ANNALES
POLONICI MATHEMATICI
XXXI (1975)

A differentiable dependence on the right-hand
side of solutions of ordinary differential equations

by ComrNELIU URSESCU (Jassy)

Abstract. The aim of this paper is to study the differentiability of the solution
of eertain system of ordinary equations as a function of the right-hand side of the
system. The differentiability is understood in the sense expounded in [4], In that
paper the differential Dy(xp): KXO (wg)— T of a function f: Xj— I at a point z,e X,
is defined by the formula Df(zg)(®) = lim (l/s)(f(:zo+s(a:+u.)) —f(a:o)) and .KXO (=)

8—04-

=0
is the set of all points z¢X for which there are arbitrarily small s> 0 and #¢X so
that @y+s(x -+ u)eX,. The result which we present here is similar to those obtained,
by means of some supplimentary conditions, in [3] (see Theorem 7.1, Corollary 3)
or in [2] (see § 7).

1. In this section we shall deseribe our problem.

Let R be the real line and let K, = [a, b] be a compact interval of R.

Let X be an Euclidean space and let X, be an open subset of X.

Let I be the space of all functions f: Ry, x X,—>X which have the
following Carathéodory’s properties:

(i) for every teR,, the function zeX,—f(f,s)e X is continuous;

(ii) for every wxeX,, the function fteR,—>f(f, #)eX is measurable;

(iii) for every compact subset P of X,, there is an integrable function
m: Ry,—R such that if (¢, z)e R, X P, then [f(f, )| < m ().

The properties of I ensure that for every (z,, fi) € X, X F the system

(1) Yo (1) =fo(t; '!/o(t)); Yo(a) = @,

has ot least one solution y, defined on an open subinterval of T|.

In the sequel we shall denote by D,(¢, ) the differential of the func-
tion we X,—f(, #) e X at the point weX,, if it exists. It is known from [4]
that D(t, ), for fixed ¢ and #, is a positively homogeneous, continuous
function from K x, (%) = X to X.

Let £ be the linear normed space of all positively homogeneous,

continuons functions &: XX, with |&]] = sup [£(2)].
llzll=1
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Let I'y be.a set of points fe which have the following properties:

(iv) for every teR, the function xzeXy—f(t, #)eX is differentiable;

(v) for every compact subset P of X, there is an integrable function
m: Ry—R such that if (¢, @)y x P, then ||D/(t, @)[| << m(1).

It is easy to prove, using a mean value theorem, that if feI,, then
for every compact subset P of X; and for every number 7 > 0 for which
aelP und &) < r imply & +a&eX, (such a number always exists) there is
an integrable function m: RBy—R for which (¢, #)eR,xP and |@|<r
imply |If(¢, @ +Z)—f(t, @) < m () |15

Consequently, the properties of F, ensure that for every (2, fo) e Xy X F,
system (1) has at most one, hence nnique, local solution w,.

We are interested in those points (2, fo)eX, X Iy for which the solu-
tion of system (1) is defined on K,. The set of such pairs we denote by X,
‘We shall suppose that X is not empty.

Let ¥ be the lincar normed space of all continuous functions y: Ry— X,

with |yl = sup fly ().
'EI{D
Denote by o: Y- Y the function defined by the formula (2, fo) = ¥,-

Our purpose is to endow the linear space F with such a compatible
topology that ¥ and ¢ have “good properties”.

Let ¥ be the space of all functions y: R, % X;— £ which have prop-
erty (v); thus property (v) becomes equivalent to the relation Dje V.
We shall use the notation Dy, for the set of all D; with feF,.

The hypothesis concerning the set F, will be made in terms of a com-
patible topology on the linear space Y.

2. In what follows we shall expound the announced topological
structures. :

Let ¥, De the set of all points ye Y for which y(R,) is a subset of X,.

Let the space I' be endowed with the topology generated by the
family of seminorms

2
Ifle = sup sup || [ £(0,y(0)as |,
‘1

ye@ t)ilgeR,

where @’s are compact subsets of ¥,.

Before continuing our description, we shall make two comments
about the topology on F.

First, this topology is the trace of the topology of compact converg-

ence on the space F, regarded by means of the mapping f—f, where
. t

fn @) = [ f(6, y(6))d, as a subspace of the space of all continuous func-
tions from X, to Y, because:

sup IF )11 << Ifllo < 2 sup [IF(9)]].
e veQ



Ordinary differential equations 193

Second, this topology is the trace of the topolo y used in [1] on the
ipace I', regarded by means of the mapping f—- , where f assigns to every

point of R, X T, a point of X by the formula f(2, y) = f(&, (), as a sub-
space of all functions from R, x ¥, to X having Carathéodory’s proper-

ties, Dbecause:
ts

sup sup || [ F(6,3)d6| = Ifl,-
yeQ {1,1aeRy I3 .
Thisx means that the theory of quasi-convexity of [1] (see Lemma 4.1)
remains true in F.
Now, let us continue our exposition.
For a funetion u: Ry—R which is not necessarily measurable Lut
bounded from above by an integrable function, we put

fy(ﬂ)éf) = in:f{ fm(@)dﬁ; m: Ry— R integrable and u(t) < m(t)

for every tsRo}.

