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differential equations of the first order in a special case
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Abstract. Basing ourselves on the characteristics of solutions of single first order
partial differential equations, we give the definition and certain properties of the
characteristics of the system

(1) P =0z, ¥,Z,28) @G=1,2,..,m),

where ¥ = (¥, .-, ¥n)» Z = (20, ..., s™), 2@ = (z(:i, ...,z}f’). We base ourselve
on T. Wazewski’s paper (8], where a metod is shown for the c%nstruction of the solu-
tion of system (1) as the limit of sequences of solutions of single partial differential
equations.

We give here the following theorems:

1. Assume that:

(a) The functions fC&)(z, ¥, Z, Q) are of class C in the convex domain 2 of the
space x, Y, Z,Q and lfg)|< M for (z,Y,Z,Q)eQ.

(B) The solution Z(z, Y) of system (1) ¢8 of class O in A = {(z, X): |z — %l < a,
ij—;j|< bj—M|x—xzyl} and the derivalives z‘}(w, Y) fulfil the Lipschilz condition
with respect to Y.

(n  JP@ ¥, 2, ¥), 2P @, 1) = fD(e, ¥, Z(z, ¥),:P(x, Y))

=... =fg':)(x, Y,Z(z, X), 2P, X)) (k =1,2,...,n).

Under these assumplions the solution Z(x, ¥) is generated by characteristics in
the set A.

2. Assume that

1) functions O fulfil («),

2) the solution of the characteristic system is uniquely defined by the initial con-
ditions,

3) the solutions U(z, ¥) and V(z, ¥) fulfil (B) and (y),

) UE, 7)) =7E 7)), vz, 7)) =08@E, Y), & Ped.

Under these assumptlions the solutions U(x, ¥) and V(z, Y) have a common
characteristic issuing from the point (%, ¥, U(z, ¥), Pz, ¥), ..., v &, 7).

The characteristics of partial differential equations play an important
part in the investigations of properties of their solutions. In paper [1]
the definition of characteristics has been extended to certain systems of
partial differential equations of the first order of the form

(1) z(zi)=f(i)(m7 Y,Z,z(}‘) (¢ =1,2,...,m),
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where ¥ = (41, ...,¥a), Z = (29, ..., 2™), 2§ = (2}, ..., 2{)). The same
paper gives the basic properties of characteristics, constituting generali-
zations of known theorems on the characteristics of a single partial differ-
ential equation.

In the present paper we shall investigate the position of characteris-
ties with respect to the solutions Z(z, ¥) = (2" (z, ¥), ..., ™ (2, X))
of system (1). In the first part of the paper we shall discuss briefly, the
basis of [1], the construction of the characteristics of solutions of system
(1) fulfilling certain additional conditions. Theorem 3 forms the main
part of the paper, giving sufficient conditions for a solution Z(z, Y)
of system (1) to be generated by characteristic. Theorem 3 is a generali-
zation of Theorem 3 of [1], p. 66.

I. We shall now show briefly, on the basis of parer [1], the construc-
tion of the characteristic for the solution Z(z, Y) of system (1) fulfilling
certain additional conditions. '

For this purpose we shall make the following

AssumprioN H.
(x) Functions f@(x, Y,Z,Q)(s =1,2, ..., m) are of class C% in the set

(2) -zl < a, Y,Z,Q — arbitrary,
where a >0, @ = (¢y, ..., ¢), and

ofe® afr® are® 9@ |

Oy | | 029 | ‘ o |” | 0920y,

02 o2

ai'lkfaz(i) ’ lay{aq; <4
92f1) 0@ 9%

029021 |7 | 921%0¢, |” | 0q,0q,

(¢yj,8=1,2,...,m, k,1,=1,2,...,n), where M > 0.

(8) Functions (o™ (Y), ..., o™ (X)) = Q(X) are of class O2 for amy
arbitrary Y and

| 90
l 0Yx

= = ’

‘ 920
0y, 0y |
(t=1,2,...,m, k, 1 =1,2,...,n).

