ANNALES
POLONICI MATHEMATICI
XLIX (1988)

Functional Banach spaces of holomorphic functions
on Reinhardt domains

by Jacos Bursrka (Pittsburgh, Pennsylvania)

Abstract. In this paper, certain functional Banach spaces of holomorphic functions on
complete Reinhardt domains in " are introduced and studicd from a general point of view. The
general theory is then applied to functions holomorphic on €, on the polydisk and on the ball
of C" resulting m various sharp norm inequahtices.

Introduction. Given any complete Reinhardt domain Q in " and any
0<p<=,wedefine Q(p) = {(z,.....2,)€C™ (=,17%, ... |z,|F?) eR!. We also
let (=) be the unit polydisk in C". Thus, it follows that Q(p) s itsell a
complete Reinhardt domain for any 0 < p < x and that Q(2) = Q. With Q
we associate the positive cone 2(€) of functions ¢, holomorphic on €(1) and
with the power series expansion

Py =) ¢,

such that ¢, = c,(¢) = 0 for every x€Z" . In particular, 0 < ¢(z-2) < % for
every - €Q. Here, for z =(z,, ..., 2,), ¢ =({1s ... o) In C" =+ 1s the point
(zy<1s oo 2,8 In € For any ¢e2(Q) we let T', = x€Z": c,(¢) > 0,.
and for any 0 < p <o we introduce the space /7 which is a weighted /”-
space of sequences |a,] with weights |c, ~?), where x ranges in I',. Similarly,
the space Iy is a weighted /™-space of sequences ia,, with weights ¢, ')
xerl,.

In this paper we show that for I < p < x. the space {! may be identified
with a functional Banach space #! of holomorphic [unctions on Q(p).
where I/p+1/p"=1. When p =2, the space # % is, of course, a functional
Hilbert space of holomorphic functions on Q = Q(2). The reproducing kernel
of this space is given by k,(z. J) = @(=-{). where =-(eQ(1), and one of the
main purposes of this paper is to show that much of the p = 2 theory extends
to any 1 < p < oc by duality principies. In these principles not only the
duality between [2 and (2 plays a role but also the duality between the
domains Q(p) and Q(p) (1 < p < =) is essential, and thus the requirement
on £ to be a complete Reinhardt domain is rather crucial.

The paper gives a systematic account of the general theory of these 7/,
(l<p< 7, pe#(Q) spaces and their applications to functions. holo-
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morphic on C", on the polydisk and on the ball of C". Special instances of this
general theory may also be lound in the earlier works of Lebedev, Lebedev
and Milin, and Milin (see [9], pp. 27-32, 197), in the works of Saitoh [10],
[11], in the works of the author [2]-[5], and quite recently in the thesis of
Kwak [7]. The general approach employed here, however, renders the results
in the above mentioned works as particular corollaries of the present general
theory.

The paper i1s organized as follows. Section 1 sets the notation used in
this paper and gives some preliminaries. In Section 2 we introduce the above
mentioned functional Banach spaces .#) and establish most of their alge-
braic and topological properties. This includes the relationships that persist
amongst the spaces #7 .,, and #7 ,, in terms of the spaces ¥ and #7 ,
where ¢, ¢, €.2(Q) (see Theorems 2.7 and 2.8 and their corollaries). Section
3 is devoted to a study of decompositions and of certain continuous
operators on these spaces (see Theorem 3.4). In Section 4 we study the
relationship between the space #72, ¢ €. 2(Q), and the space .# 7, where ¢ is
the composition Fo ¢, and where F is typically an entire function on C with
non-negative Taylor coeflicients. The main results of this section are found in
Theorem 4.3 and its corollaries. Finally, in Section 5 we give some concrete
applications of the general theory to holomorphic functions on C", on the
polydisk A" and on the unit ball B of C". In the latter case we have Theorem
5.5 and its corollaries which deal with exponentiation of functions belonging
to certain Sobolev spaces of holomorphic functions on B. A related result is
Theorem 5.10 (and its corollary) which is connnected with a recent one-
dimensional estimate, due to Chang and Marshall [6], associated with the
Dirichlet integral of holomorphic functions on the unit disk of C.

