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Nodes of eigenfunctions of a certain class
of ordinary differential equations of the fourth order

by JAN BOCHENEK (Krakéw)

Abstract. In this paper we shall consider the problem of eigenvalues and eigen-
funotions for a certain class of ordinary differential equations of the fourth order
with boundary conditions of the first kind. We prove some theorems abouft multi-
plicity of zero-points of eigenfunctions and about multiplicity of eigenvalues. Finally
we prove the main theorem: The n-th eigenfunetion of this problem has in interval
(a, b) exactly m— 1 zero-points.

Introduction. Let 9 be the set of functions of clas C*[a, b]) satis-
fying the following boundary conditions:

(1) u(a) = u'(a) = u(b) =u'(b) = 0.
Consider in M a differential operator of the fourth order of the form
(2) Lw = LyL,u,

where L,p (kK = 1, 2) denotes the following differential operators of the
Sturm-Liouville type, i.e.

(3) Lyp = —[pr(2)¢') + (@) (B =1,2).

Let us assume that p,(x)eC* '([a, b]), q,(2)cC**([a, b]), pi(c)
> 0, q,(x) = 0 for ze[a, b].

‘We shall consider the eigenvalues and eigenfunctions for the differ-
ential equation '

(4) Lu— po(w)u =0
with boundary conditions (1), where Lu is defined by (2), u is a real para-

meter, and ¢(x) > 0 is a continuous function in [a, b].

DEFINITION. We say that a real number 1 is an eigenvalue of prob-
lem (4), (1) if there exists a function u(x) # 0 on M such that (4) holds
for u = A, u(x) is called an eigenfunciion corresponding to the eigenvalue A.

The present paper deals with some properties of eigenvalues and
eigenfunctions of problem (4), (1).

Our main theorem reads as follows:
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"Under some assumptions about the operator L in equation (4), the
n-th eigenfunction of problem (4), (1) has in interval (a, b) exactly n —1
zero-points (see Theorem 6).

1. The auxiliary lemmas and theorems. Let f(®) be a continuous
function in [a, b]. Put

A = {z:ze(a, b); fw) =0} (cf. [B]).

A is the sum of separate intervals closed in (a, b). Let M denote the
set of all subintervals in 4. M = M, +M,, where M, contains subin-
-tervals reduced to a single point or such, which are not closed in [a, b],
M, = M—M,. Let us put

1+2k if M, and M, are finite sets,

+ 00 if M, or M, is an infinite set,

Z(f) =

where ! and % represent- the powers of M, and M, respectively. If f(x)
has a finite number of isolated zero-points in interval (a, b), then Z(f)
denotes this number.

LeMMA 1. If f(x)e I has only a finite number of isolated zero-points
in (a, b) equal to 3 (with multiplicity at most 4), then the number of zero-
points of function h(x) = Lf(x) is equal at least to (s+r), where r denotes
the number of zero-points of the fumction f(z) in (a, b) with multiplicity
greater than one.

Proof. Let a =m< o, < ... <2, <@, = b denote zero-points
of f(x) in [a, ). Put g(x) = L,f(x). Since the multiplicity of x, = @ and
., = b is at least 2 then, by Lemma 2.3 and Theorem 3.1 of [5], we
have Z(g) > s+r+2. Let #,, %5, ..., ., be zero-points of g(x) in (a, b),
where a <t <t,<...<?t,,.<b By Lemma 2.4 of [5] applied to
g(x) in the interval [t,, t,,,.s], we have that A(x) = L,g(x) has at least
s +r zero-points in (#;, f,,,,s). On the other hand, we have h(x) = L,g(»)
= L,L,f(x) = Lf(x) and (¢, t.,,.2) < (a,b), thus A(x) = Lf(x) has
at least s 4-r zero-points in (a, b), which completes the proof.

LEMMA 2. If f(x) satisfies the assumptions of Lemma 1 and the mulii-
plicity of a or b is 3 or 4, then Z(Lf)=>s+r+1 (8, r as in Lemma 1).

