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1. Introduction. In this paper we obtain oscillation and non-
oscillation criteria of the ‘integral comparison” type for the differential
equations y”+p(t)y = 0 and (r(t)y’) + ¢(t)y = 0, where p, r and g are
real-valued continuous non-trivial functions on an infinite interval
I:T <t< oo. The main strength of our results is that we do not directly
restrict the oscillatory behaviour of p(f) and ¢q(f) by assuming they or
any of their primitives are positive. A simple non-trivial class of equations
which are covered by our results and which illustrate the lack of restriction
on the oscillation of p(?) is when p(t) = ut’sinvt, where u, » and 7 are
constants. With the exception of the case |u/v] = 1/y/2, n = —1, for which
there is probably non-oscillation, our tests completely cover this class
of equations (see Section 4).

We call a differential equation oscillatory if all its non-trivial solutions
vanish infinitely often on I. Otherwise, a differential equation is called
non-oscillatory. Being linear, the equation

(1.1) y'+p)y=20

is oscillatory if it has one non-trivial solution that is oscillatory. An
equation is said to be disconjugate on an interval if each of its non-trivial
solutions have at most one zero on that interval.

The literature on oscillation for (1.1) is extensive as can be seen
by looking in Césari [1]; p. 90. Some evidence of the difficulty of the
problem is shown by a relatively recent result of Nehari [10]. Nehari
proves that (1.1) is disconjugate if, and only if, for each T, > T the
minimum eigenvalue 4 for the boundary value problem

w'+Adptu=0, w(l)=4u4'(T)=0

satisfies 4 > 1. In the light of this result and the difficulty of locating
eigenvalues in general, it seems unlikely that a simple necessary and
sufficient condition for oscillation of (1.1) exists.

* This work was supported in part by NASA Contract No. NGR-45-003-038.
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Comparison type oscillation eriteria for (1.1) have their basis in the
famous Sturm separation theorem. Probably the first such mnon-trivial
criteria was given by Kneser [7] in 1893:

(1.2) (*p(t) <1/4 => non-oscillation ,
' \2p(t) > (1+¢€)/4 = oscillation .

Later, Fite [3] proved that p(f) > 0 and f p(8)ds = oo imply oscil-
lation. Hence, Hille [6] assumed

(1.3) p@@) >0 and P()= fp(s)d’s < oo,
¢
and proved the following generalization of (1.2):

tP(t) <1/4 => non-oscillation ,
(1.4) {

tP(t) > (14 ¢)/4 = oscillation .

The condition p(t) > 0 in Fite’s result was later removed by Win-
tner [18], and the same condition in the ‘non-oscillatory part” of Hille’s
result was replaced by Wintner [19] with the condition 1P(t) > — 3/4.
In the “oscillatory part’” of Hille’s result, Moore [9] replaced p(t) > 0
by the assumption that ¢P(¢) be bounded.

Also assuming (1.3), Wintner [19] proved that

P¥(t) < p(t)/4 = non-oscillation ,

and this result was later extended to matrix differential equations by
Reid [{16]. Wintner did not seem aware at that time that

P¥(t) > (1+¢€)p(t)/4 = oscillation .

The latter is a direct consequence of a later result of Opial [13].

. 0

Assuming that P(t) = f P (8)ds exists as an improper integral and P(t) > 0,
¢

Opial proved that

f P2(s)ds < P(t)/4 = non-oscillation ,
(1.5) ‘

= -]

J P*(s)ds = (1+ €) P(#)/4 = oscillation .
t
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Oscillation results generalizing the Fite-Wintner result mentioned
above were given by Olech, Opial, Wazewski [12], who proved that

!
i lim appr fp(s')ds = oo = oscillation ,
f—>n0
(1.6) T

t t
lim apprinf f p(s)ds < lim apprsup f p(8)ds = oscillation
T t—oc T

{0

and Wintner [18], who proved that

t

(1.7) lime™ [ { [ p(z)dr)ds = co = oscillation .

f=>00 T T
Later, Hartman [5] proved that the non-existence (as a single finite
number) of the limit in (1.7) and the condition
{ 8
(1.8) liminf¢™" f (fp(t)dr)ds > — 0o
t—+o0 T T
imply oscillation.

