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A variant of Leja’s approximations in Dirichlet’s
plane problem ‘

by W. KLEINER (Krakow)

1. Let D be a bounded domain in the z-plane, Dy the set of finite
points exterior to D, and C, their common boundary, a simple closed
curve of continuous curvature (C e C?) and, for the sake of simplicity,
of length 1. We use its natural representation

(1) C:z=2(s)=2(s+1)eC? [d(8)|=1.

When operating on an arc of O, or using two values of s, we always
assume the values of s to be taken from an interval of the smallest
possible length—in any case < 1.

The degenerate case with D empty is by no means excluded. C is
then assumed to be a C2%-arc of length 1, and some obvious changes are
to be introduced below.

Let f(2) be a real-valued function defined for ze C and satisfying
a Lipschitz condition

[} (2) —F(2)] <ploy—2a| (21,2:¢0).

Then Dirichlet’s problem is certainly solvable in both D and D in the
following sense: given any number ¢, there exists a function «(z;f, q,)
continuous in D v C v Dy, harmonic in D w Dw, with %(2; f, ¢,) = f(2)
(2€Q), u(z; 1, ) — glog |2| bounded for z—oo.

2. Notations concerning measures. All measures (see [1])
that we use are supported by C. ut*, u~ denote the positive and the
negative parts of the measure u: pu = pyt—pu-, ju| = p*+p-.

Let h(2) range over the class of all continuous functions on C. If

J 1y = [r@g s,

g is called the density of u, we write g = u’, du = gds. The trace of u on
a Borel set A is denoted by u| 4, i.e.

Jhap14) = [hoaap
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(p4 is the characteristic function of 4). The last integral is sometimes de-
noted by S hdu.
4

Let &(2) be the unit measure condensed at the point 2, i.e.

[h@)ds(e) = h(z).

Every measure of the form

n
(2) v =D me(er) (21¢0)
i=1
is called a discrete measure on C. We have t({z:}) = mq.

3. Notations concerning potentials and energies. For any
measure x on C its potential and its energy are defined by

3) U"(z) = [logls—¢|dp, |ulf = [ U'ap,

respectively. U* is barmonic in a domain 4 if and only if |u|(4) = 0.
Among the measures on ¢ with x(C) =1 {called unit measures) there is
(see [3]) an n = 7¢ of minimal energy. Its potential is constant on C,
moreover

)4) U"(2) = (2 Inlf, 1)

For discrete measures potentials (3) are well-defined but the energy
is not. Thus we introduce two substitutes; as to the first one, see [4], [20]:

(5) Ui(z) = [logle—2|7'dr,  Us(e) = [logalz—¢|dr,

where the mark , denotes that for { = z the integrand is to be replaced
by 0, while

(6) logst = min {logt, lognt}.

Now we put

(#,0) = [ Udo;  (u,0) = [ Ubdo; (u,0)s = [ Ulda;
Il = (uy w);  ldle = (&, pdo;  Nlptlln = (15 p2)n

Let us notice some properties of these integrals.

(a) (g, 0), (uy0)e and (u, o)s are bilinear forms. The first one is
positive definite, this means that ||u|* > 0 for any signed measure with
the only exception of u =0 ([3], [17]). In X, (section 8) (u, o) is also
positive definite; this was, among others, the reason of taking log n*
in (6). We omit the simple proof since the property mentioned is of no
importance for our present purposes. |lu/s may happen to be negative,
and so may |l for u not in X,.
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(b) (#, 6) = (o, u) at least for o, u of finite energy (3) by Fubini’s
theorem.

(e) (g, o)y = (o, ) at least if 1° x4 and o have finite energy (since
then (u, 6)y = (u, 6)), or 2° U” is continuous and o discrete, or 3° both
4 and o are discrete.

(d) (4, 0)n = (o, u)s for any measures, since log, is continuous.

4. Leja’s method (see [14]). Let f be merely continuous, and C
the common boundary of D and D, not necessarily smooth. Denote
by B, the class of measures (2) with fixed » and mi=1/n (¢ =1, ..., n)
and arbitrary 2 # 2 (¢ # k). There exists an un; € G, with

n
n—1

(8) L) <L) L2 i+ 24 [ 1d (1> 0).

