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Certain closed flows on a 2-manifold

by RonaLp A. KnigHT (Kirksville, Mo., U.S.A)

Abstract. The classification and characterization of certain closed flows in terms of the

critical points and the space separating properties of their noncritical trajectories is the purpose
of this paper.

1. Introduction. Closed flows on connected 2-manifolds were analyzed
by Beck [3] and Wu [14] who gave topological characterizations of the
set of critical points and by McCann [13] who classified such planar flows
without critical points. Knight [8], [9] classified and characterized compact
flows on certain 2-manifolds and closed planar flows in terms of the bilateral
stability properties of the compact trajectories. In this paper we classify
and characterize on particular 2-manifolds a class of closed flows satisfying
a specific type of stability criterion. In the terminology of [10] these flows
are said to be of characteristic 0.

The congept of a flow of characteristic 0% (0, 0*) was introduced by
Ahmad in [1], where he classified such flows with planar phase spaces
in terms of their critical points and characterized planar flows of characteristic
0%. In [2] Ahmad classified these flows on locally compact phase spaces.
Furthermore, in [11] Knight characterized planar flows of characteristic
0% (07) in terms of the set of critical points. The bilateral version of these
flows was introduced by Knight in [10], where planar flows of characteristic 0
were characterized in terms of the critical points, and in [12], where
further characterizations were obtained for Hausdorff phase spaces.

The purpose of this paper is to generalize the results of [10] to
surfaces, i.e. general 2-manifold phase spaces satisfying the Jordan curve
separation property. In Section 2 flows of characteristic 0 on surfaces are
shown to be closed and we classify such flows on connected surfaces in
terms of the space separating properties of noncritical trajectories and in
terms of the set of critical points. Section 3 is devoted to characterizations
of flows of characteristic 0 on connected surfaces. The characterization
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theorem of [10] for such flows on the plane is generalized to surfaces.
For paracompact connected surfaces the generalization is very close to the
statement of Theorem 4.8 in [10].

A 2-manifold which does not satisfy the separation property need not
possess the characteristics obtained herein. Indeed, the example flow of [12]
violates most of these properties. .

Many of the definitions and notations which follow are standard but
are presented here for the convenience of the reader. A dynamical system
(X, n) consists of a topological space X and a continuous mapping
n: X x R—> X satisfying x0 = x-and (xt)s = x(t+s), where n(x, r) is denoted
by xr. We denote the trajectory (orbit), orbit closure, limit, prolongation, and
prolongational limit sets of a point x by C(x), K(x), L(x), D(x), and J(x),
respectively. The region of attraction for a set M is denoted by A(M). The
corresponding positive and negative versions of these concepts carry the
appropriate superscript. A transversal on a 2-manifold is a section which
is either an arc or a simple closed curve. (See [6] for a treatment of
transversal theory.) By a transversal T at x we shall mean that T contains
x as a non-end point. A flow (X, n) is said to be of characteristic 0 if
and only if D(x) = K(x) for each point x in X. A flow (X, n) is called
a closed flow if and only if each orbit is a closed set.

A Hausdorfl space X is called a 2-manifold whenever each of its points
has an open neighborhood homeomorphic to R?. We say that X satisfies
the Jordan curve separation property if every simple closed curve C in X
decomposes X into two open sets with common boundary C. We refer to
such a 2-manifold as a surface.

A trajectory is said to separate X if X—C(x) is the union of two
components having the common boundary C(x). Whenever sets or points
are in different components of X — C(x) we shall say that they are separated
in X by C(x). If C is a simple closed curve in a subset V' of X homeomorphic
to R? we shall denote the bounded and unbounded components of V—C
by int C and ext C, respectively. Note that int C depends only on the existence
of a set ¥~ R? so that we shall feel free to use int C without referring to V.

The nonnegative and nonpositive real numbers are denoted by R*
and R, respectively. By 6M, M°, and M we mean the boundary, interior,
and closure of the set M, respectively.

For basic properties of dynamical system theory we refer the reader to

[4]1, [5], and (6].

2. Classification of flows of characteristic 0 on a surface. Since each
component of a surface is a surface we shall restrict our attention to
connected surfaces. Throughout this section (X, n) denotes a flow of char-
acteristic 0 on a connected surface X. We denote the sets of critical
points and periodic points by S and P, respectively.
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ProrosiTiON 1. A point x is critical or periodic provided L' (x) # QO
(L™ (x) # ).