Recently, Coles {2] obtained extensions of these results of Hartman
and Wintner by introducing weighted averages of the type

1 s
S [ p(z)dz)ds
(1.9) AL o) = Af(t, tg) = o — T o

,f f(s)as

where f(!) is 1 non-negative, locally integrable function satisfying

] 8
. k
(1.10) Fy(t) = ff(s)(—{ﬂr—)—(—l-r—’- ds—occ as t—oo for some b, 0 <k < 1.
T [P

Coles proved that if there exists such a function f such that

liminfd;(¢, T)> -o0c a8 t—>oo
and

! 8
(1.11) }imt“f ([ p()ax)as

does not exist, then (1.1) is oscillatory.
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Our main results arise from a combination of Coles’ idea of weighted
averages and Opial’s criteria (1.6). The resulting criteria includes both
of their results.

Let J be the sel of all non-negative locally integrable functions on I
that satisfy the condition

t
(1.12) lim sup(ff(s)ds)l—k[ﬁ’k( oo)—-Fp(?)] > 0  for some k, 0 < k << 1.
{—o0 "

If Fi(co) = oo in (1.12), then we allow feJ3. Let 3, be the set of all
non-negative locally integrable functions on 7 that satisfy

(1.13) lim if(s_)ds_ = 0.

{0

Members of the classes I and J, will be called weight functions.
Our main results are the following three theorems:

TureorEM 1.1. Let P (t) be any continuously differentiable function such
that I’(1) == — p(t) on [T, o), and let

(o o] 8

(L.14) P(ty= [ Ps)exp(2 [ P(v)dr)ds .
¢

f
Equation (1.1) s disconjugate on [T, oo) if

a0

(L15)  P(t)< oo and | Pﬂ(s)exp(z_('P(r)dr)ds < P(t)[4

{
for all t > T.

THEOREM 1.2. Assume there exists g € I, such that

(1.16) ¢ = limA,(t, T)

{-»o0

cxists, and let

(1.17) P(t)=c¢— [ p(s)ds.
;

If P(1)s5£0 and there exists & >> 0 such that

8

(118) P(t) = oo or [ Pos)exp(2 [ P(v)dr)ds > (1+e) B+
t i

for all t = T, then equation (1.1) is oscillatory.
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THEOREM 1.3. If there exist feJ and g € J, such that

(1.19) Liminf 4,1, ) > — oo

t—oc0
and the limit in (1.16) does not exist (as a single finite number), then (1.1)
18 oscillatory.

CoroLLARY 1.1. Assume that

r

lim [ p(s)ds

=00 p
exists, and let

P(t) = lim fp(s)ds , t=T,

—>00 ]

and P(t) be defined by (1.14). If (1.15) holds, then (1.1) is disconjugate
on [T, oo). If there exists € > 0 such that (1.18) holds, then (1.1) is oscillatory.

CoroLLARY 1.2. If there exist mon-negative, non-integrable, bounded
funetions h, g on [T, co) such that

lim Ax(t, T) > Uim Ay (t, T),
{—oo

{—oc

then (1.1) is oscillatory.
In order that either (1.12) or (1.13) can be satisfied by a non-negative
function f, it is necessary that f be non-integrable on [T, ), i.e.,

(1.20) [f()ds = oo

On the other hand, all bounded non-negative locally integrable
functions f satisfying (1.20) belong to 3J3,, and 3, C J. Because of (1.20),
the values of the limsup in (1.12) and lim in (1.13) are invariant with
respect to the lower limits of integration. If ¢ =lim Ay r, T) as t—oo
exists for ¢ ¢3J, then (1.20) implies lim A (7, ?) as r—oco exists for all

t> T, and
t

(1.21) lim Az, t) = ¢— [ p(s)ds .

