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Generic properties of infinite system
of integral equations in Banach spaces

by W. OrLicz and S. SzurrLa (Poznan)

Abstract. The present paper investigates generic properties of existence, uniqueness and
convergence of successive approximations for infinite systems of integral equations in Banach
spaces. A property is said to be generic on a metric space if the subset on which it fails
of being true is of Baire first category. The study of generic properties of differential
equations was started by Orlicz [13], where it was shown that the set of bounded continuous
functions f: [0, a] x R" —» R" for which the equation x' = f(t, x) does not have uniqueness
ol all solutions is a set of first category. An analogous result for hyperbolic equations was
proved by Alexiewicz and Orlicz in [2]. More recently Lasota and Yorke [11], Vidossich [15]
and De Blasi and Myjak [6] studied properties concerning existence, uniqueness and con-
vergence of successive approximations for diflerential equations in Banach spaces. Other generic
problems in connection with non-linear equations have been investigated in [3]-[5] and
[71-[91.

The paper is divided into three sections. Notation, definitions and basic lemmas are
contained in Section 1. In Section 2 we prove that the set of all functions f for which
approximate solutions of (2) do not converge is of first category in some metric function

space M, introduced in Section 1. Section 3 contains a similar result for successive approxi-
1) .
mations.

1. Preliminaries. Assume that N is the set of positive integers, J = [0, a]
is a compact interval in R, and E; is a Banach space with the norm
I-; G=1,2,...). We introduce the following denotations:

E = E, xE, x... — the Fréchet space of all infinite sequences x = (x;),
x;eE; for i =1,2,..., with the quasinorm

lxl - i L ”xi"l .
S 20 1+ x),°

C; = C(J, E;) — the Banach space of all continuous functions u: J — E;
with the norm |jull;, = sup {|lu(@)l;: teJ};

C = C(J, E) — the Fréchet space of all continuous functions u: J - E
with the quasinorm hd, = sup {lu()l: t€J};

T={t,s):0<s<t<a}; D=TxE;

M — the set of all functions f = (f;, f;,...): D = E such that for any
ieN:



68 W. Orlicz and S. Szufla

1° f; is a continuous mapping of D into E;;

2 there exists a constant m; such that |fi(t,s,x)|; < m; for each
(¢,s, x)eD;

3° there exists a real-valued function (7,t,s5)—>r;(z,t,5) 0 <s <t
< 7 < a) such that:

(1) for any fixed t¢,t the function s—r;(t,t,s) is L-integrable on
[0, ¢1;
(i) sup {Il fi(z,s, x)—f;(t, s, x)|;: x€ E} < ri(t,¢t,5);
1

(i) lim {r.(t,t,s)ds = O for fixed t or t.
t—t—=0+ 0 .

L — the set of all fe M such that

4 there exists m > 0 such that | f(¢, s, x)|l; < m for each (¢,s, x)eD,
ieN, and

5° for any zeE there exist a neighbourhood V of z and a constant
k > 0 such that || f;(t,s, x)—fi(t,s, YI; < klx—yl for all (¢,5)eT, x,yeV
and ieN.

For any f,geM put

d(f,g9) = sup {lf(t,s,x)—g(¢, s, x): (¢, s, x)e D}.
Then (M, d) is a complete metric space. Moreover, for any sequence (f™)
in M
(*) limd(f",f) = 0< lim f"(t, 5, x) = f;(¢, s, x)

uniformly on D for each ieN.

Lemma 1. L is dense in M.

Proof. Assume that fe M and ¢ > 0. Choose pe N such that 1/27 < ¢/2.
For any xeE let

N(x,&) = {yeE: sup | fi(t.s, )=filt,s, x)l; < ¢/4 for i = 1,..., p}.
(t,5)eT
Since T is compact and f; is continuous,

lim sup || fi(t,s, y)—fi(t,s,x)l; =0 for any ieN,

y=>*x 1,9eT

and hence N(x,e) is open in E. As the space E is paracompact, there
is a locally finite refinement {Q,}scs Of {N(x,€): xe E}, where each Q, is
non-empty and open. For any xe E and ae A put

_{ if x¢ Qa,
P = dist (v, 00,) i x€Q,,
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and
Pa(X) = po(x)/ ﬂEZA pg (x).

