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Multistep methods for ordinary differential equations
with parameters

by Tapeusz Jankowskil (Gdansk)

Abstract. Multistep methods combined with iterative ones are used for finding a numerical
solution of ordinary differential equations with parameters. Consistency and convergence of our
methods are considered.

1. Introduction. Let R? be some g-dimensional real linear space of
elements x = (x;, X5, ..., x)7 and I = [«, B], « < . We denote by C(I, R
the class of all continuous functions defined in I with a range in RY.

We consider the differential equation

(1 vy =f(t, y@,4), tel
with boundary conditions

2 y(@) = yo,

3) Mi+Ny(B) =S.

Here f: I xR xR? - RY, y,eR%, SeRP and matrices M, ,, N, ., are given.
We seek a parameter 1 €R” and a function ¢ e C(I, R such that (1)3) to
be satisfied. It is a solution of (1)}3).

Existence and uniqueness theorems were obtained by many authors (for
example, see [8], [10], [12], [13]). The task of this paper is a numerical
solution of BVP (1)}~(3). It will be assumed that (1)}«3) has the solution.

We choose a positive number N and select the mesh point
tho> Lnts ---» thn, Where t,;, =a+ih, i=0,1,..., N. Here h = (fB—a)/N is the
common distance between our points. To determine the numerical solutions
(¥n. 7)) wWe apply a multistep method for y, combined with an iterative
method for 4,;.

The iterative method 4,; is obtained from condition (3) and it has the
form

AhO = ).0 N

(4) . . ~. ~ o ,
Ahj+1 =/~hj—B_l [M"»hj"‘N)’h(ﬁ; )“hj)—s]a Jj=0,1,..,
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where /4, is given. The nonsingular matrix B, ., will be defined later. Now we
may introduce the stationary multistep method for y, defined as

k
(5) Z a;(t, h) y,(t +ih; Ay))

i=0
= hF(l, ey t+kh—h, h, yh(t; )vhj), ey yh(t+kh'—h., )‘hj)" lhl)
_=-hj/’-(t, h,yh’j’hj)’ n=0, 1,....,j=0, 1,

The g, and F are certain functions. This formula needs an approximate
solution y, for the starting values t,, ..., t,,-,. Generally we assume that
those values are generated by some one-step procedures. Now, knowing the
approximate solution y, at the last point t,5 = f, we are able to determine
the new value 4,;,, and the corresponding numerical solution y, on the
mesh points for this new value 4,;,,. Consequently, it is the multistep
iterative method.

For finding a numerical solution of our problem (1)-(3) one-step
methods may be applied too. A detailed treatment of this method for the
case p = ¢ is given in [7]. There are some numerical examples too.

The task of this paper is to obtain reasonable sufficient conditions for
the convergence of the method (4)-(5). Of course, the method (4)-(5) must be
consistent. A Lipschitz condition on F with suitable constants is assumed
too.

2. Convergence and consistency. We take the following basic definitions.

Dermnimion 1. We say that the method (4)-(5) is convergent to the
solution (@, 7) of (1)-(3) if

lim  max lo(ty: A= yaltn: Al =0, lim ||4,;— 4|l = 0.
N-=wi=0.1,..,N N-w
jow j—wo

DeriniTiON 2. We say that the method (4)-(5) is consistent with the
problem (1)—(3) on the solution (¢, £) if there exists a {unction ¢: J; xH =R,
= [0, «), J, = [a, B—kh] such that

k
(l) ”Z ai(la h)(P(f+lh, l)—h%(ta ha ?, )")” < 8([, h)a te"ja
i=0
N-k
(i1) lim Y e(ty, h) =0.
N=xi=0

Remark 1. Since ¢ is a solution of (1)-(3), condition (i) may be
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written also in the following way
t+ih

||qo(t)Za(t h)+ Z (t, h) | f(s, (), 2)ds—

i=1

—hF(t, h, @, l)” e(t, h)
with the extra condition

-~ o~ B -
MA+No(t)+N|f(s, ¢(s), )ds =S for teJ,.
4

The following theorem we can prove similarly as Theorem 1, [6]. It
deals with the consistency of the method (4)-(5).

THeOREM 1. If
(D) f: IxRYxR? >RY, F: I*xHxR*xR" >RI, a; IxH-R, j
=0,1,.., k=1, a(,)=1, H=][0, ho], ho >0 and f and all a; are

bounded. and f is continuous,
(I1) there exists the solution (@, 2), @ # 0 of (4)--(5), where 0 is the zero

vector in R4,
then the method (4)-(5) is consistent with problem (1)-(3) on (¢, 2) if

lim Z | Z Aty )| =

N—xij=0 j=0

N-k
lim h Z ” Z .]a (Ih: h)f(rhn (p(thn /) /) f?(rhiv h7 Q. ;)” = 0.