T—>00 T

Hence, Theorems 1.2 and 1.3 state that if there exists f e 3 such that
liminfA44(t, ) > — o0 as t—oco, then either (1.1) is oscillatory or there
exist a broad class of primitives of — p(¢), namely, limA4,(z,?) as 7>
for each g € J,, which can be used for P(¢) in (1.18). Hence, Theorems 1.2
and 1.3 are a partial converse to Theorem 1.1.

Two directions of improvement of the above results immediately
come to mind. First, can the size of the two sets J and J, of weight func-
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tions be made larger? In this regard, it may be of interest to know that
all the above results remain valid if instead of (1.12), condition (1.20)

and the condition
f

li:nianl(t)/(ln [f(s)ds) > o

are used to define the class 3. However, (1.20) alone is not a sufficient
condition. In this regard, Professor Coles has recently pointed out to me
that if Theorem 1.3 holds with (1.20) replacing (1.12), then all solutions
of (1.1) oscillate provided just

!

(1.22) lil:l.supj p(s)ds = oo,
which is not true in general as can be shown quite easily by examples.
We do note, however, that (1.22) does imply (1.1) is oscillatory provided
that p(t) is also bounded on at least one side (cf. [14]). Phe second di-
rection of improvement for our results is to simplify (1.15) and (1.18).
In this regard, we give the following theorems:

THEOREM 1.4. Let P(t) € C[T,, oo) and P be defined by (1.14). Then
there exists T > T, such that (1.15) holds, if any one of the following con-
ditions holds for all t > T,:

(i) F?P"(s)ds < P(t)/4;

(i) P(t) <P(1)[2;

(i) lim [ P(s)ds < oo, [ P¥(s)ds <. oo, and there erists &> 0

-
such that

~ 00 20

[ ([ Poyar)as < @—e) [ P2s)dsy4 .
{

t &

THEOREM 1.5. Let P() € C[T,, o) and P(t) be defined by (1.14). Then
there exists T > T, such that (1.18) holds, if any one of the followring con-
ditions holds for all t > T, and some ¢ > 0:

(j)  P() =0 and | P¥s)ds = (L &) P(1)/4;
t
(G)) P = (L+e)|P(1)I[2;
(jji)  lim j P(s)ds < oo, [ PHs)ds — oo or [ ([ PAr)defds > (1+¢)
!l s

T >00

v [ Ps)ds)d .
!
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Parts (i) and (j) above imply that Opial’s result (1.5) is included in
Corollary 1.1. The result of Coles cited above is included in Theorem 1.3.
Corollary 1.2 implies the second part of (1.6). By modifying the proof
of Lemma 2.1 in the next section, one can also prove that (1.1) is oscillatory
provided lim 4y(¢, -) = oo as t—oo for some f ¢ J. This generalizes another
result of Coles [2] and the first part of (1.6).

Some preliminary lemmas useful in the proofs of Theorems 1.1, 1.3.
and 1.3 are given in the next section. The first two of these lemmas are
of special interest because they generalize some well-known results of
Hartman ([5], p. 391). Proofs of all five theorems will be given in Section 3.
Some specific examples are presented in Section 4. A transformation
theorem extending Theorems 1.2 and 1.3 to cover problems when

oQ
[ p($)ds = — oo is given in Section 5. An extension of oscillation results
for (1.1) in general to equations of the form

(rOy) +a®y -0,
with »(¢) > 0, is given in Section J.

2. Preliminary lemmas. It is well known that there exists a con-
tinuously differentiable solution »(t) to the Ricatti equation

(2.1) W)+ pO+ R =0, I1=T,

if, and only if, there exists a disconjugate solution y(t) to (1.1). In this
section we consider some properties of equation (2.1) and its equivalent
integral equation formulation

¢ [
(2.2) o) = v(8)— [p@dr— [v(x)dr, 1>5>T.

LEMMA 2.1. Adssume that v(t) satisfies (2.1). If there exists f eI such
that iminf Ay, ') > — oo as t-—>oco, then ffv?(s)ds < oo,

LEMMA 2.2. Assume that v(l) satisfies (2.1). If [v*(s)ds < oo, then
for any feJ,y, limAyt, -) as t—oo exists.

