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Abstract. The existence, uniqueness and stability problems for a non-linear
version of the Boltzmann equation are discussed. This version was suggested by J. A.
Tjon and T. T. Wu [8]. Our main result is a simple proof of the global stability of the
stationary solution # = exp(—z) in the class of all solutions with finite moments.

1. Introduction. Using the Abel transformation it is possible to reduce
a class of the Boltzmann equations to the following simple form:

n o 0D e = [ syt e
M > +u(,w)—!;0fu<,y—z)u(,z>zy,

where x € [0, o), t € [0, c0). Equation (1) is congidered with the initial
condition

(2) u(0, ) = uo(v) for xe[0, o),

where %, is a normalized function, namely

(3) f Uy (2) dx =f zUug(z)de =1, wuy(z)>=0.
0 0

The function u(f, #) has an important physical interpretation. It is the
density function for the distribution of particles in time ¢ with respect to
the energy «.

It is easy to see that the function u (¢, ) = exp( —) is a (stationary)
solution of (1). M. ¥. Barnsley and G. Turchetti successed in arguing that
this solution is stable in a class of all initial functions u, satisfying the
condition

f uy(x)exp () dr < oo.

We shall show that this inequality may be replaced by weaker assumption
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of the existence of the moments
fmuo z)drz << oo forn =0,1,...

In order to make our arguments precise, we shall also show the existence
and uniqueness of solution for problem (1)—(2) in the class of initial con-
ditions satisfying (3).

NoTATIONS. Let I = [0, o). By B, we denote the space

=]
{ueL'(I); [ @+a)u@)de< oo},
0
where the norm is given by

lully = [ (1+) |u()|dz.
0

We set
Cy(I) = {u € C°(I); lim u(z) = 0}

I—00

and we consider the space B, = B,nCj(I), with the norm

lull, = llwllo+ llullcog,)-

Condition % > 0 (u € B,) denotes u(x) > 0 a.e. The non-linear operator
on the right-hand side of (1) is denoted by

H(x,u) = f f y—2)u(z)dzdy.

Further,
M (w) = [a"u(z)de, M"(u;1) = fa: u(t, @) dz.
We shall consider equation (1) as an ordinary differential equation
in the space B,. Thus (1)~(3) may be rewritten in the form
(1) Dyw = —wu+H(,u),
where D, denotes the strong derivative in B,,
(2" u(0) = %,
(3") M®(up) = M*(uy) =1, u,>=0.

2. Preliminaries. We start with a few elementary lemmas in which
we shall exploit the special properties of the right-hand side of equation
).
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LEMMA 1. If uw € B, and
M™(u) = fw" x)dr < oo,
then

‘3 — 1 a - n
(4) Ifa; H(x,u)dx —-mo u(z)of u(r)(z+r)drdz

_ n—i!l-—i,g:: (;:) M () ¥ () .

Proof. Under our assumption all moments M*(u) with k< n are
finite. Since we are going to prove that the integral on the left-hand side

of (4) exists, we start from rewritting the right-hand side. By the defi-
nition of M"(u) we have

R,:= 'n,—]-l ( )M"(u)M”"‘(u)

k=0

o0

s S0) [ s frouir

0

= n-l—lf f 2+ r) u(r)drdz.

Further, by classical applications of the Fubini theorem,
1 fu(z) fu )y "dydz = f f 2)u(2) y dzd
n+1 ; ; Y w1 y
-} v mﬂ’
=f f u(y—z)u(z)f—dwdzdy
0 0 0 y

=ff”7;0f”u(y_z)u(z)dzdwdy =jm"H(:v,u)dm.

In particular, for n =0, n =1, we get

R,

[= o] %]

(5) fH(a;,u)dw =(f u~(m)d’m)2,
0

== (o]

(6) fm f (z)dz- fam(m)dw
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The integral H can be considered as a non-linear operator from the space
B, into itself.
We have the following

LeMMA 2. If u 8 a solution of (1')—(3’) and
u e C' ([0, ): B,),
then
M(u; t) = M'(u; t) =1 for all t = 0.
Proof. Integrating (1) and using (5) we obtain

d 0/, 0fnre 2
= MOws 8) = —MC(u; ) +H(M°(u; D).

Moreover, from (3’) we have M%(u,) = 1. This implies M°(u; t) =1
for all ¢ > 0. Analogously, from (6) it follows

%M’(u; t) = —M'(u; t)FM°(u; t)-M(u; t) =0

and consequently M'(u; ) = M*(u,) =1.
We shall also use the following elementary observation:
LEMMA 3. If the continuous function f: I — R has the limit

}ilil F@) = o,
then the solution w of the problem
w'(t) = —Jw(t)+f1), 4>0,
converges to fo[A, where t tends to infinity. Moreover, for all 1 > 0,
(7 sup w(t) < max {w(0),sup (f(2)/3)} .

3. Existence and uniqueness of solutions.

THEOREM 1. For any initial condition u, € B, salisfying (3') there
exists unique solution u of problem (1')-(2'), and

(8) u e CY([0, ): By), u(t)=0.

