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Lipschitzian operators of substitution
in the space of vector functions of bounded variation

by Jerzy Mis (Bielsko-Biala)

Abstract. Let X and Y be Banach spaces, let / be an interval and let h: I xX = Y. The
main result of this paper states that if the Nemytskii operator of substitution given by the
formula Ne(1) = h(r, (1)} (t €]), mapping the Banach space of bounded variation functions
BV(I, X) into BV (I, Y), is globally Lipschitzian in the sense of the norms of BV-spaces, then h
is, in a sense, a linear function in the second variable.

Let (X, ||-|lx), (Y, l|-ly) be two Banach spaces and let I be a set. Let us
denote by X' the space of all functions ¢: I — X mapping the set I in the
space X. Let #(X, Y) denote the Banach space of all linear bounded
operators mapping X in Y with the standard norm.

Every function h: I x X — Y generates the so-called Nemytskii operator
or operator of substitution (e.g. see [1], p. 163)

N,: X! = Y!
defined by the formula

(Nyo) () = h(t, o), 1€l peX'.

Let #, c X!, #, <Y and let (., |"ll,), (%2, ||-]l,) be the Banach spaces.
Consider the following problem.

Characterize all h: I xX =Y for which the operator N, maps .#, in
#, and is Lipschitzian, i.e.

(a) Nh: ,jil —",‘7/72,
(b) 3V [[INuo—Nyyll2 < Llle—Vll;.

LZ0¢ Ve 1

Matkowski (see [3]) proved that if I is a convex subset of a normed
space and #,, #, are space of Lipschitzian functions with an adequate
norms, then conditions (a), (b) imply that A has the form

(1) hit,x) =G(@)x+H() (tel, xeX),
where HeY! and G € ¥ (X, Y)'. Moreover, G, H are Lipschitzian. An anal-
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ogous fact holds when #,, #, are spaces of functions fulfilling Holder's
condition, or when .#,, .#, are spaces of functions having continuous rn-th
derivative (see [2], [4]).

In this paper we are going to consider the case of the space of functions
of bounded variation.

Let I denote a fixed nondegenerated real interval with endpoints . b
(—x <a <b < ) which need not belong to I.

If : I = X then the variation ol ¢ is defined by the formula

Var (¢) : = sup Z o (t)— @ (6 Dllx,

i=1

where supremum is taken over all positive integers n and over all choices
‘t;) < I such that 1, <r, <... <1, Let BV(X) be a space of all functions
¢: I = X such that Var(¢) < .

It is easily seen that: functions in BV (X) are bounded, the space BV (X)
is linear, and the formula

[l@llavixy = suplle(t)|lx + Var (o)

tel

gives a norm in BV (X).

It is possible to show that (BV (X), [|'llgvixy) IS @ Banach space, and that
every function belonging to BV(X) has left- and right-side limits at each
point of I.

We start with the following useful result.

Lemma 1. If GeBV(¥(X, Y)), p €BV(X), then the mapping Gp: 1 —>Y
defined by the formula

(Gp) (1) = G() (1)
belongs to BV (Y) and

”GfP”va < 1G]]y (XY ”(P”nw,\’)-

Proof. For it;lico. .1, ty <t, <...<1t, we have

> MG 1) =Gy (- Dlly = 3 G (1) @t =G (t; ) @t - y)lly
i=1

= i=1

= Z G () o(t) =G () olti- )+ G ()@t - ) =G (- ) o )lly

i=1

S _Z ”G(ri)((/)((i)—(p(’i—l’)“Y'*' Z “(G(f.')—G(f.'—1))‘/’(’.‘-1)“Y
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n
< Z NG UM ,xpy N — @i - x+
i=1

+ NG =G M xny Nl - ix
=

< supllG ()} x.vy - Var (@) +lollyv - Var (G).

te1

Hence
Var(Go) < sup |Gl ,x.v)- Var (@) +|ollavx - Var(G) < =,
tel

and therefore G eBV(X). Using the last inequality, we obtain

IG@llgviyy) = supllG (1) @ (1)lly + Var (Go)

ted
< sup NG O] x.v) 'S‘glpllco(r)llx+
+s't:lp|iG(r)Hm-.n‘Var(<p)+llcpllwx.'Var(G)
= supliG (Ol xn '(S‘l:,p llo (1)ilx + Var () + ll@llavx - Var (G)
=sup NG Ol yx.x) “ N1@llavix +11@llavx, - Var(G)
= (S,l::p NG (DN yix.py + Var (@) l@llgvixy = I1Gllgvesix.ry * 1@llsven
which completes the proof of the lemma.
In the sequel, we use the symbol ||-|| without any index for all norms,

because the context excludes a misunderstanding.
We consider the following conditions

() N:=N,: BV(X) >BV(Y):
I 3V |[INe—Ny|| < Llle—¥ll.

