strictly plurisubharmonic function of class €' in some neighbour-
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hood V of ¢D, with a non-vanishing gradient. Let M’ be the submanifold of
DUV defined by M'={zeDuUV| g,(z) =... = gy(z) = 0}, where g,, ..., gy
are of class ¢"(DuwV), m>=1, and are holomorphlc in D. Suppose that
do(2) A Cgy(2) A... Adgy(2) #0 for zeM ndD. Set M =M nD. Let
r=min{{—2, m—1}. Then, for every t with [t]+1<r and feA, (D) such

that f|y = 0, there exist functions fy, ..., fue A, - ,2(D) such that [ = Z g/

We prove here the following “local” version of the above theorem, but
with more restrictive conditions on ¢D and M’, and with a weaker assertion.

THEOREM 4.5. Let D be a domain of holomorphy in C" and let U be an
open subset of 0D such that ¢D is smooth and strictly pseudoconvex at all
points of U. Let D' be a domain in C" such that D w U < D’ and suppose that
M’ is a complex submanifold of D'. Set M = M'nD. Suppose that M’
intersects U transversally. Assume that g,, ..., gye O(D’) are such that for
every ze D' the germs of g, ..., gy at z generate the ideal of germs at z of
holomorphic functions vanishing on M'. Then for every function fe(A,)y(D),
teR, t > 1/2, such that f|y = 0 and for every n with 1/2 <n <t there exist

N

functions fy, ..., fye(A,_)y(D) such that [ =Y g f;
i=1

As in the proof of Theorem 4.1, we first prove an auxiliary result on the
solution of the d-equation.

PropPOSITION 4.6. Let D, U, D, M, M and g,, ...,gy be as in the
assumption of Theorem 4.5. Let t > 0 be given und suppose that f,, ..., fy are
0O-closed differential forms of type (0, 1) with coefficients of class €' (D v U) and

smooth in D, such that Z g1 fi = 0. Then for every r with 0 <r <1 there exist
=1

functions uy, ..., uye € "(DuUU) smooth in D, such that Ou, = f), |
N
=1,..., N, an—d Zg,u,=0.

Proof. We construct sequences {D;}Z, and {U;}, of domains in C"
with properties listed at the begining of the proof of Proposition 4.2.
Moreover, the domains D; and U; can be chosen so that, for every i
=1, 2, ..., either the (strictly pseudoconvex) set U; n D,_, does not intersect
M’ (here D, = D) or
(4.5) there exists a neighbourhood ¥V, of U;nD;_; in C", which is a

domain of holomorphy, and functions h,,, ..., b ;e O(V,)) (where k
= dim¢ M), such that M' NV, = {ze ¥ h,;(z2) = ... = by ;(z) = 0} and
0o;(z) A Chy;(2) Ao AN Oy (2)#0 for zeM' né(U;nD;_), where
o; is a defining strictly plurisubharmonic function for (U; N D;_,).
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Choose a strictly increasing sequence of positive numbers {r;}2, such that
r; 7 r. As in the proof of Proposmon 4.2, we will construct inductively
sequences {f;;}2, and {u;;}2,, =1, ..., N, such that

(4.6) f,; is a differential form of type (0, 1) with coefficients in
%' "(D; u(oD;\(éD\U))) and smooth in D;, f,,~ = f;-, outside U;
N

(where  f o = f), Zglfli=os gfu 0, u,e '(DuU)r\(/"”(D)

supp u;; < U; N D, Z giu; =0, and f;_, =fl.i+5ul.i on D;_,nU,
I=1,...,N, i=1, 2

By Theorem 1.1 and (44) there exist the functions v, , ...
v,\-_,e’(z'ﬂlz_"(DuU) %> (D) such that (v, = f;, | = 1 , N. Since
N

N

Y qo)=) g0v, = Z g. /=0, the function F, = z gity, Is in
=1 =1 =1 1=1

Aivy2-, (DU U), and moreover, F,|y =0. By the theorem of Bonneau,

Cumenge and Zeériahi and (4.5), there exist the functions
k

Fiiy..., Foyed,_, (U nD) such that F, = Y hoF,y on U nD. Since
s=1

every h,, vanishes on V; "M’ and V; is a domain of holomorphy, it follows

from the assumptions imposed on the functions g, I =1, ..., N, and from

[12], Theorem 729 that there exist functions G,sleC(Vl), ,..., N,

such that h,, = Z 91Gys, in Vi, s=1,....,k Then F\g=p = Z g Hy

=1

k
with H,, = ) G FoieA_, (U D). Set w,=v,—H,, I=1,..
s=1

b

N.