]

Hartman [3] has proven, that if (1.8) is true, then J v%(s)ds < oo;

and conversely, if [ v%(s)ds < oo, then the limit in (1.11) must exist. The
classes J and J, have been determined solely for the purpose of obtaining
the generalization contained in Lemmas 2.1 and 2.2 of these results of
Hartman. We need these lemmas in the proofs of Theorems 1.2 and 1.3.
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Thus, if the rather unnatural conditions defining the classes J and J,
are to be improved, then the above two lemmas constitute the area in
which the work must be done.

Proof of Lemma 2.1. Let A(t,s) = A;(t,s) and assume that
{ v(s)ds = oo. Integrating (2.2), we obtain

{
2.3) [ f(s)v(s)ds
to
t ¢ 8
= [o(t)—A(t, )] [ fi)ds— [ f(s) ([ v()d)ds, t>1>T.
ly to

o

Putting t = {, and ¢ = T in (2.2), we get next that
to
(2.4) o)A, ty) = o(T)—A(t, T)——f v¥s)ds4-0(1) as t->o0, 1, =T,
p
since

to
AL, 1)) = A(t, T)— [ p(s)ds+o(1) as t—>oo.
II'
Since f satisfies (1.12), there exists a positive number ux such that

(2.5) ¢*<(L-muﬁgq4fﬂwdﬂ“?Fdag_Fﬂny

Using the fact that A(¢, T) is bounded away from —oo by
assumption and

to
f’o‘*(s)ds—aoo as {3->o00,
P

we conclude from (2.4) that there exist numbers {yand 1, ¢, =2t > T
such that

(2.6) V() —A(t, tg) < —pu for all t >, .
Let

1

[4
(2.7) 2(t) = [ f(s)o(s)dx .
to

The Cauchy-Schwartz inequality implies

L}

(2.8) [@@)ar > &) feyar .
to

to
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Putting (2.6), (2.7), and (2.8) into (2.3), we obtain the inequality

8

t ¢
() < —ptff(s)ds—tfj(s) ([f)ae) " 2s)ds = —R)), t>1,

to

where E(t) is defined by this equation.
Hence,

¢
(2.9) R(1) = wf )+ (2] [ f(z)dr
bo
for almost all ¢ > ¢, (a.e.). The inequalities 2%(t) > R*(t), t > ¢,, and (2.9)
imply -

i
(2.10) RWEW > [0 fmdr, t=>14  (ae).
to

However, from the definition of R(t), we obtain

t
(2.11) R)=p[fs)ds, t>1,.
to

Inequalities (2.10) and (2.11) imply that

| 2 ¢
EORW) = w0 ([10)ds) [ feds, t26  (ae).
to to

Since k < 1, subsequent integration from ¢ (>1{,) to oo and use
of (2.11) to replace E(t) produces

w7t = (1— k) u* TR R [F i 00) — Fi(t)]
t
> (1—k) ([ f(®)ds) [ Fu(00) — Fiuit .
to

Taking lim sup as t—oco of the last inequality, we arrive at a contra-

diction of (2.5). Hence, [v%(s)ds < oo.
Proof of Lemma 2.2. Equation (2.3) implies

{ i

Jf@)o(s)ds [ f(s)([ oz)dz)ds
Aty to) = p(to)— " —t— -
Jioas [

Annales Polonici Mathematici XXI 13
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Since
1 &
T (Joxx)de)ds >
lim — | v¥(s)ds
T [s)as i
to

exists, amd (1.13) implies

! Lo
|[f(s)v(s)ds| (tjf’(s)ds)” o

: 1/2
0 L dlimf o lim b | v(s)ds) =0,
-0 {—o00 - ;
1(s)as Ji@as
we conelude lim A (8, &) as t- ~oco exists and
®
(2.12) Lmd (2, 1) = v(t)— [ v¥s)ds, 1= T.
{—o0 to

The next two lemmas are slight generalizations of some results of
Opial [12]. We use these stronger versions of Opial’s results in the proofs
of Theorems 1.1 and 1.2.

