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Asymptotic behaviour of solutions
of the nonlinear heat equation

by Tomasz Drotko (Katowice)

Abstract. The equation arising in biology is studied. Using the method of differential
inequalities and Lapunov functions, we describe the behaviour of solutions of (1}3) as t — .
Usually the solutions tend to one of the stationary solutions O or 1. In the end of the work some
remarks concerning global in time existence of solutions and a priori estimates are presented.

1. Introduction. The present paper is stimulated by the recent result of
Anderson [1] concerning the differential equation

(1 u, = ue+ f(x, u

in the set D:= {(t, x)e R*; t > 0, xe(0, a)}, with additional conditions
(2) u(t,0)=u,(t,agg=0 for t>0,

3) u(0, x) = ¢(x) for xe(0, a)

and nonlinear function f. This equation admits interesting biological inter-
pretation (as in [1]). Suppose, namely, that two competing allospecies X and
Y share a breeding range which can be represented as a one-dimensional
interval of space 0 < x < a. Suppose that X and Y are presented at location
x and time ¢ in proportions u: (1 —u), where u is a function of x and ¢t and
satisfies O < u(t, x) < 1. Then the model of the competitive interaction of
species X and Y is given by (1)-(3). The function f represents the dynamics
of the local competitive interaction.

The behaviour of solutions of (1)-(3) depends heavily upon the initial
function ¢, thus it is interesting to determine the regions of stability in
dependence on ¢ and f.

DerINiTIONs. We say that w is a stationary solution of problem (1)-(3) if
w fulfils the Neumann problem:

4) w+f(x,w)=0 for xe(0, a),
(&) w,(0) = w,(a) = 0.
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We consider the following real Banach spaces: C°([0, a]), C*>**([0, a]),
C!*e2.2*2(D) (see [6]), L%(0, a).
We need also the special versions of the Poincare inequality (see [9]):

(6) 3 Vol <cllvdl?,

€>0 pechi(0.ap

where C} denotes the space of all C' functions vanishing for x =0 and
x =a, I* = [*(0, a),

™ 3 V=72 < CllvdiZ,
C>0pecl(o,a)

where v =a” ' [v(z)dz.
0
2. Assumptions. Classical solutions of the problem (1)-(3) are investi-
gated. Existence (local in time) of solutions of such problems is shown

in [7], [6], see also Section 7 below.
Let f and ¢ satisfy the conditions:

(A) The function f: [0, a]x[0, 1] =R belongs to C!([0, a] x[0, 1])
and, for any fixed x€[0, a], f has three different roots 0, A,, 1 such that
0 <4, < 1. The value f(x, z) is strictly negative for z€(0, 4,), and strictly
positive for z (4, 1).

(B) The function f: [0, 1] — R belongs to C?*%([0, 1]), and has three
different roots 0 < 4 < 1; its value f(z) is strictly negative for ze(0, 4) and
strictly positive for ze(4, 1).

(C) The function ¢: [0, a] — [0, 1] belongs to C>**([0, a]) and satisfies
the compatibility condition

¢:(0) = ¢,(a) = 0.
Such ¢ is called the initial condition.

3. Preliminaries. We need a special version of Theorem 64.3 of [11]:

ProPOSITION 1. Let the functions u and w satisfy the differential in-
equalities

ul S uxx+f(x’ u) in D
> b

wl w.\'.\'+f(x’ W)

together with the conditions

u, x)=o(x), w0, x)=y(x) for xe[0,a],

u, (1,00 =u,(t,a) =0=w,(t,0) =w,(t,a) for t>0.
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Let the function f be continuous in (x, u) and Lipschitz with respect to the
second argument :

3 V V [f(x,h—f(x, D <clh—I|.
c>0 h.le[0,1]) xeg[0,a]
If o(x) <y (x) for x€[0, al, then the classical solutions satisfy u(t, x)
< w(t, x) in D.
Proposition 1 impltes the following corollaries:

CoRroLLARY 1. Let the function f satisfy
3 V V f(x,2<0,

A>0xe[0,g] =<4

and let, for the initial condition ¢, 0 < qo(x) < m < A holds. Then the solution u
of (1)—(3) is bounded from above by m.