N
Then w, €% ""(DNU,), dw,, = f;, and Y g,w,, =0. Choose 1, € 6&(U,)
i=1
such that 5, =1 in a neighbourhood of D,\D and define f,, on
C, = D, u(dD,\(6D\V)) as follows: f,, = a[(1 —n)w,;1in DAU,, f,, =0
in D;\D, and f,, = f; on C,\U,; further, let u,; be defined as #, w,,; on
D NU,, and zero outside this set. Then, as in the proof of Proposition 4.2,
one can check that these definitions are correct and that (4.6) is satisfied.
Having constructed f,;,...,fim and 4, ..., u n [=1,..., N, we con-
struct f; .., and u,,,,, In a similar way as above. Namely, by Theorem 1.1,
(4.4) and by the inductive hypothesis, there exist the functions v, ,.,€

’6'+1/2_"”“(D,,,u(aD,,,\(aD\U)))r\ %*(D,) such that 0v ., = f,, for
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N
I=1,..., N. The function F,,; =) giUym+; is in

=1

Aivijz-ryy (Dm0 (0D, \(8D\U))), and  Fpyyly =0.

By the theorem of Bonneau, Cumenge and Zénahi, (4.5), and [12],
Theorem 7.2.9, we can find functions H, ., €A1 (Up+1 0 D,,) such that
N

Fpiilo, 770, = Z giHym+1- Then the functions wymq = Uyme1—Hime,
=1

N
E(6l~rm+l(Um+l mDm): 6wl.m+l =fm,l and Z SiWim+1 = 0. Choose Hm+1
=1

=Tm+1

€ty (Up+y) so that 5,,; =1 in a neighbourhood of D,,\D,, and
define fim+y Oon Cpyy:=Dpyy U(Dyy \(D\U)) as follows: fi .y =

g[(l_nm+1)wl,m+l] inUp,y 0Dy, fim+1 =0in D,y \D,,, and fz,m+1 = fim
on Cpi t\Upy1;S€t Upmyy = NpyyWimey 0D DN U, ., and zero outside this
set. As before, the definitions of f, .., and u,,,, are compatible and
(4.6) is satisfied.

It follows from (4.6) that for every me N the equalities f; = d(u;, + ...
vt Uy m)+fime I=1,..., N, hold. As in the proof of Proposition 4.2,
the sequences {u,+...+um o, and {fi,'Z, converge to ve

N

4" (DuU)né~(D) so that Y g,u,=0, and to he%g,(C) (where
I=1

C= U D;,) with Z gih; =0 and Oh, =0, respectively, and moreover, f

= Bv,+h, onD, = 1 , N. Since C is a domain of holomorphy, there exist,
by [12], Corollary 4.2.6, functions s,, ..., sye $*(C) such that 0s, = h,,
N N

I=1,..,N. Since (Y g;s)= ) gh =0, ie the function S=
=1 =1

N

Y g;s; is holomorphic in C, and since S|y .c =0, it follows from the

=1

assumption on the functions g, and from [12], Theorem 7.2.9, that there exist
N

functions S,, ..., Sye ¢(C) such that S = ) g;S;. Then the functions s,—S,
=1

are smooth in C, d(s,—S,) = h,, and % gi(5,—S) =0

Set u; = v;+(s;,—S;). Then ue fg'lj';Du U)né*(U), Ou = ov+h = f,
and ig;u, = i giv+ i g:(s;—S;) = 0. This ends the proof.