There exist a function b(4) of 1 alone and a set of positive capacity
(transfinite diameter) C; C C, depending on Af only, such that the
following limits exist:

U™ 2) >ui(2) (2e DU Do), ua(2)—b(A)>f(L) (2>Lely),

9
O @ —b() >u @) (A0, seD)  (for any go).

5. Suppose now that f is continuous and solvable in the sense of
Siciak ([19]), i.e. Uy = C, or, equivalently, for ¢, =1 (§ 1) u(z; f,1) is
continuous subharmonic in the open plane. Then a measure y; on C
exists with

(10) wu(z;f,1)=U""(2)+H(2), H(z)=>b;=const (2 arbitrary).

This formula, with H harmonic in the whole plane, results from Riesz’s

theorem ([18]); U~ ’r is harmonic in D and D, and so y, is supported
by C; H(z) is easily seen to be bounded from either above or below,
and thus constant ([13], p. 282).

In particular, let us return to the assumptions of § 1. Then, as shown
by Gorski ([5]), 4f is solvable for some 2, > 0. Thus

(A1) w(2; f, @) = 45 %(2, Jofy ae) = U0 "f (2) + 25 bseg = U%(2)

with @ = A5 'war — 4 ‘bagsllnl "*n (see (4)) and go = A '. In particular
(12) f(2)=U"@) (2€0).

Moreover, by (11) and by [2], p. 213, U® satisfies a Lipschitz condition,
and this implies that ¢ is of bounded density:

(13) lo(E)] < ool B!
14*
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for any Borel set £ C C (the bars denote length). A proof of this impli-
cation (written for the space) will be found in [12].

6. We now propose a variant of Leja’s method, in which the sup-
porting points z; in (2) are fixed, while the masses m¢ are to be de-
termined from a minimum econdition. The main advantages are:

1° the parameter A and the corresponding limit process (9) are
eliminated (),

2° minimizing the polynomial (16) is rather easy, particularly for
computer programming.

On the other hand, the advantage of Leja’s original method is in
its far greater generality and in giving the existence proof.

7. Conventions. In what follows, C, f and ¢ have a fixed mean-
ing and the properties stated in §1 and (12). ¢ denotes any measure
with bounded density: |¢’| << p. The letters ¢ and N denote constants,
not the same ones at each occurrence but always positive and depend-
ing only on C, 4, 6 and ¢ (in particular on g, (13)).

n is fixed but arbitrary, till a limit process is mentioned; then, » is
fixed anew. The range of ¢, j, k is always {1, ..., n}.

For any measure p, its trace (§ 2) on Ci (§ 8) is denoted by us.
The c¢nly exception: y, is a measure on the whole C, not on Cj,.

O(as) is the uniform Landau symbol: b, = O(a,) means |b;| < can
where ¢ depends only on C and ¢ (ev. g,). We abbreviate: O, = O(n'logn).

Conventional symbols are also introduced in § 8 and in the first
lines of § 9.

8. Result. Divide C into » almost equal ares C; and take their
centres for 2; in (2). To be precise, take two positive constants 0 < ¢
< 1< 0 (independent of n). Then, if n is large enough, we can choose
0=t <t <..<tlyg=1=1 with

n < |em—2ka| (0 # k),  |Cw| <O/n,

(14)
Zin =2(80), 8i=2%@:i+t1), Cum==2i1,t), |Caul=1t—1_1.

The errors of approximations below increase with 6 —¢ but compara-
tively slowly.
Denote by X, the class of discrete ‘““bounded” measures on | J {2}

(15) K = lr: T =Zn:mie(zm), fm;] < 1}

() Observe that even with our assumptions (§ 1), we have no effective formula
for 4, from § 5. Giving it is equivalent to solving our problem stated in § 8.
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and put

th=1

n n
(16) I(z) =Illi—2(p,7) = D, mimlogaloim—2kal " +2 ) maf (2in) -
i=1

I(r) attains its minimum in X,. Denote by v, e X, the minimal
measure:

17) I(yn) <I(r) (reXy).

THEOREM. On the conditions of § 1, yu—>¢. Moreover,

(18) [yn—9] = O(n~"2logn),
whence
(19) | U¥a(2) — U%(2)] <V (2)0(n "logn) (2eD v Do),

where @ is defined by (12) and consequently

—U%(z) = ufz; f, 9(0))
(see § 1), while

(20) [,u]it-supﬂ‘u(L)l: L a Jordan arcC C}
(for any measure u on C) and
V(2) = Varpeclog [z —¢]7".