Remark 1, If assumption H is satisfied, then it follows from Theorem 1
of [8], p. 113, that there exists a solution Z(x, Y) of system (1) fulfilling
the initial condition

(3) Z(xo, Y) = Q(Y)
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for any arbitrary Y. The solution Z (x, Y) is of eclass C! in the set
(4) lo—@| < b, ¥ — arbitrary,
where b = min(a, p, ¢), and p is the root of the equation with respect to »

z [ 1
NA+Nn+N)[é  do=—,
° n

whereas
N = M1+ 3mr 4 m2r?),

_
2(m+n)’

A(t) = N+2nN(1+N)eV,
¢ ={4M(m+n)[1+2M(m+n)]}~"

This solution can be obtained as the limit of sequences of functions
P (x, X), ..., "=, ¥)) = Z;(#, ¥Y) (A =0,1,2,...) defined in the
following way:

r=2M+4

Zo(2, Y) = Q(Y),

whereas functions 2 (z, Y), where 1 = 1, 2, ... are solutions of equations
a2 92" 02%
{5) Y =f“)($, Y, Z, (2, Y), oy, ' ay”)

fulfilling the initial conditions
(6) (@, Y) = o(Y).

Functions 2{) (z, Y) are defined in (4) and are of class C? in (4) and
in an arbitrary closed and bounded domain enclosed in (4) the sequence
{z)(x, Y)} and the sequences of partial derivatives

{azgi)(wa Y)} {02?)(93, Y)}
ox ! ayk
are uniformly convergent to the function 2((z, ¥) and its derivatives

029 (x, Y) 079 (z, Y)
ox 0Ys
respectively.
We shall now define sequences of characteristics corresponding to
single partial differential equations obtained from (5). With the help

of these sequences we shall define the characteristics corresponding to the
integral of system (1).
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For this purpose we shall choose in each of the spaces x, Y 29, Q("

fori =1,2,..., m, where @) = (¢, ..., ¢¥), the point P;(,, Y 2® Q(ﬂ)
(T = @y ey )y Q9 = (g0, ... (‘>)) and assume that the functions
2(Y) satisfy, apart from assumptlon H, also the following conditions:
(7) WO(T) =50, WoP(X)=QO (i=1,2,...,m).

Let us now fix an index 1 > 1 and assume that the functions
(8) &Mz, X),..., ™ (2, T),

where | =1,2,...,A—1, are known. In this case each of equations (5),
for ¢« =1, 2,..., m, with the initial condition (6) can be solved indepen-
dently of the remaining ones.

Let us consider the characteristic system of ordinary differential
equations corresponding to equation (5) E

‘fl?/wk (‘)(8510) (k =1,2,...,n),
de) N
(9) o =0 DAy,
> 020 (2, Y)
i) Q) ) QD) A1\, 1)
= fid(89) — ;fé(l)(ss. )——ayk

(k=1,2,...,n),

where 8y = (=, Y, Z,_, (=, Y), Q%)
Let

(10) Y =YP(@), 2=, Q9 =0¢9@),
where
YP(2) = @0 (@), ..., 99 @),  @P(@) = (@ (@), ..., (@),
denote the solution of system (9) satisfying the initial conditions
Y (a) = -%7 27 (w) = ;(ﬂ’ QY () = Qo(‘)-

Assumption H is satisfied and functions (8) are of class C2 in (4);
therefore exactly one solution (10) of system (9) will pass through any point

0 0
Py(2,, ¥,29, Q). As the integral
(11) 29 = (2, X)

of equation (5) fulfilling the initial condition (6) is of class C% in (4), it
follows from Theorem 1.4 of [6], p. 22, that the characteristic (10), which
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in the sequel will be denoted by CY, is situated on surface (11), which
means that )

o)z, TP@) k,
=0 W)

(12)  #lz, Y (2) = & (a),

k=1,2,...,n).

Now taking for 1 the successive values 1,2,..., we shall obtain
forany i = 1,2, ..., m a sequence of differential equations (5) and a se-
quence of characteristic systems (9) connected with it and also a sequence

, 0 o 0
of characteristics Cf issuing from the point P,(x,, ¥, 2, @¥).
Let
(13) Y =Y%), & =:0), @Y =¢%a),

where  Y9(a) = (39(a), ..., ¥(2)), @(2) = (¢*(2), ..., 1"(2)), denote
the solution of a system of ordinary equations

%Z —q::)(s‘i)) (k =1,2,...,n),
y a £9( S(i))__j’qgi)ﬁi)(g(i)),
(14) dw A7
a6 N o gy 220 T)
e —fq(,k(s( )+ Zfz(l)(s )—ayk——

i=1

(k=1,2,...,m),
where 8% = (¢, Y, Z(z, Y), Q%), fulfilling the initial conditions

0 0
(15) YOm) = ¥, @) =29,  QOa) = @¥.