Proof of Theorem 45 Choose a sequence {U;} 2, of strictly pseudo-

convex domains in C" such that U U;=DuU and, for every j, either
i=1
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U;nM' =Q or dU; intersects M’ transversally and there exist a neighbour-

hood V; of U; in C", which is a domain of holomorphy, and functions
By js ..., e C(V) (k=dim¢M’) such that M' NV, = {zeV] hy;(z) =

. =h j(z) =0} and do;(z) A Ohy ;(2) A ... ATl ;(2) #0 for ze M N U,
where ¢; is a defining strictly plurisubharmonic function for dU;. As in the
proof of Proposition 4.6, it follows from the theorem of Bonneau, Cumenge

and Zériahi, and from [12], Theorem 7.2.9, that there exist functions

N

pij€A-12(Up, i =1, ..., N, such that flu'j = Z g: pi;. Let pi) = Pij— Pix
_ _ i=1

on U;nU,, j, ke N. Suppose that for every je N one can choose {h;;}\,

such that

N
(47) hi’je A,_”(Uj), -—Zl g h,"j = 0, and hi.k hl] = psk”) on U} M Uk'

Then the functions f; defined by f, =p,;+h; on U; are well-defined, in
N
DuU, fie(A,_)y(D)and 3 g f; = f Therefore, to erid the proof, it suffices

i=1
to find functions h;; with properties listed in (4.7).

Let {¢,}2, be a partition of unity on DuU, subordmatc to the
covering {U;u(0U;nU)}2;, of DuU. Let u, = — Z ) Usk) (where

§=

(g -

supp @, < Ujsu(ans N U) and Q. pi* s defined as zero outside supp ¢,),

N

i=1,...,N, keN. Then u;, e ¢~ "*(U)ne~(U, v (U \V)), Y giuy, =0
o i=1

in U, and u;, —u; ; = p*, but u;, are not holomorphic, in general. However,

O —u; ) = 0p* =0 on U, nUj, so, given i = 1, ..., N, the (0, 1)-form G,
defined by G; = ou;, in U, is well-defined, d-closed, and has coeffi-
N

cients of class ¢~ "2(DuU) and smooth in D; moreover, » g;G
i=1

N N
=Y gou,=2(Y giuy)=0 in U, and so in all of D. Hence,
i=1 i=1
by Proposition 4.6, there exist Uy, ..., uye € "(D U U)n %™ (D) such that
w; =G, i=1,...,N, and Zg,u—O Set hyy = u; —ulg,, keN. Then

thA: n(Uk) Zgl ik = Zgl Uik — Zgnu =0 and hlk h j = Ui — U

=p on U; r\Uk Hence (4 7) is sausﬁed This ends the proof.

Note. If t= o0, the assertion of Theorem 4.5 (with f and
fis .-, Jn€ A7 (D)) holds also under the assumption that M’ and U are only
regularly separated (not necessarily transversal). This follows from the fact
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that, in this case, the domains U; in the proof of Proposition 4.6 andof
Theorem 4.5 can be chosen so that ‘0U; and M’ are regularly separated, and
one can use the theorem of de Bartolomeis and Tomassini ([3], Theorem 6)
instead of the theorem of Bonneau, Cumenge and Zériahi. This gives a
“local” version of the theorem of de Bartolomeis and Tomassini.

Note. If D is strictly pseudoconvex and bounded, and U = dD, then the
assertion of Theorem 4.5 holds also with # = 1/2. This can be proved by the
method used in the proof of the Main Theorem in {11].

Using Theorem 1.1 and the construction described by @vrelid in {19],
we can also prove the following decomposition theorem, which generalizes
[14], Theorem 4.1.

_THEOREM 4.7. Suppose that D is a domain of holomorphy on a complex
closed submanifold M of C". Let E be an open subset of 0D, such that oD is
smooth and strictly pseudoconvex at every point of E, and let {s;}=, be a
sequence of points in D without a cluster point in D U E. Let Az(M) denote any
one of the spaces A%X(M), HZ*(M) or (A)g(M), and let g, ..., gne Ag(M) be
such that:

(i) zeDUE| g,(2) =... =gylz) = 0} = '{Si}iaiﬁ

(i1) for every ic N, the germs of the functions g; at the point s; generate the
ideal of germs at s; of holomorphic functions on M, vanishing at s;.

Then for every feAg(M) such that f(s) =0, i=1,2, ..., there exist

N

functions f,, ..., fye Ag(M) such that f =Y g f.

i=1
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