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Abstract. Complex methods permit to reduce boundary value problems for non-linear
partial differential equations in the plane to the analogous problems for holomorphic lunctions.
On the other hand, it is possible (in the case of several complex variables too} t¢ construct
a one-to-one mapping between solutions of the regarded system of differential equations and
holomorphic functions. This connection is given by an operator equations depending on
a holomorphic function. Boundary value problems for the regarded differential equation
one can consequently reduce to boundary value problems for the corresponding holomorphic
functions. Therefore for the regarded complex partial differential equations there are solvable
all the boundary value problems which are solvable for holomorphic functions. Such a problem
it the following one: construct a holomorphic function possessing an arbitrarily prescribed
real part on an one-dimensional part of the distinguished surface. In the paper it is
considered the same boundary value problem for solutions of certain partial differential
equations in several complex variables.

The basic idea in applications of complex methods in the theory of
partial differential equations is the transformation of holomorphic functions
into solutions of a given partial differential equation. Bergman’s integral
operators realize this programm. Also I. N. Vekua’s New methods for solving
differential equations of elliptic type [19] and the Generalized analytic functions
in the sense of I. N. Vekua [20] or in the sense of L. Bers [2], respecti-
vely, have the same aim. As it is shown in [14] (a2 monography is [15])
it is also possible to construct an operator in the case of differential
equations for functions of several complex variables, which transforms holo-
morphic functions of several complex variables into solutions of the given
system of partial differential equations. The systems which have been examined
in (14], [15], are of type i=1,...,m,j=0,1,...,n)

(l) 3W,/02J* =ﬁj(ZO,Zl,...,Z", Wl,...,Wm),

where z¥ denotes the complex conjugate to z;.
In [14], [15] it is assumed that system (1) is completely integrable and,
moreover, that the right-hand sides f; depend holomorphically on the
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variables w, (the case where the f; are not holomorphic functions of
Wy, ..., W, is discussed by L. Diomeda [4], [5]).

Especially the approach to solution of non-linear systems with the help
of complex methods is in accordance with the present tendency of complex
analysis (see the note [12] of J. Naas and the author). And thus by
a generalization of the method of L. Bers and L. Nirenberg [3] for the
quasi-linear case, it was possible to reduce boundary value problems for
non-linear systems of partial differential equations to analogous problems
for holomorphic functions (see [16], [17] and the monography [18]).

Also in this paper this method is applied to systems of type (1).
Naturally, the method is applicable only in the cases in which the corre-
sponding boundary value problems for holomorphic functions are solvable.
The following boundary problem considered in this paper is just of that type:

In a polycylindric domain find a solution of (1) whose real part
Rew = (Rew,,..., Re w,) has given values on a one-dimensional part of the
boundary and the imaginary part has a given value at a prescribed point.

1. The formulation of the theorem. Let G;, j = 0,1,...,n, be a bounded
domain in the z;-plane. It is assumed that the boundary curves dG; possess
Hoélder-continuous differentiable representations. We will consider the noly-
cylindric domain G = Gy x G, x ... xG, in C"*1,

Let Z = (3, Z,,..., Z,) be a fixed point of G. By D, we denote the set
of all points (zo, %, ..., Z,)€ G, where z,€ G,. The boundary y, of D, is
a curve lying on the boundary 0G.

Let € be the space of continuous functions, normed by the sup-norm.
Analogously, ¢, denotes the space of Holder-continuous functions with
the norm

W, = max'(sup |w|, sup
HE

lw(z')—w(z") )
|z —z"* ) ‘
As regards the right-hand sides f;; of system (1), it is assumed that the
following conditions are fulfilled:
(a) The functions f;; are defined and continuous for all z,€G; and w] < R,

(b) The functions f;; have continuous derivatives relative to w;,..., w,

and relative to the different Zf . 2f whereby all j,,...,j, are different
from j. : '

(c) Let g be one of the functions f; or of the derivatives specified

in (b). Then it i1s assumed that for all z;e (_?,- and |w;| < R the following
inequalities are fulfilled:

0 lgl < Kg,

(3) lg(z, w)—g(z, W)| < Lg .Zl [w;— W,
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(d) System (1) is completely tutegrable and the right-hand sides f;; depend
holomorphically on w,.

(e) All functions g specified in (b), regarded as functions of z,, fulfil
the Holder condition with the exponent a,0 < a < 1.