The properties of the curves C{) and of the solutions (13) of system
{14) are given in Theorem 1 of [1], p. 55, which we shall quote here without
proof as

THEOREM 1. If assumption H holds, then the curve (13), which in the
sequel will be denoted by CY, is the unique solution of the system of differen-
ttal equations (14) fulfilling the initial conditions (15). Moreover, the sequence
C) is for A—>oo uniformly convergent to C% in an arbitrary closed interval

(16) | — @] < b,

where 0 < b’ < b.

DeFINITION 1. The set of curves (CV, ..., C™), any of which is the
limit of a sequence of characteristics O almost uniformly convergent
in the interval (z,—b, =, +b), is said to be the quasi-characteristic corres-
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0 0
ponding to the system of points P;(x,, Y, g("), Q%) and the solution Z (z, Y)
of system (1).
Remark 2. It follows from Theorem 1 that if assumption H holds
and the solution Z(x, Y) of system (1) is known, we can obtain the
quasi-characteristic (C"), ..., C™) corresponding to the set of points

0 o 0
Pywy, ¥,29,Q9) (i =1,2,...,m) by solving m systems of ordinary
0
differential equations (14) with initial conditions (15), where 29 and Q¥
satisfy equalities (7).
For quasi-characteristics we can give the following geometrical

interpretation:

For each ¢ =1,2,...,m the first »n+1 equations of system (13)
form a characteristic curve situated in the space z, Y, 2¥), whereas the
remaining » equations form at each point of this curve a set of directional
coefficients of the tangent plane.

Remark 3. If assumption H holds, then the quasi—qha,ra,cteristic
(€W, ..., C™) corresponding to the integral Z(z, Y) of system (1) is
situated on this integral, which means that

29w, Y("’(w)) = 2x),

e, T(2)) = QO2) (i =1,2,...,m)
for xe(xy—b, ¥, +b). This follows from (12) and from Theorem 1 of [8],
p. 113.

0 [

Remark 4. To a fixed set of points P;(x,, Y,g"'),Q(") and two
different solutions Z(z, ¥) and Z(x, Y) of system (1) different quasi-
characteristics can correspond, as can be seen from the following example.

ExamMpPLE 1. Given a system

D = 1420 —a* —siny —cosy + 29— 2,
zf,f) = 2.
The functions

(17)

2V(@,y) =14+ 22+ cosy —siny + sin(y — ) — cos(y — ),

18) Nw,y) = x?

aro solutions of the given system and satisfy the following conditions:

2(0,y) =1, 29(0,y) =0,
The fu_nctions
2 (@, y) = cosy +a2,

(19) 7z, y) = w2+ cosy—1
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are also solutions of the same system and satisfy the initial conditions

\-

(0, y) = cosy, z(0,y) = cosy—1.

It follows that the curve OV issuing from the point P,(0, d, 1,0)
corresponding to solution (18) has the form

AV = g 427 + cosx — sinz,

y=a .
" ¢ =1—sinz—cosa,

whereas the curve C) issuing from the same point but corresponding to
solution (19) has the form

y=w, 2 =2z*4cosz, ¢ = —sinz.

Thus two different curves ¥ and C' can correspond to two different
integral surfaces having a common point P,(0, 0,1, 0).
Therefore it is not sufficient for the definition of a quasi-characteristic:

0 0

(€W, ..., C™) to give a set of points P;(,, Y,zo“),Q(")) (t=1,2,...,m)
through which the curves C® should pass. We have to establish also a solu-
tion of system (1) fulfilling conditions (3) and (7) on which the quasi-
characteristic should be situated.

The above example shows also that two solutions Z(x, Y) and Z(z, Y)
of system (1) which are of class O° for any x, Y and fulfil at some point.
P (%, Y) the equalities

Z(®,Y)=2%2(%,Y), E7Y)=3HF7TY) (@=12,..,m)
do not necessarily have a common quasi-characteristic corresponding to-
the same set of points P;(%, ¥, (%, Y),PZ,¥) (i =1,2,...,m).

Further properties of quasi-characteristics are given in the following
theorem.

THEOREM 2. Assume that the functions fO(x, ¥,Z,Q) (i = 1,2, ..., m)
and Q(Y) fulfil assumption H and that Z (z, Y) 18 an integral of system (1)
fulfilling the initial conditions (3).