LEMMA 2.3. Assume that P(t) and Q(t, s) are non-negative continuous
Junetions for T 71,8 << co. If

(2.13) Jew, 9P s)as “ P4, 1T,
i
then the equation

(2.14) v(t) = PO+ Q(t, 9)oX(e)ds, t= 1T,
t

has a continuous solution v(t).

LEMMA 2.4. Assume that P(t) and Q (¢, 8) are non-negative continuous
functions for T <1t,8 < oo. If there exists ¢ > 0 such that

[><]

(2.15) [Qq, s)Ps)ds = (14 ) P()ja£0, t>T,
3

then the inequality

4

(2.16) o(t) = P(t)+ | Q(t, 9)o*(s)ds, 1= T,
¢

does not have a conlinuous solution for v(t).
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The details of the proofs of Lemma 2.3 and 2.4 for the case when
Q(t, s) == 1 and strict equality occursin (2.16) have been given by Opial [12].
The same proofs apply to this slightly more general situation. In the case
of Lemma 2.3, the sequence

rolt) == P(t),  Tpaa(t) = P(t)--'[—_f Q(t, s)vn(s)ds , n--0,1,..,
!

is mwonotone increasing and bounded above by 2P(). Hence v,(t) con-
verges to a function v(?), which is a solution of (2.14) and hence is a con-
tinnous function. In the case of Lemma 2.4, assume that v(Z) is a continu-
ous funetion which satisfies (2.13). Then »(f) > P(t) > 0 implies 1)
*- P¥t), which implies in turn that

") P+ | QU 9 Psds = (14575 P ().
[4

Continuing in this manner produces v(?) > a, P (), where
l=gagy<<a;<...<@ay<..1o0 as ntoco,
which i1s a contradiction.

3 Proofs of the theorems. The proofs of Theorems 1.1, 1,2,
and 1.3 are based upon the faet that if »(?) is a solution of (2.1), then

1

(3.1) y(n:=expovwﬂﬁ’

T

1s a non-vanishing solution in [T, oo) of (1.1), and if y(¢) is « non-vanishing
solution of (1.1) in [T, oo), then

(3.2) v(t) = y'(t)/y ()

is a solution of (2.1). A large share of the work has already been done
in Section 2.

Proof of Theorem 1.1. Since P(t) < oo by assumption, we can
consider the equation

(3.3) w(t) = P(t)+ [ u(s)exp (2 f P(r)dz)ds, t>T,
t [

for the unknown function «(t). Since (1.15) implies (2.13) in the context
of equation (3.3), Lemma (2.3) implies that (3.3) has a continuous solution

13*
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%(t) defined for all ¢t > T. Furthermore, since P(¢) is continuously dii-
ferentiable, equation (3.3) implies that «'(t) exists for all ¢ > T and

(3.4) w'(t) = —PXt) — 2P (t)u(t) — u*(t) = —(P(t)+ u(t))"' .
Let
(3.3) o(t) = V—-w()sgn(P()+u(t), t>T.
Hence, for T' <t < oo, v(t) is continuous and v*(t) = — »'(t). Further-

more, (3.4) and (3.5) imply that

v(t) = P(t)+u(t),
and so,

v'(t) = P'(t)+u'(t) = —p(t)— v*(1)

that is, v(t) is a solution of (2.1) on [T, oo). Hence, (3.1) defines a dis-
conjugate solution of (1.1), and Theorem 1.1 is proven.

Proof of Theorem 1.2. Assume that (1.1) has a non-oscillatory
solution y(t) on [T, oo). Then there exists T, > T such that y(f) = 0 for
all t> T,, and »(t) defined by (3.2) satisfies equations (2.1) and (2.2).
The assumptions of the theorem and (1.21) imply that limA,(z,t) as
T->o00 exists for all ¢t > T, and

(3.6) P(t) = limA4,r,t), t>T.

