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Analytic solutions of a linear functional equation

by M. KuczmA (Katowice)

In the present paper we are going to deal with the linear functional
equation

(1) - elf(D]—g(2)e(2) = h(2),

where ¢(z) is the unknown function. We shall assume that the functions
f(2), g(2) and h(2) are analytic in a neighbourhood of the origin, f(0) = 0,
f(0)=0 and ¢g(0) = 0. None of these functions is identically zero (the
case of the homogeneous equation was already treated in [2]). Thus we
may write

(2) f(z) = *F (2) , F0)#0, p=2,
(3) J) = #6(), @O)#0, g>1,
(4) h(z)=2*H(z), H(0)*0, 8>0,

where the functions F(z), G(2) and H(z) are analytic in a neighbourhood
of the origin.

We shall be interested in local analytic solutions of equation (1)
in a neighbourhood of the origin. A fundamental theorem concerning
local analytic solutions of the functional equation

(5) 9(2) = k(z, p[f(2)))

has been given by W.. Smajdor [3] (cf. also [1]). Under the condition that f(2)
is analytic in a neighbourhood of a point z = { such that f({) =, and
the function h(z,w) is analytic in a mneighbourhood of (z,w) = ({, B)
such that h({, f) =g and 0 < [f'({)| < 1, every formal solution (!)

p(2) = B+, ealz—0)"

n=1
of equation (5) is actual, i.e. has a positive radius of convergence.
(') A formal solution of equation (5) is a formal power series that inserted into

this equation satisfies it formally.
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In our case (cf. (2)) £ = 0 and f'({) = f'(0) = 0. If the function k(z, w)
in (5) is linear with respect to w (with coefficients analytic in a neigh-
bourhood of z = 0), then it is analytic in a neighbourhood of (2, w) = (0, §)
for every f. Moreover, for every f# fulfilling

(6) h(0, 8) = B

there exists exactly one formal solution

P() =+ D, onzn

of equation (5) (cf. [3]). Consequently, the result of W. Smajdor has
the following consequence:

If f(z) is analytic in a meighbourhood of the origin, f(0) = f'(0) = 0,
and h(z, w) is linear with respect to w with coefficients analytic in a neigh-
bourhood of the origin, then for every B fulfilling (6) there exists exactly one
solution @(z) of equation (3) that is analytic in a neighbourhood of the origin
and fulfils the condition ¢(0) = § (2).

However, we cannot apply this result directly to equation (1). Since
¢(0) = 0, we cannot write equation (1) in form (5) with the right-hand
side analytic in a neighbourhood of a point (0, §). In the sequel we shall
show how to overcome this difficulty and we shall reduce equation (1)
to an equation of form (5) to which the result of W. Smajdor will be
applicable.

Since h(z)s£ 0, also @(2) 5~ 0 for any solution of equation (1). Thus
we may write

(7) () =2®(z), @O)#0, r=0.
Inserting (2), (3), (4) and (7) into (1) we get
(8) PF ()T D[ f(2)]—2"""G (2) B (2) = Z°H (2) .

The three terms in (8) have at the origin the zero of order »p, ¢+
and s, respectively. Hence it follows that one of the following four cases
must occur, provided that (1) has a solution (7):

(9). p=gq+r=s,
(10) p=q+r<s,
(11) P> q+7=38,
(12) p=s8<qtr.

We shall consider the corresponding four cases separately.

(?) This solution can be obtained as the limit of successive approximations ¢,,,(2)
= h(2, @a[f(2)]), where @,(2) is an arbitrary function analytic in a neighbourhood of the
origin and fulfilling the condition ¢,(0) = 8.
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-T. Caleulating » from (9) we get

(13) r=gq/(p—1),
and thus ¢ must be divisible by p —1; (9) then becomes
(14) pgflp—1)=s.

We get from (8) and (9)
. TP ()]~ 6()P() = H(2)
i.e.

(15) o) = M g -2

This is an equation of form (5). Equation (6) takes the form

G(0) = [F(0O)TB—H(0)
and (since H(0) = 0) has a (unique) solution
H(0)
[F(0)] —G(0)

if and only if G(0) # [F(0)]. By W. Smajdor’s theorem equation (15) has
then a unique local analytic solution @(2) and consequently equation (1)
has a local analytic solution

ﬂ=

(16) p(2) = 2P (2) = 291D (2) .