It seems possible to eliminate the condition |m¢ <1 from the de-
fipition of X,. But the computer programmist will welcome this limi-
tation—he would even be glad to have a condition like |m¢| < ¢/n. Our
proof shows this is available, but with ¢ = p, = max|p’| which is effec-
tively unknown. So we raise a problem:

Give an effective estimale for |¢’| in terms of C and | alone.

For the use of the computer we suggest without proof the following procedure:
Fix an 7 and find y, for p ~ . Take Pyy({%p)) = ¢, a8 the approximative density
of ¢ on C,,. Define

Ky = {r: 7= D mye(es), 0< mylog< 2/n if 24, € Oy

(if a ¢ = 0, replace the corresponding condition on m; by, say, |my|<|v,|(C)/p)
and calculate the minimal measure y,” ¢ Jt;” analogous to (17). The interval for m; may
be reduced, but if the computation gives an m,; at an end of the jth interval, this
interval must be enlarged and the computation repeated with the new X7 . Then our
theorem is valid with ¢;” instead of p, . Now, allowing the errors of, say, 1/2n* in the
m’s (see § 13), the time required to find v,  will equal that needed for y, with g <n.

Moreover, a concrete computing machine which can reach, say, e, Will be able
to calculate only ;. Thus, the twofold computation described above seems to be
much more economical.
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9. To prove our theorem we need some condensation lemmas. With
the notation of the preceding section, denote by

(21) . Ch = 2(<8; — |Owl/n, 8; +|Cn| [n})

the arc of C of centre 2;, and length |C}| = |Ci|/n. For any measure
o on C, let ¢* and o denote its condensations to | JO&L and (J{zn}
; i
respectively:
do*(z(si+t/n)) = do(e(si+1)), 1t < }[Cial

(22)
o ({2in}) = 0(Cin) = o*(Ch) .

We suppose once for all lemmas that ¢ denotes any measure on C
of bounded demsity: [o'(z)]| < 0.

LEMMA 1.
lo*|* — llo*|f&| = On.
Proof. We have

1] — llo"|2 = gt(o:, o%) — (0, Ti)n]

(see Conventions). By Lagrange’s mean value theorem,
loga—!—logb~!| < |a—b] 1/r

with some 7 > min{a, b} (a, b > 0).

Let ¢k Puta=|2—(| (e Ch,leCf), b=|2tn—21]- By (8),
the corresponding r > #n1—6n2 and la—b| < 6»n~2. On the other hand,
|67 (C7n)| < Onlp. So for n >N

oty o%)—(aiy oidal < | [ |logle—¢|~t —log2in —#aal~| dl ot |dIok] < O (n-),
Cin Cia
while

lotle < [ [loglsa—t|-(ne)pdsdt <nt0,
C. C.

(both integrations with respect to the natural parameter); thus
P
Qlotlf =0, and  Dloilf = On
3 1

and our lemma follows.

LEmmA 2. U° satisfies a Dini-Lipschitz condition on C:

IUa(z(sl)) - Uﬂ(@(sz)) I <e |31"32| IOg |31'—82|—1 )
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A proof is given in [7]; another one can be extracted from [2],
p. 47-50.

LEMMA 3.
|U%(2) — Un(2)| <17on~tlogn,

ol —llolln| < 17" *logn  (n>N).

Proof. If the distance of z to C is >n%, the first difference is 0.
In the opposite case, let

A=0n~{: [E—2<n} and z,==2(s)ed.
Then

ACBE O~ {t: |E—2) <2n4}.

Choose an 7€ (1,17/16), then | —=z > r~1][s—s8,| ({ = 2(s)) if {eB, pro-
vided » > N. So

N

T =@ =| [ | =)
So+2rn—4

<o f logr|s — 8|7 ds < 17pn*logn

8o—2rn—4

if w is sufficiently large. Thus the first inequality is established, and
the second one follows by integration.

LEMMA 4.
Ie*IF —llol =llc*—o|’ +an, |aa] = On.

Proof. Using Lemma 2, we estimate (max and min taken for
2e€Cy, T=0"—0):

laal = |2 [ U(e)ar| <2 D [ (max U°ds* —min U°ds™)

1 C(n

<2 [ 0|Cinllog|Cu|™ dl7] < 4000n " lognb™".

i Cip

COROLLARY. If, moreover, ¢ >0, then [6*— ol = Os.

Indeed, ||o**—0s <|lo"llf <|lo|*+O0n, the first inequality resulting
from Lemma 1, the second one from Lemma 1 in [7]). So |[¢**—|lo]]* < O»
and by Lemma 4 |[¢*—o|? < Or—a,. The energy being positive, our
assertion follows.