T—00

Hence, Lemma 2.1 implies
f v}(8)ds < oo,
Ty

and so the assumptions of Lemma 2.2 are satisfied in the present situation.
Hence, (2.12) and (3.6) imply that v(?) satisfies the equation

(=]

(3.7) v(t) = P(t)+ [ v¥s)ds, t>T,.
i
Let

[=<]

u(t) = f'vz(s)ds, t>T,.
i

Equation (3.7) implies that

w(t) = —v(t) = —PO)—2P(u()—w’(®), =T\,
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since v(t) is continuously differentiable. Multiplying this equation by an
integrating factor for «'(f)-+2P(f)u(f) and integrating, we obtain for
h=t>T,

4L 131 a
(3.8)  w(t) = -ur(t,)exp(Z J‘P(s)ds)—i—J P3*(s)exp (2_’ P(r)dr)ds+
t t ¢
5 L]
»T'—f u*(8)exp (2 fP(-r)dt)ds
t t

b & N ~
> l P*s)exp (2fP(r)dr,d.s~+f uz(s)exp(Z J‘P(r)dr)ds.
i t { ¢

The right-hand side of (3.8) is 4 non-decreasing function of ¢, bounded
by u(t). Hence, the limit as {,—oco must exist, and we conclude that

(3.9) w(t) = P()+ [ wxs)exp(2 [ P()de)ds, t>17,.
t &

However, (1.18) and Lemma 2.4 imply that no continuous function
u(t) can satisfy (3.9) for all ¢ > T,. From this contradiction, we conclude
that (1.1) is oscillatory.

Proof of Theorem 1.3. Theorem 1.3 is a direct consequence of
Lemmas 2.1 and 2.2.

Proof of Theorems 1.4 and 1.5. The details for just part (i) of
Theorem 1.4 will be given, since part (j) of Theorem 1.5 is similar, and
the other parts of both theorems offer no difficulty.

Multiplying inequality (i) by P(t)/ f P3*(s)ds, which is non-negative
i

by assumption, and integrating in an appropriate manner, we obtain
r s =] o0
1/2
exp(zf}’(r)dr U r)dtf r)dr)/ r=>8>T.
¥ s
Hence, P(8) exists for s > T and
e .
P(s) ~ [ PXr) ( f 7)dzf f Pir)de)"ar < 2 j Piz)dr < P(s)[2 .
i

from which (i) follows from (ii).
Proof of Corollary 1.2. Let a and § be numbers satisfying

HmAx(t, T)> > a>1limAyt, T).
t-~cc t->00
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Let f(t) = h(t) for T'<t<t, where ¢ is determined so that

Ap(t,, T) = B and fh (s)ds > 1. Let f(t) = g(t) for t, <t < t,, where %, is

determined so that A,(f,, T) < a and ff(s)ds 2. This is possible because

Ay(ty, T') = Ayt T)(1+ o(L))+o0(1) as l,—>o0.

Continuing in this manner, we obtain a non-negative, non-integrable,
bounded function f(¢) defined on [T, oo) such that

limsupdyt, T) = > a = liminf A/({, T) .

—>00 {—o0

Hence, by Theorem 1.3, equation (1.1) is oscillatory.
4, Examples. Theorems 1.1 and 1.2 are sharp for the Euler equation
¥’ 4ut™% — 0  (u constant).

Corollary 1.1 in conjunction with (iii) and (jjj) of Theorems 1.4 and 1.5
implies that

(4.1) y' -+ (ut"sinvl)y = 0  (u # 0,v # 0, n constants)

is oscillatory when —1 < 7 < 0 and non-oscillatory when 7 << —1. When
n = —1, Corollary 1.1 implies (4.1) is oscillatory when |u/v| > 1/l/§ and
non-oscillatory when |u/v| < 1/)/2. The oscillation properties of (4.1) can-
not be determined to this extent by any of the previous criteria mentioned
in the introduction. In pmrticulal, Coles’ criteria for oscillation cannot

be used when 5 < 0, because f p(8)ds < oo, When 7 > 0, one can prove
oscillation for all values of u,» by using Theorem 1.3 WIth

1  when uvcosyt > 0,
10 otherwise .