Proof. It is easy to show that the non-linear term H (-, v) satisfies
in B, the Lipschitz condition with respect to ». In fact, for u,v e B,
we have

f (1+2) |H (@, u) —H(x, v)|dz

(]

00 o0 v
< f<1+w)f%f [lu(y — 2)l1u(2) —v(2)] + o (2)| |4y —2) — v(y —2)| ] dedyda
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L 4
= [ @+1v) [ [y —2)l () —v(e) + Io(e)l lu(y —2) —o(y —2)/1dzdy
0 0
< [ @ —v@) [ a+y—aluy—oldyds+

+ [ 0@ [ [@+y—2)+2luly —a) —o(y —2)|dedy

< 2 |lw —ollo [lfello +1vllo] -
Finally
(9) | H (2, u) —H (z, v)llp < 2 [lu —2llo[lullo+ l10llo] -

Now we may apply to (1')—(3’) the classical method of successive approxi-
mations, setting

Uo(t) = woy  Dythyy+u;, = H(:,u),
or

t
(10) U41(1) = upexp(—1)+ [ exp(z—t)H (-, u;)(v)dr.
0

From the last formula it follows that u,() > 0 for all <. Moreover, according
to (5) and (6),

¢
(11)  M*(t405 1) = M (up)exp(—1)+ [ exp(z —1)(M(w;; v))*dr,

¢
(12) M (w5 1) = M (ug)exp(—1)+ [ exp(v —1) M (u;; 7) M (u;5 7)dz.

Since M°(u,) = M'(u,) = 1, this implies by induection argument
M (u;; 1) = M'(u;;t) =1 forall t>0, 4 =0,1,2,...

Consequently

(13) lluglly = B (uig) + M (wg) = 2.

This fact and the Lipschitz condition (9) assure the convergence (uniform
on compact intervals) of successive approximations on the whole half
line [0, oo). The limiting funection

u(t) = lim u (1)

is of course a solution of (1')(3’) and satisfies (8).
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In the proof of the convergence the non-negativity of «; plays an
important role. It assures the uniformness of the Lipschitz condition.
So the uniqueness should be proved separately.

For any u, v which are the solutions of (1')-(3’) we have

d
) (v —v) .
D < e —vlly+ MH (-5 w) —H (-, 0)llo
< flu —0llo (L 4 Jello+ llvllg) = 3 [l —vilo.
Since |lu(0) —v(0)]l, = O this by standard argument implies » = v.

It is easy also to prove the existence of solutions of equation (1')-(3')
in the space B,.

Remark 1. For any %, € B, the unique solution u of (1')—~(3’) given
by Theorem 1 satisfies

=l <
dt 0=

u e C([0,T): B,

where T is a sufficiently small number.
In fact, for %, v e B, and |ullgoyy, [Wleor < m,

ml v
[ 5 | m—2u@ oy —ao(nday
a;/m 10 v oo 1 Yy

<2 [ = [ mu@—vEiaay+ [ = [ -2l o) dedy+
/5] dv)

Y
+ [ %f Io(2)| [y —2) —o(y —2)| dedy

1m

< 2suplu(@)—o(@)|+m [ () —v(a)] [ lu(y—2)idedy +
I 0 e

o0

+m [ @) [y —2)—o(y—2)ldzdy

4

= 2 [lu —vllcoy -+ m |l —vllg [llello + llvllo] -
Consequently
WH (-5 u) —H(*y V)lcozy < 2 lls — ligogy + e llu —vlio [llwllo+ livlle] -
From this and inequality (9) follows
WH(y u) —H(-, v)lly

< |l —ollymax{[lullcagy, llolico}(llullo+ Iollo) +2 llu —vlicocr,
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or
IH (-5 ) —H (-, 9)ly < (2 + (el + Ioll)?) v —oll; .

The last inequality implies that the sequence u,(t) of successive approxi-
mations given by formula (10) is convergent in B, norm uniformly for
t € [0, T') with sufficiently small T'. We do not know if u,(t) converges to
%(t) in B; norm on the whole half line.

4. Moments of solutions. We shall study the behaviour of moments
M"(w; t). Our starting point is the following
LevMmA 4. Suppose that the initial condition u, € B in problem (1)~(3)
admits all moments up to the order L, i.e.
MY uy) < oo for1=0,1,..., L.

Then there exists T, = t,(L) such that all moments M*(u; t) of the solution
w exist for te[0,Ty), 1 =0,1,..., L, and are continuously differentiable
Junctions of t.

Proof. Using (10), it is casy to obtain a formal system of equations.
which must be satisfied by moments, if they exist. Namely, setting M:(t)
= M'(u;; t), we have

Mi‘+1(t) M’(O)exp(—t)—l—
+fexp —t)f f f u; (T, Yy —2)uy(t, 2)dedydadr

(14) _ 3(0)exp(—t +fexp _t)Z( )M"(r)Ml—k(z)d‘r,

k=0
o0

M0) = fa:’uo(a:)d:v

0
Write A = max{m'; Il =0,1, ..., L}, where
1
(15) m =1, m=1, m = max{M’(O), T 2'(m'-1)2}
and denote by u(¢) the solution of the problem
p)+ept(t) = @' (1) (o = (LUL+1)25), p(0) =

The function u (1) is positive and defined in an interval [0, T;}. By an in-
duction argument it is easy to show that

(16) Mit)<pu@) forl<L,i=0,1,..,te[0,T).