Proof. By virtue of Corollary 3.1 of [12] we have K(x) = L'(x)
whenever L*(x) # (). Suppose that there is a regular point x (x¢ PuUS)
for which K(x) = L*(x) and let T be a transversal arc at x. For any
£>0, T(—¢,¢) is a neighborhood of x. Since x is in L*(x), there is
a t > ¢ such that xte[T(—¢,¢)]°, and hence, C*(x) meets T more than
once. Let xt; and xt, be consecutive intersections of T and C™*(x) with
ty <t,. The arcs C, in T and C, in C*(x) with end points xt, and xt,
form a simple closed curve which separates X into two sets H and K
with common boundary C = C, v C,. The fact that a trajectory other than
C(x) intersecting C, does so only once follows from the proof of Lemma
4.5 page 173 of [6]. The key to the proof is the property C,(0,6) < H
and C,(—6,0) c K for sufficiently small § > 0 (and, of course, H and K
properly labeled). Consequently, H and H are positively invariant whereas
K and K are negatively invariant. Thus, we have C*(xt) < H for t > t,
and C ™ (xt) = K for t < t,. Since L' (x) = L' (xt) for each t in R we have
C(x) < L*(x) = H which is clearly impossible.

CoroLLARrY 2. A flow on a surface X is of characteristic 0 if and only
if D(x) = C(x) for each x in X.

CoroLLARY 3. A flow of characteristic 0 on a surface is closed.

Provposition 4. If C(x) is a critical or periodic orbit, then C(x) is
bilaterally stable.

Proof. The proposition is an immediate consequence of Theorem 7
of [12].

ProrosiTioN 5. Each of the sets P and PUS is open.
Proof. The proof is a direct result of Corollary 7.1 of [12].

For each regular boundary point x of the periodic regions in the flows
given in Examples 2 and 3 of [10] we have J(x) = C(x) so that the
following proposition cannot be strengthened.

ProposITION 6. J(x) = O for any point x interior to the set of regular
points.

Proof. In view of Corollary 2, J(x) € C(x) for each point x in X.
Suppose that J*(x) = C(x) for a point x in (X—PuS)° and let T be
a transversal arc of regular points at x. If C(x) meets T more than once,
then we can select consecutive intersections xt; and xt, of T and C(x)
with t, < t, as we did in the proof of Proposition 1. Like before we denote
the arcs in T and C(x) with end points xt, and xt, by C, and C,,
respectively. The simple closed curve C = C, U C, separates X into two sets
H and K with C*(H)= H and C (K) = K. There is a subtransversal
T, of T at xt; and an ¢ > t,—t; such that T,(—¢,¢) is a neighborhood
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of C; (29, p. 167, [6]). Thus, for any nets (x;) converging to xt, and
(t;) converging to + oo, there is an i, such that x;t;e H for each i > i,.
Hence, J* (x) = H. However, this means that C(x) « H which is absurd.
The trajectory C{(x) meets T exactly once.

Next, let y be a point of T distinct from x with C(y) meeting T at
consecutive points yt, and yt,. The situation is similar to that of the
preceding paragraph for x so we adopt the notation given above replacing
x by y. There are neighborhoods of C, and C, each of whose points
are attracted to H since a trajectory through any point of K which comes
sulficiently close to C meets the arc C, and is thereafter contained in H
(2.5, p. 166, and 2.9, p. 167, [6]). Hence, H is an attractor with x¢ A* (H).
Since A* (H) is an open invariant set, there is a net (z;) in A* (H) converging
to a point z in §(4*(H)) and a subnet of {w;: w,eC*(z)nC,} which
converges in C, implying that D* (z) nC, # @. This contradicts D(z) = C(z)
c X—A* (H). Hence, C(y)n T is a singleton. )

Let T, denote T less its end points. Then T, is a section of T,R.
The flow (T, R, n|T, R) is parallelizable, and hence, is dispersive (5.10 and
5.11, I, p. 83, [5]). Since Ty R is a neighborhood of C(x) and J(x) = C(x),
we have J(x) = @ which of course contradicts our assumption that J* (x)
= C(x). Similarly, J~ (x) = C(x) leads to a contradiction. Hence, J(x) = Q.

CoroLLaRY 7. The flow is locally parallelizable on (X —P U S)°.

CoroLLARY 8. Each component of X —PuUS is a locally parallelizable
subflow of X.

Proof. The boundary points of X —PUS have not yet been shown
dispersive in X—PuUS. Let x be a point of 6(X—PuS) and let T be
a transversal arc at x. Using the notation of Proposition 6, if C(x) meets
T more than once, then C, " P = @ since H is positively invariant. There
are periodic points arbitrarily near xt, in the component of T—{xt,} that
does not contain C,. Thus, as in the proof of Proposition 6, periodic points
sufficiently close to xt; in K eventually meet C, which is impossible.
Consequently, C(x) is isolated in T from periodic points making it interior
to X—PuUS. Since this is impossible we have C(x)nT= {x}. Each
component T, of Tn(X—-PuS) is a section of T,R, and hence,
(ToR, n| Ty R) is a parallelizable subflow of (X, 7).