It can easily be verified (cf. [1], p. 238, [11]) that y, is Lipschitzian with
constant 1 and p, is locally Lipschitzian. For any ae€ A choose x,e€Q,. Let

g,(t, 5, X) = G;Pa(x)fs(l,s,x,) for (t,s,x)eD, i=1,...,p,

0 for (t,s,x)eD,i>=p+1,
and g = (91,92, --)-
Fix xeE, and choose age A such that xeQ, . Since {Q,} is locally
finite, there exists a ball B(x,n) = Q,, such that B(x,mn Q, # @ only

for o belonging to a finite subset {a,,...,a,} of A. As the functions

Pa; are locally Lipschitzian, there exist a ball V= B(x,d) < B(x,n) and
a constant k > 0 such that

|Pa; ()= Pa, (@)l < kly—2l  for y,zeV, j=0,1,...,n.

Hence

© it 3) =it 5. )i = | X (pe;0)= Py @) 5, 32

< ;;o |Pa; ()~ Pa; @) 1 fit, 5, X2 )l < Y mykly—21 < m(n+1)kly—2I

j=o
for y,zeV, (t,5)¢T and i=1,...,p, where m = max(m,,...,m,) and
m; = sup {[| fi(¢, s, x)|l;: (¢, s, x)e D}. Moreover,

Ig; (z, s, X)—g; (¢, s, X)|l; = II"ZA(f.-(r, $, X)—fi(t, 5, X2)) pa ()

S EA ".fl(t) s, xa)—fi(t’ S, xa)"ipd(x) s Z ri(t9 t’ S)pa(x) = ri(‘t’ t, S),

acA

and
lgi(t, s, x); = || ZApa(x)fa(t,s,xa)lli < lea(x) [fit, s, x)l; < m

foreach 0 <s<t<t<a xeEandi=1,..p.

Obviously, for any i, 1 <i < p, the function g; is continuous at
(t,s, x)eD as a linear combination of a finite family of continuous functions.
As g, =0 for i > p+1, from the above argument we conclude that gelL.

Furthermore, for any ae A there exists a neighbourhood N Q},e) con-
taining Q,, and therefore

“j;(t’ S, u)_j;'(‘asyxa)"i < "fi(t,S,U)—fi(t,S, y)"i+
+||j;'(t’s, }')—ﬁ(t’s: x:)”i < 8/2
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for each ueQ,, (t,s)eT and i = 1,..., p. Hence
lgi(t, s, x)—fit, s, x)l; = |f ZAm @) (e, s, x)—fi (e, 5, 0)|;
< ZA P ) 1 £i(t, 5, x2)=fit, s, X); < Z; p.(x)€/2 = &2

for (t,s,x)eD, i=1,...,p, and consequently,

o 1 lgit,s, x)—fi(t, s, X)[;
i=1 2' 1+||gi(t,s,X)—f;'(t,S,X)"i

lg(¢,s, x)—f(t,s, x| =

1 2 |
<Y 5 £y Y o

1
\%+?S ¢ for (t,s,x)eD,

so that d(f, g) < ¢. This completes the proof of Lemma 1.
Let p = (py,P2,..) be any fixed continuous function from J into E.
For any feM and'ie N put '

. t
Fi(x) (@) = pi()+ [ fi(t, s, x(s))ds (xeC, tel).
0
In the usual way (cf. [14]) we may prove that F; is a continuous mapping
of C into C;, and the set F;(C) is equiuniformly continuous. Let
w;(d) = sup {|F;(x)()~Fi(x)(s)l;: xeC,¢t,s€J,|t—s| < d}.

It is clear that }irg w;(d) = 0. From this it follows that the mapping
F: C - C, defined by

F(x) = (F,(x), F;(x),...) for.xeC,

is continuous, and

(1) w(d) = sup lu(®)—u(s)l: ueF(C),¢t,s€J,|t—s| <d} -0

when d —» 0, because

v 1 )

DS LT Tra@

We consider the infinite system of Volterra integral equations

(2) x; () = p;(0)+ jlfi(t,s,xl(s),xz(s),...)ds (teJ,i=1,2,..),
0

where [ denotes the Bochner integral and fe M.
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Putting

p . g p
_!f(t, s, x(s))ds = (!f, (¢, s, x(s))ds,!fz (t, s, x(s))ds, ...)