Now, the condition in this corollary may be droped—this in the
matter of our chief lemma:

LEMMA 5. [lo— o*| = O4.
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Proof. Take an auxiliary measure 7 = o+ a, where da = pds. Then
a>0, >0, and so by the corollary above and by the triangle in-
equality (valid by § 3 (a))

0 <llo—o*f=ll(r—7*)—(@a—a)? < ([t —7*| +lla—a*])* = On.
LEMMA 6. |lp—g'[n = O5 (see §§ 1, 3).
Proof. By Lemma 3,
(9, ¢ —(9,9") = [ (Us—U")dg = O(n *logn),

and by the argument used when proving Lemma 4
23) N, ) —(p, 9% = | [ T°d(g—9*)
< D, |Oh| max |df/ds| 2¢,/Cinl = O(n=%), g, = max|¢'].

i

By Lemmas 3 and 1 the differences between |lpln, llp'lln and fig|f, lp*
respectively are On; thus

le—¢'lh = leln—2(@, @ )n+ llg7|ln

= llpl* —2 (@, ¢*) +g** +0n =g —@*|* +0n = On
by Lemma 5.

10. Proof of the theorem. We estimate at first |y, —g|. Let us
write simply %' instead of y;,. The first inequality resulting from Lemma 3
and the second one from (17), we have:

ly' —olln = s —2(g, v")n+plh <l ln—2(®, v) +gl’ +0n
<lglh—2(p, @) +lgl*+ 00 (5> N)

(N being so large as to ensure |p(Ci) <1 for n > N). In the last two
integrals we replace log by logy; by Lemma 3, this produces a change
of Op, and thus

(24) " —@lin <llp —@lln+ On = 0w
by Lemma 6.

We must now pass to a continuous measure. Fix an ¢, put
C; = 2({si—7r,8¢+7r)) (see (14)) and let u = u; be the uniform unit
measure on C,: du = ds/2r. There is a é > 0 such that i|s—1| < |2(8)—
—2z(t)| < |s—1| provided |s—1| < 24, and so with 0 <r <4

J (r) <llpal <J(r) +1log2,

where

Jr)=@n [ [ logls—t"'dsdt =1 +log(2r)".
- -
Thus there exists an r = r(%) € (¢/2n*, e¢/n*) such that u; = pir: has the
energy ||ui” =logn’. Put y; =y ({#n})p, then [p]* =il This being
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done for i =1, ..,n, put v = > ;. As in the proof of Lemma 1, we
i
obtain—owing to r(¢) being O(n~*) and to the inequality in (14)—
[(ws, &) —(wi, wi)]l = 0(n7%), @ #k,
and by the construction of y the left side equals 0 for ¢ = k. Thus
(25) |yl —llplla] = O (™).

Following the example of (23) in the proof of Lemma 6, we estimate
the first term required, and by Lemma 3 the second one:

(26) @y ¥)— (@, ¥)al < (@ ¥)— (@, ¥)| +1(p, v')— (@, ¥)al
< max|df/dslen™ + 17g,n~*logn ;

s0 by (25), (26), Lemma 3 and (24)
o=@l = (el —lwlln) — 2((95 ¥) — (@5 ¥")a) + (lgl* —liglin) + Il — @l = On .
On the other hand (§ 4),
lp'—¢'| <n'let+o, <n* (n=N).

Now, we proved in [9] the theorems which enable us to estimate [o] (20)
in terms of ||o|| and of a bound for density. Namely, [9] (32) gives us
for o =yp—¢

c‘logn
o ol Gy
[oF = [oF = (g, e’

Mo]

where ¢, ¢,, ¢; and M are positive constants. This implies (18) by an
elementary calculation. Now (19) follows from the general inequality

(27) | [R(©)do ()| <[o] Variech(?)
C

valid for any measure ¢ on C and any h of bounded variation. The
proof is given in [9] (37) (formulated for the special case we need:
h = loglz—¢|™"). This gives the proof of our theorem.

11. The derivatives also converge, and we have e.g.

0 “1g, .
3 | logle 1" dlvi—o)|

_ cosarg(z—2) ,, . .
_U_ e d(vpn—qo)]éwwcp]Vz(Z),

N N
=0 (m+fty)—a—u,éU(w+w)‘ =

cosarg(z—2{)
lz—¢l
The last inequality is proved by (27).