Let us denote by (CV, ..., C™) the quasi-characteristic situated on

this mtegml and corresponding lo the system of points P;(z,, Y 20 Q(‘))

where Y z(') Q(‘) fulfil equalities (7). Furthermore, let us assume that for
any (r, Y) of the set (4) the following equalities are satisfied:
20)  fO(e, Y,Z(z, T), & (2, Y))
= qk)(w’ Y,Z(2, Y), & (o, Y))
= file, ¥, Z(z, Y), & (z, X))
(k=1,2,...,n).
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Under these conditions the quasi-characteristic (CV, ..., C™) posses-
ses the following properties:

1° The projections of the curves CY) onto the space x, Y are identical
for all C® (i =1,2,...,m) (to define a quasi-characteristic it is therefore
sufficient to quote the equation ¥ = Y (x), where Y (x) = (4,(2), ..., Y, (),
the common projection of the curves (CV, ..., C™) onto the space x, ¥ and
the fumctions 2V = 292, Q¥ —=@WNz), ¢ =1,2,...,m).

2° The functions
(1) Y=Y(@), Z=Z@, Q=9"a),..,e" =¢" (),

where Z(x) = (M (2), ..., 2™ (@) form the solution of the system of ordi-
nary differential equations

d .
B 0@, Y,2,¢"  (k=1,2,...,m),
ad N _ '
(22) -d—m =f()(m’.Y,Z3 Q(l))_j;:qy]zi)(m, Y,Z,Q(l)) (i=1,2, ey m),
dg? N

@ ~ e Y, 2,00 - ) i@, ¥,7,Q%)

(i=1,2,....,m, k=1,2,...,%)

fulfilling the initial conditions
0. 0 0 0

Y(2) =Y, Z(=x) =27, Q(l)("”o) = Q(l)a ceey Q(m)(%) = Q(m)y

0 0 0
where Z = (&Y, ..., 2™),
Basing ourselves on the above theorem we can define the character-
“istics for the solution of the system of partial differential equations (1).

DEFINITION 2. Assume that Z(x, Y) is the solution of the system of
differential equations (1) fulfilling conditions (20) in the domain D of the
space z, Y and that (%, Y) is a point belonging to D. Any solution (21)
of the system of ordinary differential equations (22) fulfilling the initial
.conditions

Y@ =Y, 2@ =2, Q'@ =@q",...,9™ @ =™,
where Z = Z(%,Y), @ = 20(z, ¥) for ¢ =1,2,...,m, will be referred
to as the characteristic corresponding to the solution Z(z, Y) of system (1).

We shall quote an example of a family of characteristics correspond-
ing to the solution of a system of partial differential equations.

ExaMpLE 2. Characteristics situated on the solution

(23) fMNa,y) =y +1, P z,y) =22+
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of the system of differential equations

% = (-2 -y )N,

& £ =20+ (M — 20 4 20° + ' — 1) (&) — 2]

are solutions of the system of ordinary differential equations

W e oy,
1

-,

d=®

(25) o = 20— (¢¥) () — 227 + 20 + 7 - 1),

D

U Or(—2y+0),

dq(z) 2)\2 2) 1) 2)

L [+ a1y + ¢ - 26,

because in this case

(26) .ql)(my?/, z(l)(a’a?/)az‘z)(w’?/)’ zﬂ)(wy y))
=f;2)(w’ Y, z(l)(wv Y), 3(2)(3;1 Y), zg)(wv ."/))-
Each of the characteristics given by the equations

— z(l)_: 2+1 z(2)=m2_|_ 2
(27) Y 75 o n 7(2) N,
¢’ =2y, ¢° =2n,

where 7 is an arbitrary constant, is situated on the solution (23) of system
(24).

II. We shall now give a sufficient condition for the existence o
a common characteristic for the integrals U(z, Y) = (u(2, ¥),...
ey u™(2, Y)) and V(z, ¥) = (" (x, ¥),..., o™ (2, Y)) of the system
of partial differential equations (1).

First of all we shall adopt the following definition of generating the
solutions of system (1) by characteristics.

DEriNITION 3. We shall say that the solution Z(x, Y) of system (1)
defined in the set A4 given by the inequalities '

0
28) |z —@ol < @, 1y, —9;| < b;—M|z— 2, (j=1;21'--7n)!

2 — Annales Polonici Mathematici XXIX.3
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where a > 0, b; > 0, a < b;/ M, is generated by the characteristies if for
any point P(%,Y,Z,QY,...,Q"™), where (Z,Y)ed and Z = Z(z, 7Y),
Q¥ = Az, Y), there exists a solution (21) of system (22) such that

1) Y(@) =7,

2) the functions Y () are defined on the interval {(z,, ) or (%, z,)
(depending on whether zZ > z, or z < z,),

3) Z(x, Y(2)) = Z(w), (@, Y (@)) =QP(x) (i =1,2,...,m) for
Tely, T) (OF T, Ty)).