0 < a<f<a, xeC), we see that (2) is equivalent to the equation

o) X(0) = PO+ [f(t,5,56)ds (1ed)

LemMma 2. If feL, then there exists a unique solution of (2) defined on J.

Proof. Assume that feL and m is a constant satisfying 4°. First we
remark that

B
(4) 1if(t,s,x(s))dd < m(B—a) for 0<a< B <aand xeC.

z

Indeed, as | f;(t,s, x)|l; < m for (¢t,s, x)eD and ie N, we have

B
o A s x6)as,

1 2

M8

B
(£, s, x(s)dsl =

B
L+] [£(. s, x(s)ds];

<Y LM
=128 14+m(B—a)
Denote by Q the set of all ¢,0 < t < 4, for which there exists a unique

solution of (2) defined on [0, t]. Let © = sup Q. Then there exists a unique
solution u of (2) defined on [0, 7). Since

< m(B—a).

lu(t))—u(t)l < o(t,—t,]) for each ¢4, t,€[0, 1),
there exists the limit

u(r™) = limu(f) = p(t)+ff(t,s,u(s))ds,
[And 4 (1]

and hence teQ. Suppose that t < a. Then there exist a closed ball
B = B(u(r),¢) and a constant k > 0 such that

Il fi(t, s, x)—f;i(t, s, Y); < klx—yl for (¢,5)e T and x, y€eB.

.Consider the equation

(5) x(t) = h@)+ jf(t, s,x(s))ds (t <t <a),

where h(t) = p(t)+ [ f(t, s, u(s))ds. The function h is continuous on [z, a]
Q
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and h(t) = u(r). Choose 4,0 < § < a-r, in this way that ké <1 and
lh(t)—h()l+md < ¢ for te[r, 1+ ). Denote by B the set of all continuous
functions from [z, 7+ &] into B. Obviously B is a complete metric subspace
of C([t,t+6], E). Let

G(x)(t) = h(t)+;' f(t,s,x(s))ds for xeB, 1 <t <1+44.
Then, by (4),
1G (x)(t)—u(x)l < Ih(t)—h(t)l+|['f(t, s, x(s))dsl

< h(t)—h(xN+md < ¢ for xeB and te[r,t+48].
Moreover,

1G: () ()= G ) ON; < [ £i(t, s, x &)~ fi (£, 5, y(5))] ds

< jlklx(s)—y(s)l ds

< kélx—yl, for ieN, x,yeB and te[r,t+4],
and therefore

21 16G®O-GHO
I6O-60ON = 2 5 T 600-60 0O -

for x, ye B and te[r,1+46].

-yl

This proves that G is a mapping of B into itself, and
1G(x)—G(y), < kélx—yl, for each x,yeB.

Applying the Banach fixed point theorem we conclude that there exists
“exactly one function weB which satisfies (5) on [1,7+6]. Hence the
function v defined by

o(t) = { u() for 0

<
w() for t <

is a solution of (3) on [0, 7+ 6], because

v(t) = w(t) = h(t)+j‘f(t,s, w(s))ds
= p(t)+g St s, us)ds+[ f(t,s, wis))ds
= p(t)+§; fle, s, v(s)ds+§ f(t,s,v(s)ds

= p(t)+i f(t,s,v(s))ds fort > 1.
0
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Conversely, if a function z is a solution of (3) on [0,7+4J], then z
is a solution of (2) on [0,1], and therefore z(t) = u(t) for 0 <t < 7.
Moreover, for te[1, 7+ 5] we have

z() = p(t)+g f(t,s, z(s))ds

= p(t)+§f(t, s, u(s))ds+.ftf(t. s, z(s)) ds
0 T

= h(t)+j{f(t, s, z(s))ds,
and, by (4), ’ ‘
z(t)—u@) < h@)—h@I+L[f(t, s, z(s))dsl < WM(@O)—h(DN+md < &,

so that G(z|[t,t+6]) = z|[t,7+4d] and z|[t,t+d6]eB. This implies z()
= w(t) for 1 <t < 1+, and consequently z = J. Therefore t+5€Q, in
contradiction with the definition of 7. Hence 7 = a.

