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On ultra-weak convergence in L*

by DonNALD E. MYERS (Tucson, Ariz.)

Abstract. Let {p,} be a sequence in L¥ on the unit circle such that
Lim{f(e“’)q),.(ﬂ)dﬂ =1(f) cxists for all feHY, 1/p+1l/g =1,1< p< .
n—-00

Then there exists @ e LF such that
W = [ flep(0)do
vy

for all feH?. The result is known for p = 1, ¢ = o, the purpose of this paper is to
supply the proofs for the remaining cases.

1. Introduction. Let A denote the unit disk and T its boundary.
IF denotes the usual Lebesgue space considered on T and H? the Hardy
space on A. If fis in H?, then f(¢*), the boundary function of f, is con-
sidered as an element of L.

Piranian, Shields and Wells [5] proved the following; which was
conjectured by Taylor [6]

THEOREM 1. Let the sequence {a,, a,,...} of complex numbers have
the property that for each function Y'b,2" in H® the limit

Limz a,b,™

exists and i8 finite. Then there exists a function pe L'(0, 27) such that

1 [ )
a, .=5;of p(Hye™at = p(n)  (n>0).

The converse is true. At the end of [5), they conjecture Theorem 2
which if true would imply Theorem 1. Kahane [2] has shown that Theorem
2 is true if H® is replaced by A. A denotes the subspace, of H®, of func-
tions having continuous boundary values. Mooney [4] then completed
the proof of Theorem 2 utilizing Kahane’s result.

THEOREM 2. Let {p,} = L* such that

2r
Lim [ f(¢")g,(6)a6 = L({)

n—o0
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2r
for all fe H™. Then there exists pe L' such that 1(f) = [ f(e*)p(6)d6 for
0
all fe H*.
In this paper we will extend Theorem 2 by replacing L! by L* and
H* by HY% where 1/p+1/g =1, 1< p < oo. Although the method of

the proof is similar it is necessary to separate the cases 1 < P, < o0
and p = oo, ¢ = 1 since L! is not reflexive.

2. Comments on the proof of Theorem 2 and the more general result.
Since H® =« LY, 1 < p < oo, the hypotheses of Theorem 2 are strengthened
if L! is replaced by L¥ and H* by H% Therefore, Theorem 2 still asserts
the existence of ¢e L' such that

bid
1) =5 [ Sieo(6)as
‘ ]

for fe H* if the stronger hypotheses are satisfied. To obtain the stronger
conclusion by using Theorem 1 would require two seemingly difficult
steps, (1) to show that ge LT, rather than ge L!, (2) to show that the
representation is valid for all fe HY instead of just H*. Although Mooney
[3] did complete the proof of Theorem 2 by extending the wvalidity of
the representation from a subspace to all of H®, this does not seem viable
when comparing H* with H? In fact, it is much simpler to proceed directly.
However, the attempt to proceed from Theorem 2 makes the general
result seem plausible. The case p = oo and ¢ = 1 does not seem to be
suggested by Theorem 2.

3. The case 1 <p,q < oo.
THEOREM 3. Let {p,} = LF, 1 < p < oo, such that

Lim — f F(6")g(6)d0 = L(f)

nsoo 2T

exists for all fe H? 1/p+1/qg = 1.
Then there exists pe L¥ such that

1 2w '
W) = 5= [ Fe)pn(e)p(0)0
0

for all fe HO.
Proof. Set

17,
L) = == [ £6")9u(0)d0;
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then 1,e (H%" which by the Hahn-Banach Theorem has an extension
l,¢ (L%". Moreover, by the Uniform Boundedness Principle the 1,’s are

uniformly bounded and hence thel,’s. Since (L%)* may be identified with L¥
the 1,’s may be identified with a bounded subsét of L¥. Since L is reflexive
bounded subsets are weakly compact, there exists ¢ L” and a subsequence
{#n,} = L* which converges weakly to g, i.e.