Proof. Let a =g <2 <...<®, <@, =b be zero-points of
f(x) in [a,b]). Write g(x) = L,f(x). Suppose that the multiplicity of a
is 3 or 4. Of course « is also a zero-point of g(z). By Lemma 1 g(z) has
at least s +r -+ 2 zero-points in (a, b), and g(a) = 0. Applying Lemma 2.4
of [5] to g(x) in the interval [a,?,, ., .], we have that h(z) = Lf(z)
= L,g(x) has at least s4-r+41 zero-point in (a, ,,,.,). By reasoning as
in Lemma 1, we have Z(k) > s+r+1. The proof is analogous for b of
multiplicity of 3 or 4.



-Nodes of eigenfunctions 351

LeMMA 3. If f(x)e M, then Z(Lf = Z(f).
The proof of this lemma is quite similar to that of an analogous
lemma in [5], and is omitted.

2. Multiplicity of zero-points of eigenfunctions and multiplicity of
eigenvalues of problem (4), (1). Let «(2) be an eigenfunction of problem
(4), (1). By the well-known theorem on the uniqueness of solution of Cau-
chy’s problem for equation (4), we have that »(z) has no zero-point of
multiplicity greater than 3 in {a, b], and that the number of zero-points
of u(x) in [a, b] is finite.

We shall prove the following:

THEOREM 1. If u(z) is an eigenfunction of problem (4), (1) correspond-
ing to an eigenvalue 2 + 0, then all zero-poinis of u(x) in (a, b) are single.

Proof. Suppose z,e(a, b) is a zero-point of w«(x) with multiplicity
greater than one. By Lemma 1 we get Z(Lu)> Z(u)+1. On the other
hand, according to (4), we have Lu(x) = A¢(z)u(z). Since g(x) > 0 in
[a,b] and A # 0, Z(Lu) = Z(u)—a contradiction.

THEOREM 2. Under the assumptions of Theorem 1, the points a and b
are the zero-points of w(x) with multiplicity equal to 2.

The proof of the above theorem follows from Lemma 2, the same
a8 Theorém 1 follows from Lemma 1.

THEOREM 3. Any two eigenfunctions of problem (4), (1) correspond-
ing to the same eigenvalue A = 0, are linearly dependent.

Proof. Let «(x) and v(x) be two eigenfunctions of problem (4), (1)
corresponding to an eigenvalue 1 * 0. Suppose u(x) and v(x) are linear-
ly independent in [a, b]. Put w(x) = u(2) — au(x), where a = u'’(a)/v" (a).
Suppose w(x) #0 in [a,b], and w(a) = w'(a) = w' ' (a) = 0. Hence
w(z)e M, and satisfies (4) for u = A. This means that w(w) is an
eigenfunction of problem (4), (1) corresponding to a eigenvalue A # 0,
which has at the point a a zero-point with multiplicity at least equal 3.
We obtain a contradiction with Theorem 2.

Theorem 3 implies

COROLLARY 1. Every mon-zero eigenvalue of problem (4), (1) is a single
eigenvalue.

In the sequel we shall need the following lemmas. )
LEMMA 4. Suppose {f,(x)} is a sequence of functions suck that:
1° fa(@)e W5

2° {fu(@)}, {fu(@)} and {f, (®)} tend uniformly to f(), f'(v) and f"(x)
respectively;

3° f(w)e M and f(x) has p zero-poinis in (a, b), p < oo, which are
not zero-points of f'(x) and f”'(a)f"(b) # 0.
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Then the number of zero-point in (a, b) for every f,(z), for sufficiently
large n, is equal to p.