LEMMA 3. Let feL, and let v be the unique solution of (2) on J. Then
there exist positive numbers n, k such that

(6) Ifi (e, s, x)=filt, s, )i < klx—)l

for every (t,s)eT, ieN, x,yeB(v(r),n) and t€J.

Proof. As feL, for any teJ there are positive numbers 7#,, k. such
that

1fiCt, s, x)—fi(t,s, I; < kIx—yl for every (¢t,s5)eT, ieN

and x,yeB(v(1),n,). Since the set v(J) is compact, there exists a finite
subset {7,,...,1,} of J such that

v(J) 191 B(v(tj),n,/2).

Putting k = max (k,,...,k,) and n = } min (5, ..., n,) we obtain (6).

Moreover, we shall use Lemma 2 from the first version of [11]
(Technical Note BN-655, University of Maryland, 1970):

Let X be a complete metric space, and let h: X — [0, o0) be a function
which is continuous at each point of a set Y which is dense in X. If h
vanishes on 'Y, then the set {xeX: h(x) > 0} is of first category in X
(see also [12], Lemma 1.2).

2. The generic property of convergence of approximate solutions. For any
neN and feM denote by-S,(f) the set of all ue C such that

Iu(t)—p(t)—jff(t, s,u(s))dsl < 1/n  for every teJ.
0
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LEMMA 4. If f €L, then lim 6(S,(f)) = 0 (& is the diameter).

Proof. Assume that fe L. Let v denote the unique solution of (2) on J,
and let k, 5 be the constant from Lemma 3. Suppose that lim 6(S,(/)) > 0.

Thus there are ¢ > 0 and a sequence (#") such that
)] weS,(f) and Ww"—u.>¢ forn=1,2,..

Since the sequences (u"—F (1")) and (F (u")) are equicontinuous, the sequence
(«") is also equicontinuous, and therefore the numbers

B(d) = sup {lu"()—u"(s), lo(t)—v(s)l: neN,t,seJ,|t—s| < d} -0
as d — 0. Denote by Q the set of all t eJ such that lim u"(s) = v(s) uniformly
on [0,t]. Obviously 0eQ, because lim l"(0)—p(O0)] < lim 1/n = 0 and

p(0) = v(0).

Choose 6 > O such that B(d) < n/4 and kd < 1. Assume that t1e€Q.
We shall show that ¢ = min (a, 1+ 6)eQ. As T€Q, we can choose n, such
that lu"(s)—v(s)l < n/2 for n > n, and 0 < s < 1. Hence for n > n, and
se[t,q] we have W"(s)—v(s)] < W (s)—u"(ON+l"(t)—v(EN+1v(r)—v(s)]
< n/2+2B(d) < 1, so that

"(s)—v(is) <n  for n = ny, and sef0, q].

Applying (6) we obtain

[ { (fi(e, s, w @) —file, s, v())ds|, < g klu"(s)— v (s ds
for n > ny, ieN and te[0, q], and consequently
lj(f(t, s, u"(s)—f (¢, s, v(5))) ds] < fklu"(s)—v(s)lds
0 1] . .

for n > ny, and te[0,q]. Let a, = sup l"(t)—ov(t)l. By the inequality

0s1<q

L (t)—v ()]l < lu"(t)—p(t)—_'[f(t, s, u"(s)) dsl +
0
+l:!(f(t, s, u"(s))—f (¢, s, v(s)))dsl

< ’l/n+3. klu"(s)—v(s)ds
0

(n = ny, tel0, q]) we have

a, < In+kt sup l"(t)—v(t)N+kéa, for n = n,.