CoroLLARY 2. Uniqueness of the solution of problem (1)H3) under assump-
tion (A) is an easy consequence of Proposition 1.

CoroLLARY 3. If the solution u corresponding to the initial condition ¢
tends to zero as t tends to infinity, then any solution corresponding to an initial
condition  such that Y (x) < ¢(x), x€[0, al, also tends to zero.

The next lemma describes the behaviour of the linear heat equation at
infinity, the special case of the fundamental theorem of [10].

LEMMA 1. All the solutions of the heat equation

Uy =Ugx,  Ux(t, 0) =u,(t, @) =0, u(0, x) =0 (x)

V@ (x)dx uniformly in [0, a].

0

converge to ¢ =a_ !

Proof. Integrating the equation over [0, a], we verify that the average

u()=a! .[u(r, x)dx is constant in time and equal to @. Also the function
0

U(t, x):=u(t, x)—¢ 1s given by the Fourier series

o 2.2
Ul(t, x) = Y c,cos (?x)exp(—n ;r r)
a

n=0

with

¢, =2a"" {{@(x)— @) cos (%x)dx, n=1,2,..., ¢o=0.

0

Hence (u(t, )~ @) tends to 0 as t — cc.



112 T. Diotko

4. The method of differential inequalities. We shall consider stability of
stationary solutions 0 and 1 of the problem

(8) U, = “.u+f(“) in D,
9) u(t,0)=u.,(t,a)=0, >0,
(10) u(0, x) = o(x), x€[0,a].

Since the properties of f(w) in the interval [0, A] are analogous to the
properties of — f (1 —u) in the interval [4, 1], we can restrict our studies to
the first interval and the convergence of the solutions to zero.

THEOREM 1. Let the functions f and ¢ satisfy conditions (B), (C);
additionally, let f'(0*) <0 and

(11) 0<o(x)<4, ¢@<A.
Then the solution u of (8)—(10) tends to 0 as t — co uniformly in [0, a].

Proof. The proof consists of two parts. First we shall prove that for ¢
sufficiently large u(t, x) < A. Consider the comparison system

W; = Wiy, W.t(t, 0)=Wx(t’ a)=0y W(Os X)=(P(X)

Since 0 < ¢(x) < 4, by Proposition 1 we have 0 < w(¢, x) < 4; hence from
condition (B) f(w(t, x)) <0 and

w, 2w+ f(w).
Applying Proposition 1 to u and w, we get
u(t,x) <w(,x) in D.
Since by Lemma 1 w tends to ¢, then for T, > 0

I V wit,x)<p+e<i—¢
£>0 t2T>0

and, moreover, u(t, x) <A—¢ for t > Tg,.

Next we show that u converges to zero. The new comparison system in
the cylinder Dy := D N {t > Ty} is considered. Initial condition is given for

t=T,:

(12 U =+ f (1) in Dr,,
(13)- u (t,0)=u,(t,a=0 for t > T,
(14) u(Ty, x) = ¢, (%) for x€[0, a],

where ¢, is the value of the solution of (8)-(10) for t = T,. We have
0< ¢,(x) <A—¢, and by Corollary 1, for t > T,

0<u(t, x) <maxg,(x) < A-—e.

(0,a]
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Condition f'(0*) <0 and strict negativity of / on the interval (0, 1) imply
that
3 V f@< ez

e>0ze[0,A~¢]

and, in particular, since O < u(t, x) < A—¢; t > Ty, we have
(15) fu(t, x)) < —ou(t,x) for t>T,.
Consider together with (12)—(14) the comparison problem
(16) U, =U—gv in Dp

with conditions (13)-(14) for v. Proposition 1 gives 0 < u(t, x) < v(t, x), and
since the transformed function #(r, x):= v(t, x)exp(o(t— Tp)) satisfies the
linear heat equation (and hence is bounded), we verify that

0<o(r, x) =n(r, x)exp(—e(t—To)) 0, t— 0
uniformly in [0, a].