Thus we arrive at the following result:

LemMmA 1. If p—1 divides g and relation (14) holds and, moreover,
G(0) = [F(0)1Y"™", then equation (1) has a local analytic solution in a neigh-
bourhood of the origin. This solution is given by formula (16), where D(z)
s the local analytic solution of equation (15).

II. Calculating r from (10) we get (13) (¢ must again be divisible
by p—1) and thus (10) becomes

(17) peflp—1) <s
Equation (8) now leads to
, F(TDLf(2)]—G(2)D(2) = & H(2)
i.e.
[F(2)] ¢ "PH (2)
(18) 6= 5 @)

Equation (6) takes the form
(19) G(0)8 = [F(0)]B..
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I G(0) = [F(0)T, (19) is fulfilled by every f. Applying W. Smajdor’s
theorem we obtain the following

LeMMA 2. If p—1 divides q and relation (17) holds and, moreover,
G(0) = [F(0)'"™Y, then equation (1) has a one-parameter family of local
analytic solutions in a neighbourhood of the origin. These solutions are
given by the formula

¢ (2) = 2"Dp(z) = 29 P-NDy(2) ,

where, for every B, Ps(2) is the local analytic solution of equation (18) such
that @4(0) = B.

It G(0) # [F(0)], then 8 = 0 is the only solution of (19). But, since
g = @(0), we must have 8 # 0 according to (7). Of course, equation (18)
has also a solution @y(z) fulfilling &,(0) = 0, but in the resulting formula
for ¢(2): .

Pol2) = 27By(2)

r is not the order of the zero of ¢ at the origin. The actual order 7, is greater
than r and thus it fulfils the inequality r,p > g+ 7, (note that p > 1).

Thus we shall find the solution gy (2) examining case (11) (cf. also the
Remark after Lemma 3). Similarly, in Lemma 2 we should require g # 0.

III. Calculating r from (11) we get

(20) r=8—¢q
and (11) becomes
(21) p(s—=q)>s.

Equation (8) leads to

ZTFRTPLf(2)] -G (2)P(2) = H(2)

i.e.

A )

(22) @ (2) = Bi)

Equation (6) takes the form g = —H(0)/G(0) and evidently has
a unique solution. By W. Smajdor’s theorem we obtain the following

LEMMA 3. If condition (21) is fulfilled, then equation (1) has a local
analytic solution in a neighbourhood of the origin. This solution is given by

¢(2) = 7P (2) = 2° 79D (2) ,

where D(z) 18 the local analytic solution of equation (22).

Remark. One should expect that several cases (9)-(12) can occur
simultaneously, of course with different r. But it is readily seen that
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cases (9) and (1‘0); (9) and (11), (9) and (12) exclude each other. If we had
(10) and (12):

np=gq+tn<s and 7rp=s8<g+tr,,

then r, < q/(p —1) = r, < 8/p = r,, a contradiction. Similarly, if we had (11)
and (12):
np>q+r,=8 and rp=s8s<qitr,,

then r, = s—q < r, < q/(p —1) < r, again a contradiction.

On the other hand, cases (10) and (11) may oceur simultaneously.
More than that, they must occur simultaneously whenever (10) occurs.
For, if (10) occurs with an r, = ¢/(p —1), then (11) holds with r, = s —q
> r, 8o that pr, > pr,. The solution obtained for r, is identical with the
solution @y(2) = 2"'@y(z) excluded in the preceding case (because G(0)
# [F(0)]"", or, in Lemma 2, 8 = 0).

1V. Calculating » from (12) we get

(23) r=s/p
and (12) becomes
(24) s(p—1) < pq.

Now we cannot write equation (8) in form (5) with the right-hand
side analytic in a neighbourhood of a point (0, g).

In view of (24) we have for r given by (23) rp < r+4 ¢. But, since
p = 2, there exists the smallest integer E > r such that

(25) Rp>R+g.
Let us write .
(26) ¢(2) = P(2)+¢*(?),
where
B-1
(27) P(2)= D caz"

is a polynomial of a degree < R and
PHz) = 2P*(2), P*0)#0, o=R.