0<1<¢t
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As t€Q, this implies lim a, < kd lim a,, and consequently lim a, = 0,

because ko < 1. Thus ge Q. Since 6 does not depend on t and 0eQ, this
proves that lim " (¢t) = v(t) uniformly on J, in contradiction with (7). Hence

lim 8(S,(f)) = 0.
THEOREM 1. The set {fe M: lim 8(S,(f)) > O} is of first category in M.
Proof. Put h(f) = lim &(S,(f)) for any fe M. Assume that fe L and

¢ > 0. By Lemma 4 we have h(f) = 0, and therefore there is n, such that
8(S,,(f)) <¢&. Choose y >0 and peN such that I/p+y < 1/n, and
1/2P < y/2. Next choose n > 0 in this way that 27y < 1 and 2”na/(1—2%n)
< y/2. Assume that geM and d(g,f) < n. Then

lg:(t, s, x)—filt, s, x)|; < 2Pn/(1-27n) < y/2a
fori=1,...,p an& (t,s, x)eD.
If weS,(g), n = p, then

/

Li(y—p(t)— j!f(t, s, u(s))dsl
0

< lu@-pn—- E)[lg(t, s, u(s))dsl+|(j;(g(t, s, u(s))—f(t,s, u(s)))dsl

1
1 2

(j; "g!(t’ S, “(S))—fé([, S, “(5))"ids
t +

= |
1+ [ ot s u) At s, uloMlids =

< -
1 2

+

M=

1
n

1 1 2 1
n st 20 14y/2 2P n

and hence u €S, (f). Therefore S,(g) = S, (f) and 8(S,(g)) < 6(S,,(f) < e
for n > p. Consequently h(g) < e for every ge M such that d(g,f) < ».
This proves that the function h is continuous at each point f € L. Moreover,
h(f) =0 for any feL and, by Lemma 1, L is dense in M. Applying
Lemma 2 of [11], we see that the set {f e M: h(f) > 0} is of first category
in M.

Remark. It is clear that for any fe M

lim 8(S,(f) = O<there is ve C such that for any sequence (u"), u" € S,(f)
forn=1,2,...,u" converges to v uniformly on J.

CoroLLARY 1. The set of all fe M for which there is not precisely one
solution of (2) is a set of first category in M.
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CoROLLARY 2. Let P denote the subset of M consisting of all f € M such that
(1) equation (2) has at least one solution x;

(ii) this solution is unique,

(iil) the solution x depends continuously upon the data, that is if the

sequence (f") = M converges to f and, for n large enough, equation (2) with f"
has a solution x", then x" converges to x.

Then M\P is of first category in M.

3. The generic property of convergence of successive approximations.

For feM and zeC denote by (x"(, f,z)) the sequence of the successive
approximations defined by

x"*1(t, f,z) = p()+ jff(t,s,x"(s,f, z))ds, x°(t,f,2z) = z(1) (teJ, neN).
0

Under the stated hypothesis each x"(-,f, z) is well defined and x"(-,f, z)eC.

Lemma 5. If feL, then for any & > O there exist § > 0 and noeN
such that

Ix"(-,g,2)—vl. <& forn>=ny, geM,d(g,f) <9, and z€C,
where v is the unique solution of (2) on J.

Proof. Let feL, let v denote the unique solution of (2) on J, and
let k,n be the constant from Lemma 3. Suppose that Lemma 5 is not
true. Then there exist ¢ > 0 and sequences (Z), (¢'), (n;) such that z'eC,
g'eB(f, 1/l), n;—> c, and

(8) Ix"(., g",z')~vl. > ¢ for j,leN.

For simplicity put u™ = x"(-, g', z). Denote by Q the set of all teJ such that
'lim u™(s) = v(s) uniformly on [0, t]. Obviously 0e @, because u™(0) = p(0)
A= a

= p(0) for I,n > 1. Let

G'(x)(t) = p()+ [ 4'(t,s,x(s))ds (xeC, teJ),
(o)

and let r, = sup {IG'(x)—F(x)l.: xeC}. Since d(g',f) < 1/I, by () we see
that the numbers

ry = sup {||GH(x)—F;(x)]l;;: xeC} -0 as -

for every ieN. As

this shows that lim r, = 0.
-
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Choose 6 > 0 such that w(d) < /6, where w is defined by (1). Assume

that ge Q. Let h = min (a, g+ ). Next choose n,, [, in this way that r, < 5/6
for | = l,, and

9) ™ ()—v() < /3 for n>ny, 1 > 1, and te[0, q].
Then for n = ny, | > 1, and te[q, h] we have
W™ (t)—v (O < W ()—u™ (g + " (q)—v(g)l +1v(g)—v ()
< 13+ (@)+IG W YO —F W~ ")l +
+1F (0~ (@)= F ("~ M) (QI+IF (1 ()= G ("~ ) (g)]
< n3+w(d)+2r+w(d) < n,
and hence, by (9),
(10) u"()eB(v(t),n) for n=ng, | =1, and te[0, h].