The proof is similar to the analogous lemma in [1], and is omitted.
LemMvA 5 (cf. [5]). Let {f,(x)} be a sequence of continuous functions
in [a, b] tending uniformly in [a, b] to the function f(x) of class C'([a, b]),
and let f(x) have a finite number of single zero-poinis in (a, b). Then for
sufficiently large n we have Z(f,) = Z(f).
" Let Uy (E)y W1 (B) 5 +. vy Up(®) (n = m) be eigenfunctions of problem

(4), (1) corresponding to eigenvalues A,,A,,1,...,4,, Where 0 < |4,]
< NAmp1l < oo < |A,|. Put

(5) flz) = cmum(w)_'"cm—i-lum-l-l(-m)—{“ e T Cu UL (2),

Cms Cmy1y +-»3 G, Deing real constants such that ¢, +¢,,+ ... +¢2 >0
and ¢,e¢, # 0.
Analogously as in [1] we shall prove the following:

THEOREM 4. If f(x) denotes the function defined by (5), then we have
(6) Z () < Z(f) < Z(uy)
Proof. It follows from (5) that f(x) satisfies the assumptions of

Lemma 3. Let us put

A
Lf(@) = —= enUn(®) + ... +0,%, ().

file) = hol@ 7

By Lemma 3, we get Z(f,) > Z(f) f,(«) has the same form as f(z)
and satisfies the assumptions of Lemma 3. Applying again Lemma 3 to.
fi(x), we have for

A 2
1(0) = (2] ontnl@) + ... +0ata(0),

the inequality Z(f,) = Z(f,).
Proceeding thus further we get an infinite sequence of functions

(7) J (@), fr(2), f2(2), ...,

for which the number of zero-points does not decrease with the increase
of the index.

Put

Y Ami1)
(8) f(@) = N O U (€) + 2 Cm1Umi1 (B) + oo 0% (2).
(2 (]

Since |4,/4,| <1 (s =m,m+1,...,n—1) and u,(x), u,(z) and u, (x)

(s =m,m+1,...,n—1) are bounded in [a, b], we find that (7) and its
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f
limit ¢,u,(z) (for »— + oo) satisfy the assumptions of Lemma 4. Hence

(9) Z(f) < Z(w,).
The inequality
(10) Z(ug) < Z(f)
is proved in a similar way by putting
Am Am
g1(2) = CpUp (@) + P Ot Umr(®) + .00 + Tn Cn Un (@)«

We verify that Lg, () = 4,, o (@) f(x). Because g, () satisfies the assump-
tions of Lemma 3, Z(g,) < Z(f). Similary we construct the functions

(11) gv(w) = o'mum(m) + (llm ) cm+1um+1(m)‘+ b + (;'_m) cn'u‘n(m)’

m+1 }'n
such that
Ly, () = Apo(®)g,_1 (@), v =2,3,...

By reasoning similarly as in the proof of (9) we get inequality (10),
considering that for the functions of sequence (11) the number of éach
of their zero-points does not increase with the increase of the index. But
inequalities (9) and (10) are just the thesis of Theorem 4.

THEOREM 5. Let u(x) and v(x) be eigenfunctions of problem (4), (1)

corresponding to the eigenvalues A and u respectively, where |A} < |u|. Then
we have the inequality

(12) Z(u) < Z(v).

Proof. By Theorem 4 we have Z(u) < Z (v). Suppose that Z (u) = Z(v),
and let w(x) = u(x)—9yv(x), where y = u''(a)/v''(a). By definition of
w(zx) we get w(a) = w'(a) =w''(a) = 0. By Theorem 4 we have that
Z(w) = Z(u) = Z(v). Since a is a zero-point of w(x) of multiplicity of
at least 3, by Lemma 2 we get Z(Lw) > Z(w)+1.

Let us put

wy (@) =

A
oy @) = @ =),

whence Z(w;)> Z(w)+1 = Z(v)+1. Applying Lemma 3 to w,(z) we
get the inequality Z(w,)> Z(w,), where

w0y (@) = (%) w(@) — yo(a).