(f) The Holder—Lipschitz-condition is fulfilled:
@) lg (-, W) =g, Wl yop < I W=l g5y -

Remark 1. Assumption (d) is fulfilled, iff the right-hand sides f;; fulfil
the relations (see [14], [15]):

aﬁj m af;; 0 " m af;k
=, Jok = + ——Jaoi-
62: + a;l 6w, fk az;" azl 6W¢ fJ

Remark 2. For we 4 (G) N %, (D,) assumption (e) together with (3) implies
that g(-, w) belongs to €,(D,), because then

lg;(z6, ..o w(zb, .. ))—g;(25, .., w(z§,..)
< [g,-(zi,,...,w(z(,,...))—gj(z},’,...,w(zi,,...))|+
+95(25, - (2o, . ) —g;(2G, ... wlzG, .. ))|-
Let g be a real-valued vector g = (g9,....9.), Which belongs to %,(dD,).

Moreover, let ¢ = (¢, ..., c,) denote a given constant vector (c; are real

numbers). Then for functions of class ¢ (G) we will consider the following
boundary condition:

(5) Rew =g on y,,
(6) Imwl[Z] = c.
Let ¢ be a holomorphic function in D, which satisfies conditions (5), (6).
Defining .
V’(Zo, 2y ey zn) = '!/(ZO)

one gets a holomorphic function, which belongs to % (G), and for which
conditions (5), (6) are fulfilled. It is assumed that this function = (Y4, ..., ¥,

satisfies the inequality
il < R.
Then the following is true:

THEOREM. If the polycylindric domain G has a sufficiently small diameter,

then there exists a solution w of system (1), which satisfies the boundary
conditions (5), (6).

Remark. The solution of the boundary value problem (5), (6) is not
uniquely determined.
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2. The construction of an operator, corresponding to the boundary value
problem. Let T;,, j=0,1,...,n, denote the operator defined by

1 h(zo, ..., {jyees 24
TGj-h(Zo,.zla' o> Zp) = _;I-[ : )

n 1 —2Z

dfjd"1$

j
where {; = {;+in;. With the help of th1s operator one can explicitly express
a solution of the non-homogeneous Cauchy—Riemann-equation

ow )
(7) *é;;'—h _]=O,1,...,n
in the following way (see [13], [14], [15]):
" oh?
8 = -1 *17 T, — "o
( ) it AZ:O( . ) Io;-.i), T,o. Tu azﬁ az}ki‘

(as in [14], [15] the symbol Z* denotes summation over all distinct
(A+1)-tuples of numbers j,, ..., j; between O und n). Of course, in order that
representation (8) of a solution of system (7) might be written, must be
assumed that the integrability conditions are fulfilled:

oh, ok
oz¥  ozF’

Now we assume that w is a given solution of system (1). Then the
functions

m * 0
9 D =w;— 1;0 (_1)'l Z 7}0

T .
Jor--nda J"‘ 02}‘_ az* f'Jo
are holomorphic. Here

10 % s
(10) oz J oz ,,21 ow, Oz

and so on, where the w, are replaced by the given functions w, = w,(z).
Relations analogous to (10) can be written also for the higher derivatives
in (9). Since the function w has been assumed to be a solution of the given
system (1), the derivatives 0w,/0z¥ in (10) can be replaced by the f,.
Therefore, in solutions of (1), the right-hand side of (10) can be written
as a polynomial in the f,,. Analogously it is seen that, for solutions
of (1), the term

0
oz az*
is a polynomial A4j, _; in the f,..

Just like the functions f,,, these polynomials Aj-o,__ j, depend on z and w.
Equation (9) can be rewritten as

= Jiio
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(11) w= 0o+ Z (-)* ¥ T,...T;, 4

i=o Jo i

where Ajo...j; = (Ajlo...j;" tree A;':)M)

For each solution w = (w,...,w,) of the given system (1) there exists
a holomorphic function @ = (@,, ..., ®,) such that w fulfils system (11) of
integral equations.

In order to construct a solution of the given system (1) satisfying the
prescribed boundary conditions, the function @ on the right-hand side of

(11) will be chosen as

jo.--Ja?

¢ = W+¢(w),

where the function ¥ is the holomorphic solution of the boundary value
problem (5), (6) and &, is the holomorphic solution of the boundary
value problem

(12) Re ¢(u) = -—RC ZO (hl)l Z e ’I_})‘ A-’O-’l con 'YO,
—Ja
(13 Im &y, (2] = —Im 2 (=1 T Ty Ty A5, [,

10 Ja

If it is required that ¥, ®,,, depend only on z,, then the functions
Y, &, are uniquely determined.