L2 0 ¢.yeBV(X)

One can observe that if for a given h the operator N, fulfils (I)-(II), then
for the function

gt,x):=h@,x)—h(t, Ox) (tel, xeX)
the operator N, fulfils (I)—(II) too. Conversely, if, for a given g, N, lulfils (I)-
(II), HeBV(Y) and
h(t, x):=g(t,x)+H(t) (tel, xeX).
then N fulfils (I)-(II).
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Therefore, without any less of generality, we may assume that

rel

Some sufficient condition for the Nemytskii operator to be Lipschitzian
gives the following theorem.

Tueorem 1. If GeBV(¥(X, Y)), HeBV(Y) and
hit, x)=G(t)x+H(t) (tel, xeX),

then N, fulfils conditions (I){11) with the constant L =||G]||.

Proof. By Lemma 1, for ¢ €eBV(X), we have (Gg)eBV(Y), therefore
Go+H = NpeBV(Y) too. Hence condition (I) is fulfilled. Now, for
@,y eBV(X), we get by Lemma |

INo— Nyl = (Go+ H)=(Gy + H)|| = IG(o -yl <G| llo— i,

which completes the proof.
To give some necessary conditions we start with two lemmas.
LemMma 2. If conditions (1)-(11) are fulfilled, then

llh(t, x)—h(t, x)|| < L||Ix—X|| (tel, x, xeX).

Proof. It suffices to notice that the constant functions ¢(t) = x, ¥ (f)
= X belong BV(X) and by (II) we get

(e, x)—h(t, X)| = [(No) () =(N@) (DIl = [(No =Ny} (1)l < [INo — Nyj|
< Lllo—y|l = Lllx—Xx]|.

If condition (1) is fulfilled, then we may define the function h*: (I—{a}) x X
- Y by the formula

h*(t, x):= lim h(z, x) (tel—la}, x€X).

T

Since there exist one-sided limits of A(-, x) (by (I) belonging to BV (Y)), the
function h* is well defined.
Note also the following simple result.

LemmMma 3. If condition (1) is fulfilled, then for each x€X and tel— \a|
there exists h*(t, x):= lim h(t, x).

Moreover, the function h*: (I—{a})xX —Y has the following prop-
erties:

(a) h* is left-continuous with respect to the first variable;

(b) for each xe X the function h*(-, x) belongs to BV (Y);
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(c) if condition (II) is fulfilled, then
Ih* (¢, x)—h*(t, X)| < L||x—X|| (tel—l{a}, x, XeX).
Now we can prove the following theorem.
THeorem 2. Let assumptions (I)—(III) be fulfilled. If X is a separable
Banach space, then the set
D,:=D:=\tel: h, is not linear), (h,:=h(t, "))
is countable.

Proof. By Lemma 2 the function h,: X — Y is continuous. Hence, if h,

is not linear, then it is not additive and therefore there exist u, r€ X such
that

[ (u+v) — b () — b, (0)]] > 0.

Let 4 be a countable and dense set in X. By the continuity of h,, we may
assume that u, veA. Hence we obtain

D = U U Clu, v, a),

(u.v)ed XA 2eQ
2>0

where

Cu,v,a):= {tel: |lh(u+v)—hW)—h @) = a).
Now we are going to show that the set C(u, v, a) is finite. For “an indirect
prool™, let us assume that C (u, t, «) is infinite. Then for arbitrary neN there

exists a sequence t,, t,, ..., t,,€C(u, v, a) such that ¢, <t, <... <t,,. De-
fine the functions ¢, ¢ as follows:

u, 16:[2, l4,-~'7 th:’

0, ¢ty ta,..c,tsy) o) =vO)+o.