Let the space ¥ be endowed with the topology generated by the
family of seminorms

plle = [ sap lw(0, 2)) 69,
R, xzeP
where P's are compact subsets of &,.

3. In order to state and prove our result, we need the system in
variation (fyeF, and ¥, is the solution of (1))

(2) (1) = Dy (t, )y () +1(t, we(t)), w(a) = =.
It is easy to prove by using a theorem of [4], a Lebesgue theorem
and a mean value theorem, that the following propositions hold:
for every teR,, the function » e X—D; (t, ¥o(?) )J(z)eX is continuous;
for every zeX, the function teR,,—>Dfu(t Yo(1))(2)e X is measurable;

there is an integrable function m: R,—~E such that if te R, ®,eX
and v, X, then

1Dy, (8 9o () (1) — Dy, (b, 4o (D) (2)]| < 2 (B) 1|1 — 0.

Consequently, for every (2, f)eX x I' system (2) has a unique solu-
tion yeY.

The promised result is the following

THEOREM. Let the set Dy be bounded. Then the function o is dif-
ferentiable. Moreover, Kp(wy, fo) = X x Ky (fy) for every (@, fo)eZ' and
Dy, fo) (@, ) = vy for every (@, f)eK (2, fy), where y is the solution of (2).
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Proof of the theorem. Let (ap,fo)el. Then K (a,f,)
Kx(,an(i"‘o,fo) =X %Kﬁ‘o(fo)‘ Now, let (2,f)eX XKF(,(_fo)-

For ¢ >0, (&,f)eX xF and (&, fo)+3((®, )+, )Xo x F, (it is
known that there are arbitrarily small such s and (z, f)), let us consider
the system

In

o o

(o + s +0) () = (fo+sF+NEs o+sw+D)(®),

(3) . .
(o + (¥ +1))(a) = 2+s(x+T),

which has a unique local solution .

We shall show that if s and (%, f) ave sufficiently small, then 7¢Y
and # is small.

This will mean that (2, f,)+s((x,f)+(Z,f))eZ; hence (z, f)e
eIx (2o, fo)y and of(wy, fo) +5((x, f) +(&,1)) = v+ +F); hence o is
differentiable at (2, fo) and D,(2,, fo)(2,¥) = ¥.

Let a > 0 be such that if §¢[0, o] and [|7]| < a, then y,+5(y+7)e Y,
(such a number always exists). Let us set

P = {ys(1) +5(y (1) +7); 1eRy, 5e[0, o], 7] < af
(P is a compact subset of X);
Q = {yo+35y; 5e[0,c¢]} (@ is a compact subset of ¥,);

85 = [ @Wm(F(6, ot 5)(6) 10, 9o (6)) =Dy (6, %ol O (y(8)) +
Iy

+£(0, (ho+59)(0) —£(6, yo(O)) [ @6 (1im B(z) = 0);

s§—>0

y = supllDjllp-

feFo
‘We shall complete the proof of the theorem by proving the following
LeMMA. Let s < o and (121l + Ifllo + B(8))expy < a. Then §e Y and ||
< (@1 +17llg + B(s)) expy .

Proof of the lemma. It follows from systems (1), (2) and (3)
that the function 7 verifies the following integral equality:

11
7(t) =&+ [F(8, (3o+sy)(0)) a0+
i a
+ [ (@W1s){(fol0, (o +59) (8) —1o(6, %0(6))) — Dy, (6, %0(0)) ((8)) +
+1(65 (o +5)(6) —1(6, s(8)) a0 +

+ [ (@)s)((fo+s(f B, (wo+ 5y + D)) — (fo +5(F+D)(8, (3o +5y)(6))) 6.
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Let m: Ry—E be any integrable function which satisties, for every
te Ry, the following inequality:

SUPIDy 4147 (F) B)| < m(2).
x P
For those ¢ > a for which § ix defined and fe[a, #] implies |7 (0)] < a,
it follows that

i
I @)1 < 181+ 1l + B(s) + [ m(6) 17 (0)id6.

From Gronwall’s lemma it follows that

i
1§ @< (1611 + 1Tl + B(s)) exp ( [ m(6)as).

t
We may replace, successively, in the above inequality, [ m(6)d6
a

b'y Rf m(ﬂ)dﬂ, "‘Df0+5(f+i)"P and V- Consequently
(]
sup 17 @) < a.

A standard argument shows that # can be continued on R,. Thus
the proof of the lemma and of the theorem is complete.
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