Inserting (26) into (1) we obtain

(28) P'Lf(2)]—g(2)9*(2) = h*(2) ,
where
(29) h*(2) = h(2) —P[f(2)]+ g(2) P(2) .

Let us write
(30) h*(z) = 2°H*(z), H*(0) #0.
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Equation (28) is quite analogous to (1). Since p > R, it. follows
from (25) that pp > o+ ¢q. Consequently (9), (10) and (11) (with r replaced
by ¢ and s replaced by o) are the only possible cases. At every case we
must have

(31) c>0+q>R+gq.

Relations (29), (30) and (31) are a key to determining polynomial (27).
In fact, the condition that all the terms of degree < B¢ on the right-
hand side of (29) must vanish leads us to a system of R+ ¢—r equations
with R —r unknowns ¢, ..., ¢g—,. In the expression P[f(z)] the coefficient ¢;
appears for the first time in the coefficient of 2?2, whereas in the expression
g(2) P(z2) the ¢; appears for the first time in the coefficient of zi+2. Since R
is the smallest integer fulfilling (25), we have ip < i+ qfori=1r,...; £ —1.
Consequently the condition that the coefficient of 2 must vanish has
the form '

(32) ¢;[F(0)] + (terms containing ¢; with j < i) = 0.

In particular, for ¢=7r we obtain ¢[F(0)] = H(0), whence
¢ = H(0)[F(0)]"". After having determined ¢; for j = r, ..., 7 —1, we can
determine ¢; uniquely from (32). However, since the number of equations
is greater than the number of unknowns, it may happen that the ¢; found
do not satisfy the remaining equations (those resulting by equating to
zero the coefficients of 2", where n is not a multiple of p). Consequently
we see that there may exist at most one polynomial (27) such that the function
h*(z) given by (29) has at the origin a zero of order = R+ q. If such a poly-
nomial does not exist, equation (1) has no loecal analytic solution (26).

Now suppose that polynomial (27) exists. Then the problem of finding
local analytic solutions of equation (1) reduces to that of finding local
analytic solutions of equation (28), where the function &*(z) is well de-
termined by (29). As have already remarked (cf. relation (31)), cqua-
tion (28) -may have local analytic solutions only in the three cases con-
sidered previously. Hence we obtain the following

LeEMMA 4. Suppose that p divides s and relation (24) holds and that
there exists a polynomial (27) (where r and R are determined by (23) and (25),
respectively, R being minimal) such that function (29) has at the origin
a zero of order o = R+ q. If either

(i) p—1 divides g, pg/(p—1) = o and G(0) # [F(0)]"®7,
or

(ii) p—1 divides ¢, pg/(p —1) < ¢ and G(0) = [F(0)]*®~Y,
or

(iii) p(oc—gq) > o,
then equation (1) has a local analytic solution

(33) ¢(2) = P(2)+22d*(2)
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in a neighbourhood of the origin. Here o = q/(p —1) in cases (i) and (ii),
0 = o —q in case (iii), and D*(z) is the local analytic solution of the equation

I )

Q*(z) _ ZU—Q—QH*(Z)

in a netghbourhood of the origin. Solution (33) is unique in cases (i) and (iii)
and depends on the parameter p— ®*(0) in case (ii).

It is clear from our considerations that the cases considered so far
are the only ones where there may exist local analytic solutions of equa-
tion (1) in a neighbourhood of the origin. Thus we obtain the following

THEOREM 1. Suppose that the functions f(z), g(2) and h(z) are analytic
in a neighbourhood of the origin, f(0) = 0, f'(0) = 0, ¢(0) = 0, none of the
functions being identically zero. Then equation (1) has mo local analylic
solutions in a neighbourhood of the origin except for the cases covered by
Leminas 1 through 4.

The cases contained in Lemmas 1-4 are the only cases where equa-
tion (1) has formal solutions. In every such case we succeeded in reducing
equation (1) to an equation of form (5), and then the theorem of W. Smaj-
dor asserts that every formal solution is actual. Consequently we get
the following

THEOREM 2. Under conditions of Theorem 1 every formal solution of
equation (1) is actual, i.e. has a positive radius of convergence.

The assertion of Theorem 2 will no longer remain true if we drop
the assumption f'(0) = 0. We shall return to this problem in a next paper.
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