Remark 1. Theorem 1 remains true under assumptions (A), (C) with f
depending on x if the value ¢ in (15) will be chosen common for x€[0, a].

5. The combined method. Theorem 1 gives information about the be-
haviour of solutions only when 0 < ¢(x) <4 or A< ¢(x) < 1. The initial
function ¢ could not intersect the value 1. We want to study now possible
limit states of solutions. This will be done with the use of the concept of
Lapunov functions. As was shown by Chafee [2], all possible limit states of
trajectories are contained in the set of stationary solutions of (8)—(10). We
want to study some special cases of this convergence.

As a consequence of (B), (C) the solution u of (8)+(10) is smooth; its
derivatives D¥u, D, D?u are Holder continuous (exponent a) in any cylinder
[y, T] x[0, a] with y > 0. Moreover, we have (see Section 7) global in time
estimates of the derivatives of u in C°([0, a]):

(17) ”ux(r’ ')”CO < const, ”uxx([9 ')”CO < COI]St, ”ur(t5 ')”CO < const.

Hence, as a consequence of the Ascoli-Arzela theorem, the trajectorie
fu(t, *)}i»0 is compact in C'([0, a]) phase space; for any sequence |t,},.n,
t, o0, we can extract a subsequence such that for some veC! ([0, a])

u(tnp ) in Cl([o, a])
We can study now stability of the constant stationary solutions O, 4, 1.
THEOREM 2. Let conditions (B), (C) hold and let u be a solution of (8)10)
such that

(18) }f(u(t, x))u(t, x)dx < 0.
0o

t2
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Then any sequence \u(t,, *)}, t, — x, convergent in C*([0, a]) tends to one of
the limits 0, 2 or 1.

Proof. Multiplying (8) by u and integrating over [0, a], we get
(1?2 = L*(0, a))

{ a a
(19) Zlate, NE2 = —2 [(u? dx+2 [ £ () udx.
[ 0 0

Now the quantity L& := ||®||?, will play a role of the Lapunov function (see
{8]) for our problem. More precisely, L is a Lapunov function on the closed
subset of C!([0, a))

C:= '®eC'([0, a)): }f(db(x))d)(x)dx <0, ¢.(0) =P, (a) =0!.
0

The derivative of L along the solution u-satisfying (18) is non-positive; hence
as a result of the general theory [8] the set of possible limit states consists of
such functions v belonging to C, for which the right-hand side of (19)
vanishes. In particular,

a

{(v)?dx =0

0

which is possible only for v(x) = const =c. Now, since also the second
component must vanish, we have

[f(e)edx = acf (c) = 0,
0

which is possible only for ¢ equal to 0, 4 or 1.

Next theorem shows realizations of (generally implicit) assumption (18)
of Theorem 2.

THEOREM 3. Let f be as in Theorem 1. Then for every positive ¢ < A there
exists a 6(¢) > 0, such thar if

a—l “'(p(x)dx = ('(_) < A—s and OS (p(x) < /"'_}_5(5)’
]

then corresponding to the initial condition @ solution u of the problem (8)10)
tends uniformly to :zero.

Proof. If 0 <€ ¢(x) < 4, then by Corollary 1 for all r > 0 we conclude
that 0 < u(t, x) < 4, and hence, as a consequence of Theorem 1, u tends to
Zero.