By this choice of the function ¢ the right-hand side of (11) defines
an operator T, which maps a given w into W= Tw, where

W=¥+¢,+ Z (_I)A Z 'I)o TJ'A AJ'o---iA
jo---da
From the definition of this operator it follows immediately that a fixed
point of T realizes the given boundary conditions (5) (6). In order to prove
the theorem, it will be shown that the operator T possesses a fixed point
and, moreover, that this fixed point is solution of the given system (1).

Remark 1. It is well known that a holomorphic function in a poly-
cylindric domain is uniquely determined by its values on the surface of deter-
mination. But it is not possible to construct a holomorphic function with
arbitrarily prescribed values of the real part on the surface of determination
(example: consider the polycylindric domain defined by |z,| < 1, |z;| < 1.
Then it is easy to see that u(z,,z,) = x; X;+Y, 3, if f = u+iv and u has
on the surface of determination the values cos (3, —9,), 9; = arg z;. On the
other hand, this function does not possess a function v harmonic conjugate
to u, because in this case one would have dv/dx, = —0du/dy, = —y,,
dv/dy, = du/dx, = y,. This is impossible because 2 v/dx, dy, # 0% v/dy, 0x,).

Remark 2. The sum on the right-hand side of equation (11) is a modi-
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fication of a corresponding sum in [14], [15]. This modification is due to
H. Meden [11]. In contrast to [14], [15], the representation (11), obtained
by H. Meden, does not contain derivatives of the function w.

Remark 3. Extensions of given generalized analytic functions, which are

given in a neighbourhood of the boundary, to the whole domain, are
discussed by Le-hung-Son [9], [10].

3. The adequate function space. Let # be the fﬁnctio'n-space containing
all w = (w,, ..., w,) with the following properties:

(a) we%(G),

(b) w possesses in G derivatives in Sobolev’s sense relative to zj,
j=0,1,..., n; the derivatives dw/0z} belong to €(G).

(c) ]f' w is regarded as a function of zy, one has we‘g (Dy).

The space # is normed by

ow;

a_Zf— (Gl>,

where » is a positive number which will be fixed later. The completeness
of # can be proved in the usual way (see [14], [15]).

Let w be a solution of (1), fulfilling the estimate w;| < R, i=1,...,m
From (2) one gets

||“_’||.»,x = max ("Wi e » lwille 4Bg) s
i

ow;
oz}
We remark that, by any choice of » > 0, the ball

= {weZ: |wls. < R}
is closed. From the definition of the norm one gets
(15) % |ow;/0zfllse < R, if x < R/Kpg.

(14)

= "fij(‘,W)”%(G) < Ky

% (G)

4. Estimates of the operator T. In order to estimate the operator T we
will make use of the following preliminary theorems:

(a) For the holomorphic solutlon ¥ of the boundary value problem (5), (6)
one has

(16) 1l 09 < Ky (@) gl 00+ lell
(theorem of Privalov, see for instance [2], [18]).

(b) The operator TG is bounded and maps (g(G) into €, ( Gj) Moreover,
its norm is arbitrary small if diam (G;), the diameter of G;, is sufficiently
small (see for instance [18], [20]).

(c) For i # j the operator TG is bounded and maps €, (G) into itself.
Its norm is arbitrarily small, if the measure mG; of G; is small enough (this
follows immediately from the estimation of an mtegral by mG)).
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Let R, be a positive number satisfying the inequality R; < R. Then we
regard only such boundary values g, ¢ for which the holomorphic solution
of the boundary value problem (5), (6) (see section 1) fulfils the condition

(17) v Il abg) = < R,.

Remark. If ||n//||,¢(,-,0, < R, then it is possible to admit also such boundary
values g, ¢, for which one gets I¥llep = R. In this case in the definition
of |wllex the number |wills5, must be replaced by x|lwillsy. If it will
be chosen sufficiently small then also in this case one can prove that
a solution of the boundary value problem (5), (6) exists in the ball .#.
Let w be an arbitrary element of .#. Since the funcnons Al are
continuous and bounded in .#, one gets the estimate

(18) HZ( DY Ty T A i llee < Cy,

Jo---da

Jjo---da

where C, — 0 if diam (G) — 0.
On the one hand, the functions Aj'o--- j; are continuous, so that

Z (=" 37 Ty Ty Ay

Jo--dz
are also continuous. On the other hand, these functions depend holomorphi-
cally on w;, because Ajo---h have the same property.
The preliminary theorems (b) and (c) show that

(19) " Z (- I)A Z . 'I}aA;o---.iJ,““‘a(bo) <G

Jo-da
and C,-0, if diam (G) — 0. Applying (16) in the case of @, one gets
(20) [Pl ydg < K(@)Cy+C,y.