F@ty=g(®) =

Itor the equation

(4.2) ¥+ (ut sinvt+ A7)y = 0 (u, A, v # 0 constants) ,

we obtain
o0

P (1) = j p(s)ds = it 4 Mt cosn+-0(17%) s t-rco.
t

Hence, | P(s)ds does not converge, and so the computational ad-
vantages of Theorems 1.4 and 1.5 cannot be utilized. However, no difficult



Second order linear diiferential equations 159

problems arise in computing directly the asymptotic nature of P(t).
Theorems 1.1 and 1.2 imply that (4.2) is oscillatory if

2

71— i)

and non-oscillatory if
e o
The equation

(4.3) y'' 4 (pteosvt*)y = 0 (4 % 0, v # 0 constants)

offers a mon-trivial application of Theorem 1.3, which illustrates the
advantage of nnbounded weight functions. Here, we have

t
(4.4) ( us cosvsids = psinyt®[2y
0
Theorem 1.3 implies that (4.3) oscillates for all values of u, » if there
exists a function feJ, such that

t
{1 (s)sinvs¥ds

does not exist.

We now show the existence of such a function.

Let k(n) be any integer valued function such that for » -- 1,2, ..,
0 <k(n) <n, k(n) is non-decreasing, and

limsupk(»)/n = liminfk(n)/n .
n—>o0 n—oo

Let
IT = {0 <t < yY2rn)r: sinv® > 0}
and
I" = {0 <1< Y 2nnfr: sinvt® < 0} .

Then 17 and I~ each have n components. Define the function f(i)
inductively so that f(¢) = ¢ for ¢ in I, and k(n) components of I”. In the
remaining n— k(n) components of I”, let f(f) = 0. It is an easy calcu-
lation to prove that feJ, and that

I f(s)sinvs®ds
lim —%- ~1lim2 1— k()
noco ) Imnfy nsco v 14 k(n)n=1
I f(s)ds ()
0

does not exist.
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By letting
() = {1 when sinv* > 0,
~ 10  when sinn*< 0

and putting P(?) equal the weighted average of (4.4) with respect to this
function f(¢) in the usual manner, we can also obtain the oscillation of (4.3)
from Theorem 1.2.

5. Extensions of the results. If

(5.1) f p(8)ds = — o0,

then none of the “oscillation” theorems in the previous sections or the
Hoscillation’ results cited in the introduction can be applied directly
to ¥+ p(t)y = 0. In the case of Theorems 1.1 and 1.3, the problem is
that liminfA,({, -) = —oco as t—oo for all fe3J. Fortunately, this situ-
ation can be eliminated for most practical cases by transforming the
equation "'+ p (t)y‘= 0 into a similar equation without the property (5.1).

Of course, liminifp(s)ds> —oo a§ t—oo implies liminfAqt, -) > — oo
as t—oo for all fe3.

THEOREM 5.1. Let () be any function from the class C* [T, oo) satisfying

o0

(5.2) y)>0, [y 2s)ds=co. -

Then 4 +p(t)y = 0 and y'' + q(t)y = 0, where

t
_dfy2sds) ")
(®-3) PO=""00 0

have the same oscillatory behavior.
Proof. The substitutions

?
= [yxe)ds, y(z) =y (B)a()

transform

%+q(r)y=0, I <7< oo,
into

%-}—p(t)w:O, T<t< oo,

where p(t) is given by (5.3). Oscillation is invariant with respect to this
transformation.
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Interesting choices for y(t) are E, Vilnt, etc. For example, suppose
g-(t) = inf(0, ¢(t)) = O(e") as t—oco.
Then, by letting y(¢) = y{lnt, we obtain

lg-(Inlnt)] _ Ae™™ 4 R
y4(t) t2ln2¢t ~ tln%t’ =

Hence,

t
].iminffp(s)ds > —oo0,
{—>o00

and there is a chance that the oscillation criteria of Theorems 1.2 and 1.3
can be applied to '+ p(t)z = 0.