Consider the general case. Let the initial condition ¢ satisfy our
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assumptions (with o6(¢) which will be determined later) and let

¥ (x):=min |@(x); ). Writing 7:= max(@(x)—y(x)), we have
[0.4]

px)<2+7, O0<o)-y((x)<y

However, the function ¢ is only continuous and satisfies (which is easy to
check) ¥'(0%) = ¢’ (a”) = 0; it will be taken as the initial function, moreover,
Proposition 1 works also for such initial functions. Consider the comparison

system for the problem (8)-(10):

U, = Uy U(t, 0)=1,(r,a) =0, v(0, x) =y(x).
Proposition 1 and Lemma 1 used for v and the solution w of the problem
(8)-(9) with the initial function ¥ give:

3 V ow, x)<o(t, x) < i—le.
Te>0 12T

Moreover, T, depends on ¢ only, because it will be find from the estimates

(T, x) = a ' (¥ (x)dx+
0

2.2

+ Y 2a ' {y(ycos (~n— v)dycos (n—nx)exp( " ;t To)
n=1 0 a a a
o an a‘
<imet2at ¥ oexp( =T T ) (W Oldy < A~
= 0
If the dilference lu(Ty, x)—w(Ty, x)| is less than e, then u(Ty, x) <A

(because w(Ty, x) < A—1le). and the preliminary case in our proof shows
that u converges to zero. Hence it remains to estimate the difference

lu(To, x)—w (T, x)| for x€[0, a].
The function z:= u—w is non-negative for r > 0 (because u, w satisfy

(8H9) and ¢(x) = ¥ (x)), and satisfies
4 = zxx+f(u)—.f(w) < Zx_\-+C]u—W| = I tcz,
where ¢ := max|f’(s)). Now, - may be estimated as a solution of the linear

(0.1}

problem by

|z (¢, x)|

2.2
Sexp(cr)% [(qo(x)—w(x))dx+ Z ¢, Cos (—x)exp( nan t\)},

n=1
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with

¢y, =2a! j((p(x)—W(x))cos (%x)dx,
0
or, farther with the use of our assumptions by

lz(t, x)] < exp(ct){y+2y i exp(—naf r)}

n=1

Since (by definitions) y < d(¢), we also have

n2 11:2

1z(Ty, x)| < exp(cTo)é(s){l +2 i exp(— " To>} = const 6 (&)
n=1

and the value of &(¢) will now be choosen equal to &/(2const). The proof
is finished.

Consider next the case where the nonlinear term f satisfies
' 1
20 max f'(s) < —5.
(20) [o_uf 57

THEOREM 4. Let the nonlinear term f satisfy (20), (B) and the conditions
f'(0%) <0, f/(17) <0. Then the solution u of (8)—(10) tends to 0, A or 1 as t
tends to infinity.

Proof. Differentiating (8) with respect to x and using the symbols
vi=uy gu):= f'(u), we get:

v, =V +g@v, v(t,0)=v(t,a=0, v, x)=0¢(x).
Applying the transformation V(t, x):= v(r, x)exp(—kt) with k := maxg(s),
we get for the function V: o

Vi=Vatlg)-klV
with analogous conditions as for v. Now
h“(t, x):=g(w)—k <0,
so, applying Theorem 1 of [5] to any u separately, we get for V the following
estimate independent of u:

[V (t, x)| < 2max |’ (x)| exp(—1/24?).
[0,a]

Hence, for the function v

1
(21 ue (e, x) = lv(e, x)| =V (¢, x)exp(ke) < 21[13%( le’(x)| exp (kt-gt),
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which together with the estimate (20) ensures the convergence of u, to zero.
Therefore, for sufficiently large T > 0 one of the following possibilities holds:
u(T, x) >4 (then as a consequence of Theorem 1 u(t, x) -1 as r — o),

u(T, x) <A (then u(t, x) -0 as t — ),
for all £t >0 u(t, x) intersects A (then'u(t, X) >4 as t = ).

