ANNALES
POLONICI MATHEMATICI
XVII (1965)

On invariant points of monotone transformations
in partia]ly ordered spaces

by A. PELCZAR (Krakow)

The author’s previous paper [2] discussed the problem of the exist-
ence of the extremal invariant points of the transformation

y =Vi(x)

of a partially ordered set P into P, which is equivalent to the problem
of the existence of the extremal solutions of the equation

z2=V(z2).

In the present paper we make some remarks concerning this prob-
lem and the theorems proved in [2] and (in § 2) the connections be-
tween them and the theorems of A. Tarski and L. E. Ward (cf. [4]
and [5]).

§ 1. We shall consider a partially ordered set P (cf. [1]) making
use of the notation and definitions introduced in [2]. We shall formulate

the following theorems, which are a more general form of the results
of [2]:

THEOREM 1. Let P be a non-empty partially ordered set, let V be an
increasing map of P into P; further let the subset Q of the set P defined
by the formula

(1.1) Q ={zeP: 2V (2)}
be non-empty and let there exist in P sup@Q (where by sup@ we shortly

denote the least upper bound of Q in P, cf. [2]).
Then z = sup@Q is the maximal solution of the equation

(1.2) z=V(2)

in P, i.e. such a solution that for each solution z < P of (1.2) we have 2 <z

THEOREM 2. Let P be a non-empty partially ordered set, let V be an
increasing map of P into P, let the set Q' defined by the formula

(1.3) Q' = {ze P: V(2) <z}
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be non-empty and let there exist in P infQ’ (where by infQ’ we shorily de-
note the greatest lower bound of Q' in P, cf. [2]).

Then z = infQ’ is the minimal solution of the equation (1.2) in P,
i.e. such a solution that for each solution z e P of (1.2) we have 2 < z.

Theorem 1 (Theorem 2) is a more general version of Theorem A
(Theorem A’) in [2], but the proof is based on the same idea as the proof
of Theorem A (resp. Theorem A’). It is easy to see that in the proof
of Theorem A, we made use of the following condition II: each non-
empty subset @ of P has sup@Q in P only in the case of the subset @
defined by (1.1); the other assumptions of Theorem A were also made there.

Remark 1. Of course if we suppose the conditions of Theorem 1
and, moreover, assume that for some ye P is y < V(y), then y <z,
where 2 is the maximal solution of (1.2) in P (cf. Remark 4 in [2]).

§ 2. A. Tarski proved in paper [4], which was unfortunately not
known to the author during the preparation of paper [2], a theorem
(Theorem 1 in [4]) equivalent to the theorem which has as its assump-
tions all the assumptions of Theorems A and A’ (of [2]) simultaneously,
and draws both conclusions of these theorems simultaneously. The idea
of the proofs of Theorems A and A’ is the same as the idea of the proof
of A. Tarski’s theorem. It is easy to see that a theorem which has as
its assumptions all assumptions of Theorems 1 and 2, and draws both
conclusions of Theorems 1 and 2 is a more general version of the theo-
rem of A. Tarski.

L. E. Ward Jr. in his paper [5] (which was not known to the author
during the preparation of paper [2]), considered semi-lattices. A partially
ordered space X is said to be a semi-lattice if supL(x) ~ L(y) exists for
each z and y in X, where L(x) = {a: a < x}. A semi-lattice is complete
(cf. [5]) if for each non-empty subset A C X sup[\{L(a): a e A} exists
in X. It is easy to see that a set P fulfils condition II of the assumptions
of Theorem A (cf. [2]) or condition IT’ of Theorem A’ iff it is a complete
semi-lattice; if P fulfils the assumptions of Theorem 1 (Theorem 2), then
it has not need to be a semi-lattice. -

The interval topology (ef. [1], p. 60) is a topology generated by
taking all of the sets L(x) and M(z). where M(z) = {a: z < a}, e X,
as a sub-basis for the closed sets. L. E. Ward Jr. proved in [5] the fol-
lowing

THEOREM W (Theorem 2 in [5]). If X s a semi-lallice, f is an wn-
creasing map of X into X, and X 18 compact in the interval topology, then
the set F' of fixed points of | is non-empty. If X is a complele semi-lattice
and F is non-empty, then F is a complete semi-lattice.

Neither Theorem A of [2] nor Theorem 1 (resp. Theorem A’ and
Theorem 2) are special cases of Theorem W or any generalizations of its.
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§ 3. In this paragraph we shall consider real functions of one real
variable x and real functions of two real variables x, y. We write

(3.1) ={Z,y: 0<z<a 0<plo)<y <y(x)},

where ¢(x) and y(x) are known functions continuous in (0, a), such that
0 <ple) <yp(x).