Proceeding thus further we get an- infinite sequence of functions

(13) w(2), w1(2); wa(2), .-,
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for which
(14) Zwy=2Z(w,_))=Z(w)+1 =Z((v)+1, »=2,3,...,

where
. 1\
w,(z) = (7) w(z)—yv(x), »=2,3,...

On the other hand, since the sequence (13) and its limit yv(«), for
y— -+ oo, satisfy the assumptions of Lemma 4, we find that Z(w,) = Z(v)
for sufficiently large », which contradicts (14).

4. Nodes of the n-th eigenfunction of problem (4), (1). Let us make
some additional assumptions:

ASSUMPTION Z. The operator L in equation (4) is symmetric and posi-
tive definite in M, d.e.

(Lu, w) = (u, Lu) > p(u, w) for ue M, > 0.
Remark 1. Assuinption Z is satisfied .if for instance we have p,(x)
= py(z) > 0 and ¢,(z) = ¢q,(x) = 0 for ze[a, b].

It is known (cf. [4]) that if Assumption Z is satisfied, then there
exists an infinite sequence of eigenvalues of problem (4), (1)

(15) 0<11<12<13<-.-’ ljmln=+w
and a corresponding sequence of eigenfunctions
(16) Uy (@), s (), Us(@), .0y

which form a complete system in ZL,([a, b]).
By Theorem 3 we have that (15) is a strongly increasing sequence.
According to Theorem 5 we get the inequality

(17) Z(u)>n—1.

Our main pourpose now is to prove that Z(u,) = n—1.
We shall prove the following:

THEOREM 6. Let Assumption Z hold. Then the n-th eigenfunction u,(x)
of problem (4), (1) has exactly n—1 zero-points in (a, b).

Proof. By (17) it is sufficient to prove that Z(u,) < n—1 for each n.
Suppose that there exists n = m such that Z(u,,) > m. Let us denote
zero-points of u, () in [a,b] by a =, <z, < ... <2, =b. Put

Up(®) in [z;,_,, x],

(18)  Uy(a) = 0 in [a, b]—[%;_,, %],

j=1,...,m+1.
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It is evident that U,(«),..., U,,.(2) are linearly ‘independent in
[a, b]. Put

-(19) p(@) = e, Us(@)+ ... +Cpy Unia(@),
where ¢,, ..., Gy, are real numbers such that ¢; + ... +¢,.; > 0, and ¢p(=)
is orthogonal to u.(x), ..., 4, (2} in L,([a, b]), 1.e.
(20) (pyug) =0, ¢ =1,...,m.

Let us note that ¢(x) defined by (19) is continuous in [a, b], and
(21) Z(p) < Z(uy,).

Hence it can be expanded into Fourier’s series of functions (15)
convergent in the norm of L,([a, b]).

By (20) we get

(22) p@) = D aul), a = (g u).

k=m+1

We can assume that a,. , # 0.
By [5] we find that the function

A
(23) @) = D) ( ™ )akuk(m)

k=m+1 k

is an element of M, since the series in (23) is uniformly and absolutely
convergent in [a, b], and that

- Loy (@) = Apy10(2)p(2).
Hence by Lemma 3 we get Z(¢p,) < Z(gp). Let us put

(24) ‘P-(w)' = Z (lm+l)v am(z), »=2,3,...

A
k=m+1 k

The following holds

Lo, () = i@, (2)y, »=2,3,...
Hence

(25) Z(@) = Z(pl) = Z(gs) = ..

It follows from the definition of the sequence (24) and from previous
remarks, that {g,(x)} tends uniformly to a,,;%,. (%) in [a, b]. Since
e,+1 7 0, by Lemma 5, from (21) and (25} we find that

(26) Z(Up) > Z(@) > Z(tn11)s

which contradicts Theorem 5.
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COROLLARY 2. When Assumption Z holds, the first eigenfunction of
problem (4), (1) does not vanish at any point of the interval (a, b).

Remark 2. Corollary 2 contradicts the theorem of paper [3] in
the case of an ordinary differential equation of the fourth order.
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