Remark 5. Definition 3 is a generalization of the definition of gen-
erating by characteristics the solution of a single partial differential equa-
tion given in [7], p. 3, to the case of a system of partial differential equa-
tions.

We shall now give a theorem containing a sufficient condition for
the solutions of system (1) to be generated by characteristics. It is & gen-
eralization of Theorem 3 of [1]. An analogous theorem for a single equation
can be found in [6], p. 38.

THEOREM 3. Assume that

(x) The functions fP(x, Y,Z,Q) (i =1,2,...,m) are of class O
in the convex domain 2 of the space x, Y, Z, Q, the projection of which onto
the space x, Y contains domain E. The set A defined by inequalities (28)
i8 contained in E. Moreover,

(29) <M (E=1,2,...,m,j=1,2,...,n).

(B) The solution Z(x, Y) of system (1) defined in E is of class C* in E
and the points (v, Y, Z(z, Y), 29 (%, X)) belong to 2 for arbitrary (v, Y)eE
and © =1,2,...,m.

(y) The derivatives 22 (z, ¥) (i =1,2,...,m) fulfil in E the Lip-
schitz condilion with respect to Y.

(8) The solution Z(x, Y) fulfil conditions (20) for (x, Y)eE.

Under these assumptions the solution Z(xz, Y) of system (1) is genmer-
ated by characteristics in the set A.

Proof. Let us denote by Y = Y (2) the solution of the system of
ordinary differential equations

dy; : ;
(30) F _ft(ul)(‘vi Y,Z(x, Y), 29 (x, Y)) (t=1,2,...,m)
fulfilling the initial condition
(31) Y(z) = ?,

where (%, Y) is an arbitrary point of 4. It follows from assumptions (a)
and (£) that the curve ¥ = Y (x) is defined in the interval {(a,, Z) (we
assume T > T,; the remaining case is analogous).
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Let us denote by Z(«) and @ (x) the functions
(32) Z(@) =Zz, Y(@), Q9@)=H(o,Y(@) (=1,2,...,m).

We shall demonstrate that the functions ¥ = Y (x) and the functions
defined by formulas (32) are solutions of system (22).

It follows from (30) and (32) that the first n equations of system (22)
are satisfied by these functions.

It follows from (1), (30), (32) and from assumption (3) that

M‘) dyj (m)
dz

= &z, Y(2)+ Zz“’(m Y (2)) L2

= 9z, Y (@), Z(0), " (@) + 2‘ & @@, T(2), Z(2), @ (@)).

Thus the next m equations of system (22) are also satisfied. We shail
now demonstrate that the functions Y (z), Z(2), Q¥ (z) (: =1,2,...,m)
satisfy also the remaining equations of the system.

Let us denote by Q¥ (z, k) = (¢{”(=, b), ..., ¢ (=, b)) the functions

Nz, ¥ (2)+ H,)—2" (2, Y ()

(33) @ (@, h) = .

where » <0, H, = (0,...,0,k,0,...,0) and & is the k-th coordinate
of the vector H,. Then

(34) limgi® (z, b) = #))(x, Y (2)) = ¢ (@)
h—0

and the convergence is uniform with respect to 2 for < {x,, Z).
Differentiating functions (33) with respect to =, we obtain

Mg’ A) 1{[2‘”(3} Y (@) + Hy)— 2 (2, ¥ (2))] +

+Z[z‘"(w, Y (o) + Hy)— 4, (@ ))]} 2,(2)

=1
(35) =%[f“’(m, Y (2)+ Hy, Z(z, ¥ (@) + Hy), 4 (2, Y () + H,))—
—fOe, Y (2), Z(z, Y (@), & (2, ¥ (2)))]—
_%2 [ (@, ¥ (2)+ Hy)—
z“)(m, Y(@)] £ (e, Y (@), Z(z, T (@), B, ¥(a).
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We put
Pz, X,1,h) = (m’ Y+iH,, Z(z, X)+t[Z(x, Y+ H)—Z (2, X)),
z(,li?)(w, Y)—l—t[d@(m, Y+Hk)_z‘1‘7)(w7 Y)])r