N-x =0 j=1

3. Convergence of the method (4)-(5). We introduce the following as-
sumption:

AssumMmPTION A. Suppose that

(@) F: I*xH xR%* xR" > R% f: I xR? xR’ - R%:

(b) there exist constants L, > 0,i=0,1,..., k and a function gc: I xH
— R, such that for (sq, ..., sy, h)el*xH and z;, z;€R%, i =0, 1, ..., k—1,

i, jteR? we have
HF(Sqs - Sk—1s Me Zoy ooos Zi— gy W) —F (Sqy vy Sk 10 My 2oy ooy Zi— 1s O

k-1
< Y Lillzi=zill + Lellu = il + e (5. 1),
et

and
N-k

]im h Z gl"(thi’ h) = 0:

N—-x =90
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(c) for matrices M »xp and prq
and constants m, and m, such that

IB='(B—M)l<my <1, [IB"'N|<m,.

there exist a nonsingular matrix B, .,

We consider a family ol recurrent equations of order k

k
Z ai(rhns h)z:+i=C:a n=0’ 1,...,N—k,
i=0

where ag;: IxH =R, i=0,1,...,k, a(t, h) = 1. It may be written by
(6) Uh, =AU+ Wt n=0,1,..., N=k,
where

U::=[Z:,.--, Z:,'.,.k_l]T, W;,h=[9,..., 0, Cﬁ]T, BER".

0O 1 o 0
w0 o 0
a'(l)n a'l'u a'Z'n azfl n

al = —a;(ty, b), i=0,1, ..., k—1.
Now we can prove the following main theorem:
Tueorem 2. If Assumption A is satisfied and if:

(A) there exists the solution (@, A) of (J)—(3),
(B) there exists a nonnegative constant R such that forn=0,1, ..., N—k
and heH we have

A% . < 1+ Rh (maximum norm),

Cyd=m+myA <1, where A = %(D— 1) and D = exp(L(f—a)) and L

- k-1
= R+ Z Ll"
i=0 .
(D) there exists a function n: H—>R,, limn(h) =0 such that
h -0

max ;m”k( l“yh(’hsi i) — @ (s AN < n(h),
Jj s=0,...,k-
(E) the method (4)—(5) is consistent with (1)—(3) on the solution (¢, 4),

then the method (4)—(5) is convergent to the solution (¢, 2) of BV P (1)—(3) and
the estimations

(7) ”AhJ—AA'“ s uj(h)v .]= 0’ lw CY
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(®) maXN“)’h(fhnl )= @ (thn: AN < Auj()+Dw(h), j=0,1,...,
=0

n=0,....

hold true with

N-k

w(h) = n(r)+ Z [e(thi, h)+ hep (. h)],
i=o0

1—d’
1—-d’

uj(hy=d’||2o— Al| + m, Dw (h)

Proof. First of all we have

k
Z ai(t, ) [vu(t+ih; Ap)—@(t+ih; A)] = hF(t, h, vy, Ayy)—
i—0
k
—hF(t, h, @, Y +hF (@, h, @, )= Y a;(t, Ho(t+ih; ).
i=0

Put
Zf;n = ||yn(thn: ihj)—fp(‘hni Al n=0,1,...,N,j=0,1,...,
E(r, hy=¢(t, hy+hee(t, h).

* By (6) and assumptions we have

1T sl < HANTURN + WL

and
j . - k-1 .
Chor1 = mMax Z,i1+sS(U+hR) e, +h Y Lieh,+hL||Ay;— Al +E(ty,. h).
s=0...k—1 =5
Hence
n—-1
ehn < (1+hL)"efo+ ¥ [hLillAy—All+E(t, WI(1+ALN !
i=0
. L,
S (U+hL)eno+ - Iy = Al (T +ALY — 1]+
n—1 .
+ 3 &t B +hL)
i=0
or

n—1
ehn < AllApj— A+ D [efo+ z E(this h)],
i=0

n=0,1,.... N=k+1,j=0,1, ...
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Further, according to the definition of 1,;, we see that

”lh.j+l = Al < “'z'hj_}‘_B_ ! [M'ihj+ N}’h(ﬁl ;th)— M)~_N(P(/31 Al
<[B! ’B(;vhj_;~)_M(;'hj_;~)—N Bz 2= (B A1
< my iy — A+ myziy

and

A j+1—All < d||iyj—2

|[+my,Dw(h), j=0,1,...

Now it is easy to get estimations (7)-(8) and the convergence ol the
method (4)-(5) is obvious.

Remark 2. We know that if condition (b) is satislied, then our method
is stable. The similar result will take another norm of A4 in (b).

Remark 3. If p=¢4 we can put B =M+N if the matrix M+ N is
nonsingular. In this case m; = m,. Such resuit for one-step methods is given
in [7] together with some numerical examples.

Remark 4. There is no problem to consider Lipschitz functions L;(t, h)
instead of constants [;.
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