V(2) = Varsec

z=x+t+tyeD.
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12. —U%z) = u(z;f,q) with ¢y = ¢(C). If we are interested in
2z ¢ D ounly, the value of ¢, is immaterial. If we have to obtain, in D,
u(z; f, q,), it is sufficient to add {g,—@(C)}(U"—|n|) (sce (4)). We then
approximate ¢(C) by v,(C) and n by Leja’s method ([15]) or our variant
of it ([10]); the convergence of both approximations is as in (19)[11], [10].

The possibility of obtaining u(z; f, ¢,) in Ds by the (original) ex-
treme points method was pointed out by Siciak ([19]).

13. Computing hints. The calculator has nothing to do with
#, 6 and C;,. Simply 2;, are to be choosen on C at approximately equal
distances (along C)—e.g. by sketching C and inscribing an equilateral
polygon with an arbitrarily chosen side a. By counting the vertices
we then obtain n. The coordinates (or directly mutual distances) of z;’s
will be approximate of course, but an error of ¢/n? is admissible, since
it increases the error in I(y,) by O(1/n) only. By the same reasoning
min can be assumed to be a number of the form k/n? with integer k.

References

[1] N. Bourbaki, Intégration (Elem. de Math., L. VI, chap. III), Ac. Sci. Ind.
1175, Paris 1952.

[2] N. M. Giunter, Teoria potlencjatu, Warszawa 1957 (in Polish, Russian ori-
ginal, Moscow 1934).

[3] O. Frostman, Potentiel d’équilibre et capacile des ensembles, Lund 1935.

[4] J. Gérski, Méthode des points extrémauzx de résolution du probléme de Di-
richlet dans Uespace, Ann. Polon. Math. 1 (1955), pp. 418-429.

[6] — Une remarque sur la méthode des points extremaux de F. Leja, Ann. Polon.
Math. 7 (1959-60), pp. 69-75.

[6] O. D. Kellog, Foundations of potential theory, Berlin 1929.

[7] W. Kleiner, Sur la condensation des masses, Ann. Polon. Math. 15 (1964),
pp. 85-90.

[8] — Sur les approximations de M. Leja dans le probléme plan de Dirichlet,
Ann. Polon. Math. 15 (1964), pp. 203-209.

[9] — Une condition de Dini-Lipschitz dans la théorie du potentiel, Ann. Polon.
Math. 14 (1964), pp. 121-134.

[10] — Une variante de la méthode de M. Leja pour lUapprozimation de la repré-
sentation conforme, Ann. Polon. Math. 15 (1964), pp. 211-216.

[11] — Sur Papprozimation de la réprésentation conforme par la méthode des poinis
extremaux de M. Leja, Ann. Polon. Math. 14 (1964), pp. 131-140.

[(12] — Degree of convergence of the extremal points method for Dirichlet’s problem
in the space, Colloq. Math. 12 (1964), pp. 41-52.

[13] M. Krzyzanski, Réwnania résniczkowe czqstkowe rz¢edu drugiego, cz. I, War-
szawa 1957 (in Polish, english edition in preparation).

[14] F. Leja, Une méthode élémentaire de resolution du probléme de Dirichlet dans
le plan, Ann. Soc. Polon. Math. 23 (1950), pp. 250-255.

[16] — Sur une suite de polynémes et la représentation conforme d'un domain plan
quelcongue sur un cercle, Ann. Soc. Polon. Math. 14 (1935), pp. 116-134,



Variant of Leja’s approzimations 211

[16] J. Plemelj, Potentialtheoretische Untersuchungen, Leipzig 1912.

[17] M. Riesz, Intégrales de Riemann-Liouville et potentielles, Acta Litterarum
ac Scientiarum, Sectio Scientiarum Mathematicarum, Szeged, 9 (1938), pp. 1-42.

[18] F. Riesz, Sur les fonctions subharmoniques et leur rapport d la théorie du po-
tentiel, II, Acta Math. 54 (1930), pp. 321-360.

{19] J. Siciak, Some applications of the method of extreme points, Collog. Math.
11 (1964), pp. 209-260.

[20] A. Szybiak, Some properties of plane sets with positive transfinite diameter,
Ann. Polon. Math. 3 (1956), pp. 19-28.

JAGELLONIAN UNIVERSITY
MATHEMATICAL INSTITUTE OF THE POLISH ACADEMY OF SCIENCES

Regu par la Rédaction le 4. 4. 1963