In fact, M, (t) = M'(uy) < A by the definition of 4, and A < u(t) for
all ¢. Now agsume that inequality (16) holds for = 0,1, ..., L and ¢ <j.
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Then

t !
M., (t) = M'(0)exp(—1)+ f 3%_’—1-3—) (i) M (1) My * (v dv

—1)

< Aexp(—1)+ f _EZCT 9% 4 (1) dx,

which proves (16).
Therefore, formulae (14) are meaningfull. The function M}(t) represents
the sequence of successive approximations for the system

M@ =1, M) =

l
a _
(1) = —M‘(t)+l+—1 ( ) ar* 0+
-1
(17) = T Mo+ z+1 E (1) 2* 02+,
k=0
MH0) = f Py () dis

of ordinary differential equations. Then {M}(#)}2,, (I< L) converge on
[0, T,) (uniformly on compact subintervals) to the solution M’(t) of (17).
On the other hand, for each r > 0

.
[ duy(t, @)de < Mi1)
0
and consequently, since u,;(t, <) — u(¢, ) in B,,
r
[ du(t, x)dz < M'(0).
0
Again passing to the limit as r — oo, we obtain
M(u; t) = fw’u(t z)dw < M(1).
Now, knowing that M'(u; t) exists, we may multiply cquation

¢
u(t, 8) = uy(a)exp(—1)+ [ exp(v—1)H(, u)(v)dr
0
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~
by #' (I< L) and integrate on the half line [0, co). This shows that
M'(u; t) are actually the solutions of (17) and therefore M'(u; t)
= M'(t) (te[0,T,), | <IL). The proof is finished.

Now we are going to show that the moments M"(u; t) exist for all
1> 0 and that they have finite limits as ¢ — oo.

THEOREM 2. If the initial condition u, e B, has all moments M*(u,)
Jor 1 < L finite, then also the solution wu(, -) has all moments M*(u; t) finite
up to the order L for every t > 0. They satisfy equations (17).

Proof. As was shown in Lemma 4, the moments M'(u; t) of the
solution » of (1')—(3’) satisfy (17) for ¢t [0, T,). It is easy to show by
an induction argument (using Lemma 3) that the numbers m!, given by
(15) are the upper bounds for M*(t), namely

(18) 0< sup M¥(t)<m® for all £>0.
o<kt

In fact, M°u,) =1 = m’. Setting

l
1 1
f) = —— Mty M@
1o z+1%(k) (t) A1)
and applying Lemma 3 to equations (17), we obtain-

1
MY(1) < max {M'(O), ——2/( sup .M"(t))’}.
l—l >0
k<i-1
Assuming by induction that M*(t) < m*, k <1—1, we have immediately
(18).

Now we may repeat the proof of Lemma 4 step by step in the intervals
BT, 1Ty, 8Ty, 2T,), ... This gives the global (for all ¢ > 0) existence
of all moments up to the order L, and completes the proof.

5. Asymptotic behaviour of solutions of (1)~(3"). System (17) has
the stationary solution, independent on %,

" =nl.
The solution is globally asymptotic stable, namely for any initial condition
with M°(0) = M*(0) =1, M(0)>0, i =2,3,...,
(19) M (it) >n! for I > .
This fact follows immediately from Lemma 3.
Using this, we may prove the following

THEOREM 3. If the initial condition u, € B, has finite all moments,
then

v Y
(20) limf u(t, v)dr = f exp(—x)dx for each y=>0.
t—»&o 0

€ — Annales Polonicli Mathematici XLII '
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Proof. It is well known that the function exp( —«) is uniquely de-
termined by all its moments (e.g. see [6]). Its moments are equal to n!.
From (19) by classical “moments convergence theorem” (see [4]) we obtain
(20). This completes the proof.

From Theorem 3 it follows that «(f{, ) = exp(—x) is the unique

stationary solution of (1)-(3) with all finite moments such that M°(w; 0)
= M'(u; 0) =1. '

Final remarks, We have proved in Theorem 1 that the unique solution
of (1')«3’) with non-negative initial value u, is non-negative for all 7.
However, the proof was restricted to solutions satisfying the additional:
condition '

MO (uy) = M) = 1.

By the method of differential inequalities it is easy to prove that any
solution of (1')—(2’) satisfying %, > 0, %, € B, is non-negative in its domain
of existence. In fact, if % is a solution of (1')—(2'), then »(t) = u(t)exp(t)
is a solution of

(21) Dy = exp(—)H(+,v), ©(0) = u,> 0.

The right-hand side of (21) is a Lipschifzian monotonic operator in B,.
Thus since ¥ = 0 is a solution of (21) and »(0) > ¥(0), we have (see [7], [5])

() >(t) =0

whenever v exists.
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