Since ¥ and &, belong to %,(D,) and, consequently, also to €(G), Tw
belongs to €(G) N %,(D,). In order to show that Tw belongs to # it has
still to be proved that the 0W;/dz} belong to % (G).

From the definition of W we get immediately (see [15], formula (4.9.10))

oW,
oz

(21)

a n
Z (- 1)/1 Z*k 1;4 oz¥ A.iro u+fl'k+ Z (_1)’l E" AJO Jeja-ac

Jo---da 1=1 Jo--Ja-1

Here Z means that all jg, ..., j; are different from k. Replacing A—1 by 4
in the second sum in formula (21) we obtain
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0 .
(22) a . _fnk = Z (-1 Z - T; (az* Ao~ }o...n...,-,l)-

Jo---da
On the other hand, the following lemma is valid:

LEMMA, (8/0zF )A,0 i
nomial in ow,/0z¥—f,..

foukendy = Bi..j,» where Bl ; denotes a poly-

Jo--Ja
1

Proof. By F,, we denote the difference ow,/dz¥ —f,., by Aj)_;, a homo-
geneous polynomial in the F,; and their derivatives relative to different

z}"o,.. Z s Zh,ys--es 2}, Up to order r.
It has been proved ([15] 4.8, Theorem 2) that

0 0 d a-1

@) A az* Jio™ g Tagg oo = Miow-in
13 ll

if (ig,...,1;) is a permutation of (jy,...,j;). On the other hand, from the
definition of Aj ;. it follows immediately that

i a a A-
(24) AJO “. az-’,.‘ az—;‘lf;-lo = A-(’O l_’)a,
and consequently also
o 0 0
@9) o Mo g 3, gy e =

Applying formulas (23), (24) with j,,...,j;, k instead of j,,...,j; one gets,
in view of (25),

(26) O 4 g

A+1)
A(
a * jo..-ia

Jjo..-k.di Jo--dak:

Now the left-hand side of (26) contains only derivatives relative to z};
this proves the lemma.

Using the lemma we get from (22)

(27) 6 W

= fa+ z (- % T, ... T, BE .

Jjo--ia

This means that the derivatives dW,/0zF belong to %(G). Moreover, we
have the estimate

< x¥Kg+xC,,

61G)

| ow
“| oz

where C, — 0 if diam (G) —» 0. If it is assumed
(28) ® < $R/Ky

instead of the earlier assumption » < R/Kj, one get consequently
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(29) x | 0W;/0z¢ ) < ¥ R+xCjy,
Estimates (17)-(20), (29) result in the following estimate for W = Tw:
(30) [ Twl,
< max (R{+K(0)C,+2Cy, Ri+K () (C,+Cy)+Cy, 3 R+xC,)

(provided that (27) holds).
Now we ask, under what conditions the operator T is contractive. For
two elements w, we.# and W = Tw, W = T% we examine the difference

i

Jo...jl)!

W-Ww = (‘p(w)_(b(fv))"' Z (_1)}1 Z* 7}0 T}A(Aio---iz—
i=0 Jo i

where Z,-om j, indicates that the function w is replaced by Ww. Because

Ai =Pl"'Pf’

jo-da

where the P, denotes functions Ji; or their derivatives, we have

A;OJA—Z;OJJ. = (Pl e P,—Fl F‘)
= Z(... +(P1 e PVPV+1 ies P,—Pl vee Pvijv,,.l N P,)"‘ ...);
consequently
(31 |AS...1a— Ajo...is) < const-Lg- Y |w,— Wl

o=1

< const - Lg - m |[w—W|@q

(this follows from (3)). This estimate immediately imiplies:

6D |0 T T Al < Calw =l

0--Ja

where C, — 0 if diam G — 0.
Applying the preliminary theorems (b) and (c) and assumption (4), we
obtain analogously to (32):

(33) n Z (= l)l _Z*_ Tfo T}A(A.io---JA_ZJ'O---JA)""«@O)
A=0 Jo--- iz
< Cs-lg- “W—W"z,,(c),

where Cs — 0 if mG — 0. Using Privalov’s theorem (preliminary theorem (a)),
we get from (33):

(34) |y —‘p(ﬁ')"'ﬂa(é) < K(a) Cslg ||W—W||'é,46) .