Yt) = %
Of course, ¢, Yy eBV(X) and ||l¢—y|| = (|v||. Since t; eC(u, v, a), therefore
(2) ha S Z l'hIZi(u+v)_h12i(u)_hl2‘-(v)”’
i=1

On the other hand, by assumption (III), we get

(3) Z “h12, (u+v)_h12,~(“)_hrzl- (U)“

M s

Hh(ty, u+v)—h(ty, uy—h(ty, v)+h(ty—,, Ox)

1
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< Y Mt u+e)=h(ty, wy—h(ty -y, O)+h(ty y, Op)ll+
i=1

+ Z A, v)=hity -y, V).
i=1

By assumptions (I), (II) we have

(4) 1A (5, utv)=h(ty, W) —=h(ty_y, V)+h(ty-,, Oxl
=1

i

= 'Za ”h('Zi’ @ (t2)) =tz Y (t2))~h(ta 1, @(taz))+h(t2-y, W (t-1))|

= Z N~ NY)(t2) —(No— Ny)(t5- )l < Var(No — Ny)
i=1

<|INo—= Nyl < Lilo -l

and, obviously,

(5) Y Wt v) = hty- 1. 0| < Var(h(-, v)).
i=1

Now, inequalities (2)—(5) and definitions of functions ¢, ¥ yield the inequality
nx < Lllo—y|l+Var(h(-, v)) = L|jvl|+ Var(h(-, v)) (neN)

which implies that Var(h(-, v)) =co. This is a contradiction, because, by
(1), Var(h(-, v)) < .

Thus for arbitrary u,ve4 and a€Q (R, — {0}) the set C(u, v, ) is
finite, and, consequently, the set D as a countable sum of the sets C(u, v, «)
is countable.

Remark 1. In the same way one can prove a more general theorem
which states that the cardinal number of the set D is not greater than the
density of the space X.

Remark 2. In paper [5] it is shown an example in which the set D is
essentially infinite but the function h is not continuous with respect to the
first variable.

The following theorem was proved for the real case X = Y= R in paper
[5].

Tueorem 3. If conditions (1)—(111) are fulfilled, then there exists a function
G: I = (X, Y) such that

h*(t, ) =G(t)x (tel—!a), xeX).
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Proof. Let us fix rel—la!, neN and take 't,,t,,...,1,,) 1 such
that t; <t, < ... <t,, <t. Choose arbitrary u, ve X and define ¢, ¥ by the
formulae

u, TE M, gy oy Ia,),

O, Tty lg, ..., 15, (1) =Y ()+o.

v =1

Of course, ¢, Yy eBV(X) and |[o—y] =]
Now, by virtue of the definition of the norm in BV(Y), we get the
following inequality:

Z IN@(t2) = Ny (t2) = N@ (£ )+ N (15 )l
i=1
< Var(No—Ny) < [[No— Ny/||.
Hence, according to assumption (II), we get

Z “h(IZi» @ (t2:) = h{ta, Y (t2))—hltzi- 1, @2 ))+h(t2 1, '/’(fz.'—l))“
i=1

< Lilo—y|l.

Putting here the values of functions ¢, ¢ and making use of assumption (III),
we get

3 (e, e+ )= (e =it 1, O < Ll

Hence, letting t, —t, we get the inequality

S IA* (6, e+ 0) = 0, W= (0, o)) < Lo

i=1
which me may write in the form

I (0w +0) =B =B 0, ) < L]
for arbitrary neN and u, ve€X. Hence, as n — o, we get
(6) h*(t,u+v)—h*@t, u)—h*@t,v) =0 (tel—a)).

Let us define G: I - Y* by the formulae

G()x =h*(r,x), (rel—\a)),
G(a)x =0, (ff a€l).

Equality (6) means that, for each r €I, G(t) is additive. Since, by Lemma 2, it
is also continuous for a hxed 7 €l, this completes the proof.
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CoroLrrary 1. If (), (I1) are fulfilled, then there exist the function G: I
— (X, Y) and the left-continuous function H* eBV (Y) such that

h*(t,x)=G({t)x+H*(t) (rel—la!, xeX).
Proof. It suffices to deline

H*(t):= lim h(zr, Oy) (r€l-a}).
T
If X is a fnite-dimensional space, then GeBV (¥ (X, Y)) (cf. [5]. It
turns out that in general G need not to be an element of BV (¥ (X, Y)). For
a construction of an example we quote without a proof the following lemma.