Theorem 5.1 is also useful as a computational tool. For example,
by letting ¥ () = t"%, one can show that the behavior of

(5.4) y'' +(usinyt®)y = 0  (u, » constants % 0)

with regard to oscillation is the same as the behavior of a subclass of
equations of the type (4.2), whose oscillation behavior has already been
determined. Equation (5.4) is oscillatory if |u/v| > Y2 and non-oscillatory
if |ufv) < V2.

Some of the oscillation results which have appeared in the literature
(see, e.g., [4], (8], [11], [14] and [20]) are for the most part simple con-
sequences of a transformation, which fits in the framework of Theorem 5.1,
of a previously known oscillation result. For example, Opial [14] proves
‘that if there exists a function w(t) such that w e C'[T, oo), w > 0, w’ is

bounded, and
Fetfaer-3 o~ =

then y'’+4q(t)y = 0 is oscillatory. This test follows from Theorem 5.1
and the well-known Fite-Wintner test,

(5.5) Jp#)ds = o=y " +p(t)y =0
is oscillatory, by taking
o) ¢
t= fw—l(s)ds , @)= fy'z(s)ds .
T

Another example is the so-called logarithmic sequence of tests, which
can traced back to at least Riemann-Weber ([15]; 1912, pp. 60-62). In the
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context of Theorem 5.1, the logarithmic sequence of tests are derived
from a given osecillation criterium, such as given in (5.5), by taking

y(t)=yt, ytlnt, etc.

We end with a theorem which relates the oscillatory behavior of
the equation

(5.6) [r@y)+e)y =0, T <t< oo,

to the oscillatory behavior of an equation of the form (1.1). Trans-
formations which preserve the infinite length of the interval for the case
when 7-%(t) is integrable on [T, o) do not seem to be well known.

THEOREM 5.2. Assume r(t) > 0.

(o -]
i If [r-Ytydt < oo, then the transformation

T == (fr—l(s)ds)—l, y(t) = 17 x(7) ,
i

transforms (5.6) into

&z

e =0, T~ r<oo,

and leaves oscillation invariant.

(iiy If [r-3(t)dt = oo, then the transformation

{
v= [rig)as, yt) =@,
T

transforms (5.6) into

@
SHrge =0, T<7<oo,

and leaves oscillation invariant.

Theorem 5.2, which is not the only theorem if its type, implies the
existence of a one-to-one correspondence between oscillation results
for (1.1) and (5.6). The Fite- Wmtner test (5.5) becomes:

(i) fr—l(t)dt .~ oo and _('q(t)dtjoo,
or

o

(i) - [rwdt <o and [ ge)(f rir)dr)ds = oo
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imply (3.6) is oscillatory. On the other hand, the well-known result (see
Moore [9])
X0 o o]

f r(t)dt << oo and l lg ()| dt << oo -=non-oscillation

for (5.6) is equivalent by Theorem 5.2 to

f ®|p (t)| dt < oo=>non-oscillation

for (1.1). One can cite many other examples of equivalent oscillation
results for (1.1) and (5.6), some of which have appeared at different places
in the literature and some of which may be new. We end with a corollary

that gives the results for (5.6) that are equivalent to Theorems 1.1 thru
1.3 for (1.1).

OROLLARY 5.1. (i) If [ r-Yt)dt= oo, then Theorems 1.1, 1.2, 1.3
with all differentials du replaced by r—(u)du and p(t) replaced by q(t)r(1)
are valid for equation (5.6).

(ii) If | r=3#)d@t < oo, then Theorems 1.1, 1.2, 1.3 with all differentials

du replaced by r—l(u)(f r-Yt)dt) >du and p(t) replaced by g(tyr () [ r-1(s) ds)*
u ¢

are valid for equation (5.6).

Corollary 5.1 states that the criteria given in Theorems 1.1 thru 1.3
apply to (5.6) if the appropriate changes are made in all the equations
occurring in the statements of these theorems. This means that even the
equations defining the sets J and J, have to be changed, e.g., in the case (i),
fe3, if

¢

Jfi(s)r Xs)ds
t

(f(s)r Y(s)ds)

lim = 0.

{—00
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