where (z, Y)ed, 0 <<t< 1.
Then

(36) ]jh_Ing(-'B, Y(z), ¢, h) = (.’D, Y(m),Z(w, Y(w))’ z(li?)(wa Y(w)))
= (wr Y (x), Z(2), Q(i)(m))y

and the convergence is uniform with respeect to «.
Applying Hadamard’s mean value theorem to the extreme right-
band member of (35), we obtain

dg) (@, )
dw

1 1
-’T{o (')(P,,(m, Y(z),t h))hdt+

+ 2 [f f:{,))(Pk'(m, Y(z),t, h))dt(z‘” (@, ¥ (2) + Hy) — 2Pz, Y(w)))] +

=1 0

+ f F(Pulw, T (@), 8, b)) @) (o, T (2)+ H)— 4z, Y(w))]}

j=10

—2 N 2o, Y@), (e, Y @), &, Y (@) |40 (o, T (@) +H) -

Jm1

—#(a, T(@))] = f £)(Pele, X(2), 1, B))de+

+2 f I (Bule, Y@, 8, )@ o, T (@) + Hy) 2, T@)] 5 +

=1 0

+Z‘ [ (2, Y (2) + H) — 40z, Y (2))]-

U 7O P,,(a:, Y(2),t, h))dt fé}’(-’” Y (%), Z(w, Y(2), 2 (x, Y ))]

It follows from assumption (y) that the fractions

zgfj)(m, Y (z) + H)— z"’(m, (2))
h
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are bounded. Hence from assumption (3) and from (34) and (36) we obtain
in the limit for 2—0

t)
ﬂ% =fi@; Y (@), Z(a), @O(a)) +

+ ) @@ fQ (e, (@), Z(@), @V (@),
=1

which means that the functions Y (z),Z(),Q®(x) (i =1,2,...,m)
satisfy the last mn equations of system (22).

Hence all the conditions of Definition 3 are satisfied and the proof
is complete.

THEOREM 4. Assume that the functions f(x, Y,Z,Q)(i =1,2,...,m)
Julfil assumption («) of Theorem 3 and that the integrals U(z, Y)
= (uz, ¥), ..., ™ (z, ¥)) and V(z,Y)=(W(,X),..., "™ (z, Y))
Sfulfil assumptions (B), (), (38) of that theorem.

Assume further that the solution of system (22) is uniquely defined by
the initial conditions.
Assume furthermore that

(37) U(E_’ 7)——- V(E;YL u‘?(iy ?) =‘v(1’)(57 1_’) (7' =1,2,-'-7m)’

where (%, Y)eA.
Let

(38) Y=Y(@), Z=Z@=x), @=0%) (=1,2,...,m)
denote the solution of system (22) satisfying the initial conditions
(39) Y(a_’) = 75 Z(E) =Z: Qw(i) =Qﬁ) (i =1727-°'7m)’

where

(40) Z=UxY), @@=z G=1,2,..,m).
Under these assumptions

(41) Ulr, Y (z)) = V(z, ¥ ()

and

(42) u@(z, ¥ (2)) = vz, ¥ () (¢ =1,2,...,m)

for the values of x for which (z, ¥ (z))eA.

Proof. It follows from Theorem 3 that the solutions U(x, ¥Y) and
V(x, Y) of system (1) are generated in 4 by characteristics. As the solution
of system (22) is defined uniquely by the initial conditions, characteristic
(38) satisfying conditions (39) is situated by (37) and (40) simultaneously
on the integral U(z, ¥) and on V(x, Y). Hence follow statements (41)
and (42).



228 Z. Kamont and W. Pawelski

ExampPLE 3. The solution
2(1)("”7 y) =1, 2(2)(:0, y) = mz_'_yz/g

of system (24) and solution (23) of the same system satisfy the conditions
of Theorem 3, and furthermore

20, 0) = zM(0,0) =1, ?(0,0) =z%(0,0) =0,
z‘J)(0,0) =2(J)(0’_0) =07 z‘j)(0,0) =5(y2)(0,0) =0.

Therefore these solutions possess a common characteristic which
is a solution of system (25) passing through the point P(0, 0,1, 0,0, 0).
This characteristic is defined by the equations

y=0, =1, =g V=0, ¢@=o.

The properties of characteristics formulated in this paper for systems
of partial differential equations, especially Theorems 3 and 4, .will enable
us to formulate more general sufficient conditions that those of paper [2],
where the initial inequalities between solutions of system (1) propagate
onto sets formed by the characteristics. Similar problems for the solu-
tions of a single equation have been discussed in papers [3], [4], [5].
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