Lim f 9(0)7s,(6)d0 — f 9(0)¢(0)df

k—boo

for all ge L% If fe H? then

2r
1 : 7
| )0y (8)80 = (1) = (1)
0

but Liml, (f) = I(f) so that

-+

1 2 .
1) =5 | Fe"w(0)do.

The proof of Theorem 3 is considerably shorter than that of Theorem 2
for several reasons, although it is basically similar. In Kahane’s construc-
tion it is necessary to restrict I, to 4 in order to obtain the integral repre-
sentation for I(f). Unfortunately the representation is given by a measure
8o it is then necessary to show that it is absolutely continuous and hence
given by an L' function. Because of the restriction to 4, Mooney’s con-
struction is necessary to show that the representation is valid for H™.

4. The case p = o0, ¢ = 1.
THEOREM 4. Let {p,} = L™ such that

Lim f fe")ga(8)d0 = U(f)
exists for all fe H'. Then there exists ¢ e L™ such that

1 F,
Uf) == [ Fe)p(0)d8

exists for all fe H'.
Proof. Proceeding as in the proof of Theorem 3 set

2n
1 .
W(f) = 5= | 1E)p(6)20
0
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Then 1, e (H')* and extends to I,¢ (L')*. Since (I')* may be identified
with L*®, the l,’s may be identified with a bounded subset of L* (use
the U.B. Principle again). By Alaoglu’s Theorem, the unit ball of L*
is weak* compact. Withou® loss of generality we may assume |l <1
so that there is a g« L™ and a subsequence {p, } which converges weak"
to ¢, i.e.,

} 2r 2r
.1 - 1
Lim o [ 906,030 =5 [ 9(0p(01a0

for all ge L', where ¢, is identified with i,,k which in the extension of
1,. For fe H'

2r 2r
1 R 1
'2;[ F(€°)pn, (0)d6 =1, (f) =1, (f) =%f f(e") @y, (6)d0
0 0

and by hypothesis
Limi,(f) = L(f)

n—-o0

S0

2r 2r
1 1
Lim = [ f(“)gu(0)a0 = U(f) =5 [ f(e")p(6)d0.
0 0

n-»00 2%

Combining Theorems 2, 3, 4 gives the desired complete general result.

4. Results. E. A. Heard [1] has announced a new proof of the weak
sequential completeness of L* using Kahane’s results. A similar approach
to the weak sequential completeness of L”, 1 < p < oo, is of no consequence,
however, since the reflexive property was used in the proof of Theorem 3.

Unlike Kahane’s and Mooney’s results, Theorems 3 and 4 are inde-
pendent of dimension, that is both generalize to AV and TV without any
change in the proofs as follows.

THEOREM 5. Let AN and TV denote the N dimensional polydisc in CV
and its distinguished boundary, N >1. Let 1<p< oo, 1/p+1/q = 1.
If {g,} = LP(T™) such that

Liml,(f) = Lim [ f*g, = U(f)

n—ao n—>00
TN

exists for all fe HY(AY) (f* is the boundary function of f), then there exists
@e LP(TV) such that

W = [fe
N

for all fe HY(AY).
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As observed by Kahane the hypothesis of Theorem 2 is the existence of

LimZ @y 1D, Where ¢,(0) = 2 a, 6%, for all Zbke""e H®(4).
A0 kad k=—o00 k=0

The conclusion of the theorem is Lima,, = [¢(6)¢*°d0 for some

n—--0

¢e L'(T). Theorem 1 is a special case of this re-statement. In like manner
‘Theorems 3 and 4 can be re-stated to give results analogous to Theorem 1.

An example. In the proofs of Theorems 2, 3, 4, 5 a crucial step is the
extraction of a convergent subsequence. This convergent subsequence
is obtained by the weak" sequential compactness of the unit ball, rather
than just weak® compactness; and separability is a sufficient condition. The
following example found in [3], p. 311, shows that in general separability
can not be omitted. '

By the natural imbedding I!' is a subspace of (I°)* then {¢} < I'
is a bounded sequence in (I°)* but no subsequence is weakly convergent
in (I7)*.
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