1. Notation and Preliminaries. For z=(z,,...,z,)eC", a=(x,,...
.o, €Z” and p >0 we use the following notation:
|z[P = (|z,17, ..., 12D €RY, Izl = (2117 +...+z,/") P R,

— — - x 2
Z=(Z.,....50eC", *=z'..z"eC,

| =2, + ... +a,€Z, and al!l=a;!...a,leZ,.
Moreover, il also ¢ =({,, ..., {,)eC", then we let
20 =(z18y, oo zpleC”  and (&, OO =z, 0+ ... +2,{,€C.
We also write |z| for |z|', [|z]] for ||z||, and

2l = max |z
1<j<n

We now let
A='2eC: |A<l), T=éa=ieC: |i=1],

A" = zeC" ||z||, <1}
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and
B=zeC" |zj| <t), S=7B=\zeC" |z|]| =1]}.

By e, €Z", (1 < k < n) we mean the n-tuple that has 1 in the kth entry and 0
everywhere else, and we let

I=(1,..,1)=e +...+e,

For a complex manifold D, D* stands for the conjugate manifold of D and
H (D) designates the class of all holomorphic functions on D.

An open set Q in (" is said to be a Reinhardt region if ze€Q implies
z-{eQ for every {€T". One easily verifies that in this case

Q=1zeC" |z]eQ},
and if we define, for p > 0,
Q(p) = zeC™: |2]”* Q)

then Q(p) is also a Reinhardt region with Q(2) = Q. An open set Q in (" is
said to be a complete Reinhardt domain if z€Q implies z-{ €Q for every
{ed" In this case Q is a star-shaped domain and Reinhardt region contain-
ing the origin of C". Moreover, if Q is a complete Reinhardt domain in C”
so is Q(p), p > 0.

We fix a complete Reinhardt domain Q in C" and consider Q(p) for any
p > 0. We also define Q(w0) = 4". Typical examples for such Q will be C*, 4"
and B. In these cases we note that C"(p) = C" [or every p > 0, 4"(p) = A" for
every 0 < p< ¢ and

B(p) = lzeC" |izli, <1} (0 <p<=x),
with B(p,) = B(p,) for every 0 <p, < p, < o©. We also fix a sequence of

non-negative numbers ¢,, defined for every a€Z%, so that

Y 2] < oo

a

for every zeQ. It follows that the power series

Y ¢,z
a

converges normally in (1), i.c.,, absolutely and uniformly on compacta of
Q(1), to

(1.1) o)=Y c2* (z€Q(1)).

In particular, ¢ e H(Q(1)) and
(1.2) ez =9(z’) <x (z€9Q).
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We define
A, = aeZ: ¢, =0],
and thus ¢*¢@(0) =0 for every a in A,. Here for o =(a;, ..., 2,) in Z%,
F=2a"...," where §;,=¢/0z;, | <j<n
For 1 < p< o we let p'=p/(p—1), and hence 1 < p’ < ¢ with p”’ = p.

An application of Holder's inequality with 1 < p < shows that for any
o ce

(1.3) o(z-3) < 1o (M) (o (TP )P (1 <p <)

We now define |

(14) ko(z, 0) = (z-0).

This function is sesqui-holomorphic, i.e.. holomorphic in the first variable
and anti-holomorphic in the second, on the domain |(z, {)eC3?": |=-{|€Q(1)

Moreover, for any 1 < p < w0, k, eH(Q(p) x 2(p")*). This follows from (1.3)
when 1 < p < oc, while for p=1 or p = oo this follows from the fact that
Q(oc) = 4" Note also that k, is hermitian, i.e., k,(z, {) =k, ((, 2) for z, { €C”
with |z eQ(1).