THEOREM 3. Let F(x,y) be a continuous function defined in 8, in-
creasing with respect to y and such that ¢(x) < F(z,y) < y(x), let the set

Q* = {g: g(x) i8 a continuous function such that
p(@) < g(@) <y(2) and g(z) < F(z, g(2))]

be non-empty and let there exist sup@Q*, which is a continuous function f(x).
Then in the set P* of all continuous functions y(x) defined in the interval
(0,a> and satzsfymg the condition ¢(x)<<y(z)< 1,0( ) there exists a max-
imal solution ¥y (x) of the equation

(3.2) y(x) = F(x, y(z)) .

In order to prove Theorem 3 we can apply Theorem 1, which fini-
shes the proof. In this case, however, we could not apply Theorem A
because condition II of the assumptions of Theorem A (cf. [2]) does
not hold. Similarly we could not apply here the theorem of A. Tarski
or Theorem W, which was cited in § 2. An equation similar to (3.2) was
considered in [3].

Remark 2. Of course if a function wu(x) fulfils the inequality
u(w)gF(w_,u(m)) and is continuous, then u(x)< y(x). As a simple
example we can consider the following functions:

2x lny

p(x) = ]/-2_$, p(x) = 2z, F(z,y) = 2 7"

Here y = 22 is the maximal solution of the equation

2
y(w)—él y(m)

§ 4. Now we shall give some remarks concerning the equation (1.2),
where V(z) is decreasing. At first we must say that Remark 6 in pa-
per [2] is not correctly formulated. Theorems concerning (1.2) in the
case of decreasing map V are not quite analogous to Theorem A (Theo-
rem A’). Indeed, let P = {z,,2,}, where z; <2, and let V(z) = z,,
V(2,) = 2,. In this case V is decreasing and the assumptions I-III, V
VI, IT’, VI’ of Theorems A and A’ are evidently satisfied, but there are
no solutions of the equation (1.2) in P.

4"
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Remark 3. It is easy to see that if P is a non-empty, partially
ordered set, V is a decreasing map of P into P, and two elements 2,, z,¢ P
are such that z, <z, and V(2¢) =2 (¢ =1, 2), then 2, =2,.

COROLLARY 1. If there exists in P a mazximal (minimal) solution
of (1.2), where V 18 a decreasing map of P into P, then there exists exvactly
one solution of (1.2) in P.

THEOREM 4. Let us assume that the set P is a non-empty, partially
ordered set, V is a decreasing map of P into P, the set Q defined by (1.1)
i8 mon-empty and there exist in P: sup@, infV (Q) and, moreover, sup@ ¢ @,
infV(Q) < sup@, then there exists in P exactly one solution of (1.2).

Proof. Let 2* = supQ. From the assumptions it follows that
(4.1) # <V,
Let z =infV(Q). We are going to prove that
(4.2) V(e*) <zZ.
For each zeQ is z <2* V(2) is decreasing; then we have
V(z*) < V(x)
for each = ¢ ), which means that
(4.3) Viz*) <y

for each y ¢ V(Q). From (4.3) and from the definition of the infimum
it follows that (4.2) holds. In consequence we have

(4.4) 2 <V(*)<z.
On the other hand, from the assumptions we have
(4.5) z <.

From (4.4) and (4.5) it follows that z = 2* is the solution of (1.2). From

the definition 2* it follows that it is the maximal solution of (1.2) in P.

From Corollary 1 it follows that it is the unique solution of (1.2) in P.
It is possible to prove in an analogous way the following

THEOREM 5. Let us assume that P is a non-empty partially ordered
set, V i8 a decreasing map of P into P, the set Q' defined by (1.3) is non-empty
and there exist in P: infQ’, supV(Q') and, moreover, infQ’' « Q’', supV (Q’)
< infQ’, then there exists in P exactly one solution of (1.2).

Remark 4. If all assumptions of Theorem 4 are satisfied and for
some ¥ ¢ P we have y < V(y), then y < 2, where 2 is the unique solution
of (1.2).

This proposition is formally analogical to Remark 4 in [2].

If all assumptions of Theorem 5 are satisfied and for some y ¢ P
we have V(y) < y, then z < y, where 2 is the unique solution of (1.2) in P.
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Remark 5. If sup@ exists in P and sup@ €@ (or inf@’ exists in P
and infQ’ ¢Q’) and if there exists in P a solution 2z of (1.2), where V is
decreasing, then 2z is the unique solution in P.
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