Now we shall show.that

n—ng—1 n—ng
(1 L™ () —v()] < "1(1+kt+ o+ (kt) )+ (kt)

(n—no—l)! (n—no)!

for n > ny+1, 1> 1, and t€[0, h].
By (10) and (6) we have

IF: (") ()= F;@)@)ll; < [ k" (s)—v(s)ds < knt  for ieN,
0

so that

IF (") ()= F(o)()l < knt  for | > I, and te[0, h].
Hence

n0+l,l

1O ()= v (0l < 1GH (") ()= F (") (N +1F (") (1)— F (0) (o)1
<

ri+knqt for I > 1, and te[0, h].
Suppose that (11) holds for any n > n,. Then, using (10) and (6), we obtain

IF: (" ) (6) = Fi @) (0)ll; < jklu"‘(S)—v(S)ldS
0

1 n—ng~1 n—ng
< jk(r,(l+ks+ e (ks) )-}—n (ks) )ds
(o]

(n—ny—1)! (n—ng)!
_ (kt)z (kt)n—no ) (kt)n—no-'-l
= r,(kt+ Y + ... + (n—ng)! +n =g+ 1)!

for each ieN, which implies

n—ng n—ng+1
IF"* ")) —F@) Ol <, (kt+ (ke >+ (ko

T (n—nyg)! 7 (n—no+1)!
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for | > I, and te[0, h]. By the inequality
" M () —v (O < IG' (™) () — F ™) (1 +1F (™) (1) — F (v) (1)1
< F+F (™) (1) — F (0) (o)1,
this implies (11) for n+1. From (11) it follows that

‘lim u"(t) = v(t) uniformly on [0, min (q+4, a)].
A
As 4 does not depend on g and 0eQ, this proves that

'lim u(t) = v(t) uniformly on [0, a],

in contradiction with (8). Hence Lemma 5 is true.
THEOREM 2. Let K be the subset of M of all those feM such that

the corresponding sequence (x"(t, f, z)) of the successive approximations con-
verges uniformly in (t,z)eJ x C. Then M\K is of first category in M.

Proof. Put q(f) = lim sup Ix"(-, f, z)—x™(-, f, 2)l. for feM. Assume
ma—~® O

that feL. Let v be the unique solution of (2) on J. From Lemma 5 it
follows that for any ¢ > O there exist noe N and é > 0 such that

Ix"(-, g,z)—vl. < ¢/2 for each geB(f,d), n > ny and zeC.
Hence
Ix"(-,g,2)—x"(-,g,2). < e for each geB(f,d), m,n = n, and zeC,

which implies gq(g) < ¢ for geB(J, 8). As, by Lemma 5, q(f) = 0 for feL,
this proves that the function g is continuous at each point fe L. Moreover,
by Lemma 1, the set L is dense in M. Applying Lemma 2 of [11] we see
that the set {feM: q(f) > 0} is of first category in M. Obviously,
M\K = {feM: q(f) > 0}, because g(f) = 0 is equivalent to the convergence
of (x"(t, f, z)) to a solution x, of (2) uniformly in (¢,z)eJ x C.

THEOREM 3. There exists a subset Mo, of M such that the set M\M,
is of first category in M and for every feM, the successive approximations
x"(t, f, z) converge uniformly in (t, z)eJ x C to a unique solution x(-, f) of (2).

Proof. Let H = {feM: lim 6(S,(f)) = 0}, and let K be the set from
Theorem 2. Then My, = H K.

CoroLLARY 3. For any fe M, there exists a metric d; in C such that
d; is equivalent to the metric generated by l-l., and the integral mapping
F, corresponding to f, is a contraction in the metric space {C,d,).

Proof. This follows from the Gerstein—Sadowski theorem ([10], Theorem
3.5, p. 58).
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