CorOLLARY 9. If T is a transversal arc at a regular or periodic point x,
then C(x) meets T only once.

Proof. The proof for a transversal arc at a regular point is complete.
If T is a transversal arc at a periodic point x, then the sets- H and K
from the proof of Proposition 6 are constructable whenever C(x) meets
T more than once. But this would mean that C(x) c HN K = Q.

ProposiTiON 10. Either S = (O, S = X, or S consists of Poincaré centers.

Proof. Let s, be a boundary point of § and U be a neighborhood
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of s, homeomorphic to R2. Then s, has an open connected invariant
neighborhood V in U with compact closure since s, is bilaterally stable
and PuUS is open. Furthermore, we can select ¥ to be simply connected
in U because any simple closed curve in V encloses compact orbits. Since
V is homeomorphic to R?, s, is a Poincaré center (4.8, [10]).

A parallel flow on an open tube with circular sections is not separated

by any trajectory. The following proposition indicates when such a separation
can be effected.

ProrposiTioN 11. Each noncritical trajectory separates X if at least one
orbit separates X .

Proof. No critical orbit separates X and each periodic orbit separates X .
Let C(y) be a trajectory which separates X. If C(y) is regular and X —C(y)
= PuUS, then we are done. Let C(x) be a regular trajectory in X —C(y)
and let A, be the component of X —C(y) which excludes x. Denote
{z: C(z) separates x from A,} by M and let the component of X—C(z)
which contains A, be denoted by A, for each z in M. Note that C(y) = M
so that M # Q. The set {A,: ze M} is linearly ordered by set inclusion
and A, = A, U C(z) for each zin M. Let A = |J {A,: zeM}. Then A4 is an
open connected invariant set. For distinct points p and q in 64 let V; and V,
be disjoint neighborhoods of p and g, respectively, homeomorphic to RZ.
Let C, and C, be simple closed curves surrounding p and ¢q in ¥, and V,,
respectively. There is a point z, in M nint C, since pedA. There is a point
z; iIn MN(X—A;)n(int C;)n A4 since q¢ A, and gedA. Thus, 4, < 4.,
and hence, C(z,)nint C, # @. Consequently, we can" find nets (x;) and
(x;t;) converging to g and p, respectively; therefore, ge D(p) = C(p) and
04 = C(p).

We now show that p is a regular point. Suppose that p is critical.
Then by Proposition 10, p is a Poincaré center and there is an orbit
C(z) in A surrounding p in a neighborhood homeomorphic to RZ. But

no orbit in int C(z) separates the regular point x from A, implying that
p¢dA. Hence, p is not critical. Next, if p is periodic, then since C(p) is
compact and P is open there is a compact neighborhood V of C(p) in P
homeomorphic to an annular region in R? with simple closed curve boundary
components C, and C, separated by C(p). There is a connected invariant
neighborhood W of C(p) in V because C(p) is bilaterally stable. If C(z)
is an orbit in W which does not separate C, from C,, then X —C(z) has
a component U in V homeomorphic to RZ2, and so, V contains a critical
point. Since ¥V = P, each orbit of W separates C, from C, implying that
W is an annular neighborhood of C(p) which separates C;, from C,.
Thus, there is a periodic orbit" C(z) in W— A*which separates 4 from x.
The component A4, of X —C(z) contains C(p) placing C(p) interior to A
which is impossible. Hence, p is a regular point.
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Next, we show that if C(p) # C(x), then there is a transversal arc T
at p such that TNn(X—A)nP = @. Suppose the contrary. Then, given
a transversal arc T at p, there is a net (x;) of periodic points in T N (X — A4)
converging to p where x; < x;,, < p in T with T properly ordered. Let
B = |J B; where B; is the component of X —C(x,) contained in X—A4.
Now {B;} is linearly ordered by set inclusion and B is an open connected
invariant set having p as a boundary point. An argument similar to the
one demonstrating that 64 = C(p) yields 6B = C(p), and hence, B = X — 4.
For some subscript j, x is in B; implying that the orbit C(x;) separates x
from A. In fact C(x;) separates x from C(p) so that C(p) is interior to A
which is a contradiction. .