From (27) one gets
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oW o

oz oz

(35)

n—1
=ﬁ,‘(...,w)—f,-,,(...,W)+AZO(—l)‘}Z'f Ty - T, (B, — B
= Q-

Jo---da 0“'jl)'
Ja

By definition the B{¥ ; contain also the derivatives dw,/dz*.
Similarly to (31) one gets

. ) 2 . ow, 0w
|Bje...;,— B ;] < const- Lg a; [wo — | +const - max 5 62; .
Applying this estimate to (35), we get immediately:

oW, oW,
(36) xl T
| oz 0z¢ e
ow, 0w, ||

< mLg [|w—Wllyq +#Cq Lg [|W— W) +%C; max H =
(where C¢ — 0, C, — 0 if diam G — 0). Applying the definition of | -|,, and
formulas (32), (33), (34) and (36), we obtain

G371 IW-Wi, = 1Tw=Tw|,

< max (K () Cs Iy +Cy, (K @)+ 1) Cs lg, 3 +xLg Co+C5) [w—ll,
provided that
(38) x < 1/2mLg.

5. An integral equation for the fixed point of 7. In the next section
we shall see that T possesses a fixed point in M, if diam G is sufficiently
small. For sufficiently small domains now it will be proved that each
fixed point of T is simultaneously also a solution of the given system
(1) of partial differential equations. From (27) for a fixed point w of T
one gets

n—1
(39) Fo= Y (=1} T" T, ... T, Bk,
A=0 Jo i1 .
because ow,/0z¥ —f, = Fy. From the continuity of the derivatives ow,/dz}
it follows that all F;, are also continuous. Let F the matrix with elements
F;;; then we have the estimate

awi

(@0) Fal < | 5

l

Let # be the space consisting of all matrices F, where

\Flar = max I Fulle() -
i
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Then estimate (40) shows that the matrix F, corresponding to the fixed
point w of T, belongs to the ball

1
M7 = {Feg?’: IF| < 7R+KR}.

Now, with the help of the right-hand side of (39), an operator T* mapping
A" into #” will be defined. Analogously to (18) one gets

) n—1
(41) IT* Fller = | A;O(_l)l Joz*; T, ... T, Bf _),]#% < Co,

where C3 —» 0 if mG - 0. We note that Cgs depends on x. Moreover,
similarly to (32) we obtain

(42) IT*F—~T*Fllys < ColF—Flas,

where Cy — 0 if diam G — 0 (this estimate can be proved in the same way
as (32); we remark that the coefficients of F; in B} ; are the functions
f.. and their derivatives, with w substituted, the fixed-point of T under
consideration). Also the coefficient Cy in (42) depends on x.

The matrix F, corresponding to a given fixed point of T, is a fixed
point for the so-called associate operator T*. On the other hand, F = 0
is a fixed point of T* (this follows from the fact that A¢*H and B,
are homogeneous). Because a contractive operator possesses a uniquely
determined fixed point, we have the following result:

If it is ensured that T* is a contractive operator, then it follows F = 0,
which means that w is a solution of the given system (1).

6. Solution of the boundary value problem. Let » be a fixed number, for
which it holds (see (27), (38)):

1
< mi , .
0 < x < min (} R/K, 2miy )

Since all C;,j=1,...,9, tend to 0 (if diam G — 0), one can choose
diam G so small that the following inequalities are fulfilled:
max (R, +K (@) C,+2C;, R +K (@) (C,+C;,)+C,, 3 R+xC;) <R,
max (K (#) Cslg+Cy, (K (@) +1)Cslg, 3 +xLg Cs+C,) < 1,

l
Cs < 7R+KR,C9 < .I..

Then (30) shows that T maps .# into itself. Analogously onc gets from
(41) that T* maps .#” into itself. From (37) and (42), respectively, it
follows that 7 and T* are contractive.

By Banach’s fixed point theorem we.get the gxistence of a fixed point
w of T. This fixed point satisfies the given boundary condition (as it has
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been proved in section 2). On the other hand, the associate operator T*
i1s contractive, too. That means that F vanishes identically. Consequently,
it follows from section 5 that the fixed point w is a solution of (1).
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