6. Finally, consider the set of the solutions which do not converge to 0
or 1.

~ LEmMma 2. For symmetric f, weakly nonlinear;
(22) f@=-f(1-2, [f@@<B<C! forze[0,1],
satisfying (B) and the initial condition satisfying
0<ep(x)=1-¢p(a—x)<1, xe€[0,ad]
the solution u of (8)«10) corresponding to ¢ tends uniformly to A =3%.

Proof. It is easy to see that (1 —u(t, a—x)) solves the same equation as
u(t, x), and moreover, with the same initial condition; hence by uniqueness

(23) O<u(t,x)=1-ut,a—x)<1, t=20.
Consider now the equation for u,
u[l = uIIx+f’(u) “x'

Multiplying the above by u, and integrating over [0, a], we get

iju,z,dx = =2 fubdx+2{ f'(wuldx.
dt o 0 0

Now with the use of (22) and as a consequence of the Poincaré inequality (6)
we have

d a a
(24) — {u2dx < 2(~C~'+B) [uldx,

dt o o
and hence u, tends to zero in L*(0, a) as t tends to infinity. Using the
Sobolev inequality [9]

3 V 2 < 2 2
B>0 yecl((0.ap ”W”CO“O,,” = B(”W“LZ +”wx”L2)

for the function w = v—v (v denotes the average of v) and (7), we obtain the
estimate

3 V ”U_ '—)"(2:0([0"]) < _k"UX”iZ')
k>0 yecl((0,ap
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which together with (24) gives
It ) =@M 200 < Kl (1, W22 =0, 1 .

Since, (23), i1(1) = 4, this gives the uniform convergence of u to 3.

In general case, using Wazewski’'s method, we may show that for
arbitrary fixed function f satisfying f'(0%) <0, f'(17) <O there exists
continuum imtial conditions ¢ such that the solution of (8)-(10) does not
converge to O or 1.

DerINITION. By a non-decreasing homotopy family (parameter u) of func-
tions we mean every set of functions y: [0, 1] x[0, a] — [0, 1] of the argu-
ments (g, x) which satisfy:

il 4, > p,, then

Y(ys X) 2 7(pp, x) for xe[0, al,
(0, x) =0, y(,x=1, xe[0,a],
Tl 0) =7, (u. )=0, pue[0, 1],
and the function p — y(u, -) is continuous in C?**([0, a]) for ue[O0, 1].

Let us consider an arbitrary fixed family. For small x4 the solution of
(8)H9) with initial condition < (u, x) tends to O, for u near 1 the solution
tends to 1. By Corollary 3 the set of u for which the solutions tend to 0
coincides with an interval [0, a,) or [0, a,]; analogously, the set of u for
which the solutions tend to 1 is an interval (a,, 1] or [a,, 1], where a, < a,.
But both these intervals must be open from one side. If the first of them is
closed, then arguing as in the second part of the proof of Theorem 3 (the
trajectorie (u(f, )}, 50. u(0, X) = y(a,, x) is compact in C* ([0, a]) and u(r, x)
tends to O pointwise as ¢ tends to infinity: hence for a sequence it,},.n,
t, = oo, u(t,, ') tends to O uniformly; the rest is a consequence of the con-
tinuous dependence of solutions on the initial condition as in Theorem 3) we
see that for some pu > a, the corresponding solution tends to zero. This
contradicts the maximality of a,. The solutions corresponding to the par-
ameters y from the remaining set [a,, a,] must tend neither to O nor to 1.

7. Some remarks concerning global in time existence of the solutions. As a
consequence of our assumptions concerning f, when the values of ¢ belong
to [0, 1], the same holds true for u. As a standard consequence of Theorem
74, p. 560 of [7], in any bounded in time cylinder there exists a C!**/2%2*«
solution of (1)-(3). Additional smoothness assumed for f in (B) ensures
existence of the derivatives D*u, D, D?u for the solution of (8)-(10). There
are several ways to show global in time a priori estimates for the derivatives
U, u,, and u,. This is done, for example, in [4], Appendix B. Another
approach is given in [3], Theorems 11 and 12, and in [2].
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