Finally, we show that C(p) = C(x) by assuming the opposite. Let T be
a transversal arc at p with endpoints a and b satislying Tn(X—A4A)nP =
and be A. The set TR is a neighborhood of C(p) so that W= TRuU A
is an invariant neighborhood of 4. Obviously, C(a) = 6W. Let z be an
element of dW. There is a sequence (x;) in TN (W— A) converging to a with
X; £ X;4, < a in T properly ordered. Let C be a simple closed curve
surrounding z in a neighborhood V' of z homeomorphic to R? where a¢V
and VN A =0. For g in (W—A)nint C there is a ¢t in R and a subscript
j such that x; < gt < x;,, in T where x, = p. The subarc T; of T from
X; to x;,, generates a neighborhood T;R of C(q) which meets intC
and X—int C. If int C = T;R, then z is interior to W which is impossible
since zedW. Hence, one of the trajectories C(x;) and C(x;,,) meets int C.
Thus, there is a subsequence (x,) of (x;) and a sequence () in R such
that (x,,t;) converges to q. Thus, ge D(a) = C(a) and W = C(a). The sets
W and X —W are separated in X —C(a), and so, C(a) separates x from A,
placing C(p) interior to A which is absurd. We conclude that C(p) = C(x).

CorOLLARY 12. If P # Q, then every orbit in X —S separates X .

CoroLLARY 13. If no trajectory separates X, then X is separated by each
pair of trajectories.

Proof. If no trajectbry separates X, then PUS = Q. Let Y= X—C(x)
be connected and T be a transversal arc with end points x and y. The
region Ty R, where T, = T—{x, y} is an open invariant connected subset of Y.
As we have seen before 6(Ty R) in Yis C(y) so that TR and Y-ToRu C(y)
are separated in Y—C(y). According to Proposition 11, the space Y is
separated by each of its trajectories.

CoroLLArY 14. If S # X, then S consists of at most two Poincaré centers.

Proof. Let s,, s,, and s, be Poincaré centers with s, distinct from
s, and s;. Denote the set {x: C(x) separates s, from s, and s;} by M.
Since s, is a Poincaré center, M # . For each point x in M denote
by A, the component of X —C(x) containing s,. We can show that
A = | {A,: xeM} is an open invariant connetted set whose boundary is
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a single trajectory C(p) by arguing as we did for the set A in the first
paragraph of the proof for Proposition 11. Moreover, we can show that
C(p) is neither periodic nor regular by the techniques used in the proof
for Proposition 11. Hence, C(p) is a Poincaré center. Each orbit near p
separates s, from p, s,, and s, since pedA. Thus, p = 5, = s;.

CoroLLArY 15. If at least one trajectory separates X, then for any three
distinct noncritical trajectories one separates the other two. )

CoRrOLLARY 16. If at least one trujectory separates X, then for any two
distinct noncritical trajectories there is a trajectory which separates them.

CoroLLarY 17. If X is a subspace of R?, then there are at most two
nested sequences of annular periodic regions.

We now summarize the results of this section letting T= X~-PuUS.
Case 1. S = 0.

I. P = @ and each of the following holds:

(@) m is a locally parallel flow.

(b) If an orbit separates X, then

(1) each orbit separates X;

(i) each pair of orbits is separated by a third; and

(iii) one of each three orbits separates the other two.

(c) If no orbit separates X, then each pair of orbits separates X.
II. P # O and each of the following holds:

(a) P 1s open.

(b) Each orbit in P is bilaterally stable.

(¢) =|T is a locally parallel subflow of =.

(d) Each orbit separates X.

(e) Each pair of orbits is separated by a third.

() One of each triple of orbits separates the other two.

Case 2. S # O.

I. S # X and each of the following holds:
(ay PUS is open.
(b) Each orbit in PuU S is bilaterally stable.
(c) S consists of at most two Poincaré centers.
(d) #n|T is a locally parallel subflow of =.
(e) Each orbit in T U P separates X.
(f) Each pair of orbits in T U P is separated by a third orbit in TUP.
(g) One of each three orbits in T U P separates the other two.
II. § = X.

3. Characterizations of flows of characteristic 0 on a surface. The purpose
of this section is to present characterizations of flows of characteristic 0
on connected surfaces. We thus have characterizations of such flows on
a surface componentwise.
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First, we recall the somewhat useful characterization of Corollary 2,
namely, a flow on a surface X is of characteristic O if and only if
D(x) = C(x) for each x in X.

The condition given in the following proposmon is not necessary as
can be seen by the simplistic critical flow on a surface. However, in view
of Corollaries 13 and 16 the condition is both necessary and sufficient for
noncritical connected surfaces as we have indicated in Theorem 19.

ProrosiTioN 18. 4 flow (X, n) on a Hausdorff space X is of characteristic
0 if each pair of distinct trajectories is separated by a third trajectory.