Lemma 4. ([6]) Let 1> be the Hilbert space of all real sequences (x,) with
the norm

ol = |3 x2.
k=1

If o: 1 -1 (ie. @ =(p,, ¢3,...)) and @BV (%), then ¢, eBV(R) for each
keN and

[ &

Y (Var(p)* < (Var ())*.

k=1
ExampLe. Let X =/%2 Y =R and I =(0, oc). For te(k—1, k] put

1
G(r)x:;xk (x =(x;, x3,..)€X, keN).

Of course, G: I = ¥(I?, R) and G is left-continuous. Setting h(f, x):= G (1) x,
we evidently have h = h*.

We are going to show conditions (I)-(III) are fulfilled and
G¢BV(Z(I* R).

1
Since h(t, O) = G()(0,0,...)= I—C-O = 0, condition (III) is fulfilled.

Now take ¢ =(¢,, ¢,....)€BV(?. By Lemma 4, ¢,eBV(R) (k
=1,2,..) and

N Y. (Var(gy)* < (Var (o).
k=1

Take an arbitrary increasing sequence |t;};-¢.;.. ., <1 =(0, c0) and write it
in the form

£y <. <lp <HG <. <tp <. <1g<..<ty

ny n Tm

such that
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thetk—1, k] (k=1,2,...,m, j=0,1,..., n).
Now, applying (7) and Schwarz’s inequality, we get the estimation

m "k

Zqu)(t)—Nrp )= Y16 e -G Deth_ i+

i= k=1j=1

+ Z IG(h™ ) o (t™ ) =G (th) @ (th)

m

m-ll
< Z Z k¢k(r1) k("k(’; O+ Z k+l|‘Pk+1( ])l+k§1E|(pk(tl:lk)|

klj]

m-1

1 1
sk;; Z o=+ ¥ (o (9] +

ji=1 k=1
m— 1

1
Fl@er (16T = s 0))+ 3 ;(I(Pk(té))l'*'l(pk (Tﬁk)—‘/’k(fé)”
k=1
1 m—1

i 1
< Z Evar((pk)+ Z m|¢k+1('(l))l+

k=1

- m—1

'
z Val’(%u)"‘ Z *|‘Pk(f0)|+ Z Vdr((Pk)

[k ,kz , Var(CPk) +2 [k lkz / (pk [0))2
¥ l @ l

3% s Var(@+2 [ Y =-lleol.
=1k =1k

Hence condition (I) is fulfilled and

=]
Var(Np) <3 [ Y 2 el
k=1

If ¢,y eBV(I?) then (p—y)eBV(/?) and, in view of the last inequality
we have

=1
®) Var(No—Ny) = Var(N(e—-¢)) <3 Zk—z‘lkp—'//ll-
k=1

Since |G| x.y) <1 (t€l), we obtain

sup|No (1) — Ny (1)) = sup|G (1) (¢ — ) (ti| < suplIG (Dl v, (@ — W) ()]

tel tel tel

< supl@—v)Oll,> < llo—vll.

tel
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By inequality (8) we get

IN@— Nyl = sup|No ()= Ny (1) + Var (No — Ny)

tel
<(3Z o+t Jho—ui,
k=1 .

which means that condition (II) is fulfilled. Thus we have shown that the
Nemytskii operator generated by / = Ir* fultils conditions (I), (1I), (I1I).
For the increasing sequence r; =i+1 (i=0,1,..., n), we have

n n n

. 1
LIGE) =Gl = NG+ D=G@lI > ¥ [Gli+he—Gliel = 3 -

i=1 i=1 i=1 i=11

(where ¢; is the i-th element of standard base of /%) and, therefore, Var(G)
= oC.

It is seen that this G in the example is not continuous. In this
connection we have the following.

ProBLEM. Let h(t, x) =G(t)x (tel, xeX, G: I - (X, Y)). Let G be
continuous and let conditions (I), (II) be [ullilled.
Does G belong to BV(¥(X, Y))?
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