Proof. Let C(z) separate C(x) from C(y) and let A be the component
of X—C(z) containing C(x). Then D(x) = ﬂ {VR: V is a neighborhood
of x} c AR = A = AUC(z). Since ye X — A, we have y¢ D(x). Thus, D(x)
= C(x) for each x in X.

THEOREM 19. A flow (X, ) on a connected surface is of characteristic
0 if and only if

(nHS=X. or

(2) each pair of distinct trajectories is separated by a noncritical
trajectory either in X or in the connected subsurface X —C(x) for any x in X.

The following theorem is a generalization of Theorem 4.8 of [10] which
characterizes planar flows in terms of the set of critical points. Even though
the statement of Theorem 19 is succinct and more asthetically pleasing,
Theorem 20 furnishes more insight into the structure of a flow of characteristic
0 on a surface.

. THeorReM 20. A flow (X, ®) on a connected surface X is of characteristic
0 if and only if one of the following holds:

(1) (X, =) is locally parallelizable (S U P = Q) and each pair of trajectories
is separated by a third trajectory in either X or the connected subsurface
X—~C(x) for any x in X.

(2) S consists of at most two Poincarée centers. Each noncritical boundary
component of P is a single regular trajectory. The restriction of m to X—PuU S
is locally parallelizable and each pair of regular trajectories is separated by
a third trajectory.

3)S=X

Proof. The proof is complete except for showing that case (2) is
sufficient. To complete the proof we need only show that each periodic
.orbit is separated from any other noncritical trajectory.

Let xeP, zeX—S, and A denote the component of X—C(x)
containing z. Since P is open and C(x) is compact, C(x) is contained in
the union of finitely many open periodic sets homeomorphic to R?. Hence,
there is a simple closed curve C in P separating C(x) from C(z) and
forming a closed annular region M in P with boundary curves C and C(x).
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If C(y) is a periodic orbit interior to M, then either X —C(y) has a component
in M or C(y) separates C and C(x). If there were a component of
X —C(y) in M, then it would be homeomorphic to R?, and hence, contain
a point of S which is impossible. Thus, each orbit in M separates C and
C(x). The set B= X—A is closed with compact boundary C(x) and
M U B is a neighborhood of B. According to Ura’s alternatives (4.10, p. 49,
[10]) either A* (B) is open, A~ (B) is open, L(y)nB # @ for some ye€ A,
or M contains an orbit C(y). Since B= A*(B)= A" (B)and L() nB=0
for each y in A, there is a periodic orbit C(y) in M separating C from
C(x). Hence, C(y) separates C(x) and C(z).

The following corollary is a simplification of Theorem 20 using [7].

Note that it is essentially the same as Theorem 4.8 of [10] for planar
flows.

CororLAary 21. A flow (X, n) on a connected paracompact surface is
of characteristic O if and only if one of the following holds: *

(1) (X, n) is parallelizable (SU P = ().

(2) S consist of at most two Poincare centers. Each noncritical boundary
component of P is a single regular trajectory which is separated from any
other boundary component by a periodic orbit. The restriction of n to X—PuUS
is parallelizable.

3) S = X.

One important class of surfaces to which our results directly apply
are open subspaces of the plane. Concentric open annular regions of concentric
periodic orbits form such a flow. If a closed disc or a point is deleted
from the closed annular region or simple closed curve boundary between
two open annular regions so that the set remaining is homeomorphic to
the cartesian product of a closed interval and an open interval or is an
open arc, then a parallelizable flow can be defined in that region in such
a way that its union with the two open annular regions forms a flow
of characteristic 0. Of course infinitely many such parallelizable regions can
exist. For example, let 4 be the Cantor set and B be its complement in
[0, 1]. In the closed unit disc D the set {(r,6): reB, 0 < 6 < 2r} consists
of concentric open annular regions and the space X = D—{(r,0): re A}
is of the type described above.

In [10] the following classes of flows of characteristic 0 were identified:

(1) parallelizable flows,

(ii) global Poincaré centers,

(iii) one nonglobal Poincaré center with a connected parallelizable
regular region,

(iv) two Poincaré centers with a connected parallelizable regular region
separating the centers, and

(v) critical flows.
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We identify the following categories of flows of characteristic 0 on open
connected subspaces of R? or its one point compactification R**:

(1) parallelizable flows on R? or on an annular region X of R?* having
a sim’?le closed curve section separating the boundary components of X
in R?*;

(2) subspaces of planar type flows (ii), (iii), and (iv) as well as flows
formed by replacing the nonregular orbits of such flows by regions similar

to those described in the examples above where closed discs or points were
deleted; and

(3) critical flows.
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