By dv we denote the Lebesgue measure in C”, and if D is a domain with
C? boundary (or a product of such domains), then do, represents the
normalized surface measure on the distinguished boundary ¢, D of D. For ¢
and m with g{g+m) # 0, we let

(¢, = I'lg+m)/T"(q).

Typical examples for the above function ¢ are as follows:
Exameie 1.1. (2 = C"). For any r, g >0 we let ¢ = ¢,, be given by

|a|

(Prq = r IZ =

:1'(n+|1|), 1

Then ¢, ,€H(C"), and for any z, {e("
(1.5) kigc, O =@z =F(nyr+n—1: gz, 0)),

where F(a: b: 2) is the well-known confluent hypergeometric function

che ) = c (a)'” m
F(a: b: 2) _",Z:"Om!(h)m;b .

In particular, k, ,(z, {) = ¢, Note also that Agpy = Q.
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Exampie 1.2. (2 =4".Forq=(q,.....q.)€R\ 0} and 2 = (2, ..., 2,)
eZ" we let

(q) —(ql) qn)an
We now define ¢ = ¢, by

Z q)" 2* (qeR%\ |0}, -ed").

It follows that

n

o) =[[t=2)"Y (z=(,...,z,) €4,

j=1

with ¢,eH(4") and A = Q.
ExampLe 1.3. (Q = B) For ¢ > 0 we define ¢ = ¢, by

o)=Y Dl 50,

= !
f(lotl)
Polz) = :Z:o !

It follows that ¢, €H(B(1)) with A, = {0} and Ay, = Q@ for every ¢ > 0.
Moreover, the function

(g =0).

ko(z. ) = @ (=-0)
1s of the form
. (1—=4¢, )7 q>0,
k.(z,0) = .
(5 9) { ~log(1-4¢,{)), ¢q=0,

and is sesqui-holomorphic in the domain |(z, {)eC?*" |{z, ()] <1}. Note
also that ¢,(0) =0, ¢, = exp(qp,) for g >0 and that ¢, = lim (¢,—1)/q.
. q—0*

2. Functional Banach spaces over Q(p). If D is a complete Reinhardt

domain in C" and if f €H (D), then there exists a unique power series such
that

/@) =Za:aa2" (zeD)
with normal convergence in D, and with
a, = ,0f(0))/a! (xeZ").
For any subset A of Z7, we define
H((D: A)= {feH(D): #f(0)=0, x€A}
which 1s a subspace of H(D), and we note that H(D: @) = H(D).
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We now return to our fixed complete Reinhardt domain Q and function
¢@. Let

r,=7Z"\A,=\2€Z": ¢, >0j,

and let P be a sufficiently small polydisk about the origin. For f e H(P: A,)
and 0 < p < oo, we define

(2.1) Ifllpe = {Y. ¢z Plal?}’? (0 <p <o)
and
(22) ”.f“m.w =8sup ‘lca_l |aa|}'1

where a, = {¢*f(0)}/a! and o ranges over I',. Similarly, if f, geH(P: A,)
with a, = {&f(0)}/a! and b, = { ¢(0)}/a! such that

Y, tagb) <00 (aell,),

then we define
(2.3) i gD =3¢ agb,  (x€l,).

For 1 <p< o and p' = p/(p—1) we let
K5 = A5 [Q(p)] = |f €eH(Q(P): A): Ifllyo < 0},

and thus 7% 1s a space of holomorphic functions f on Q(p) with &f(0)
=0 for aed,. Denote by 5 =I5(I',), 0 <p < oo, the space of complex
sequences @ = \a,}, a €, with |la||,, < co, where |ld]l,, is defined by the
right-hand side of (2.1)2.2). Thus, [} is a complete topological vector space
which is a separable for 0 < p < oc. For 0 < p < 1, it is a metric space with
the translation-invariant metric ¢(a, b) = |[a—b||5 ,, and for 1 < p< 0 itis a
Banach space with the norm ||-||,,. When 1 < p < o0, we define a pairing
{a, by, between a = {a,} €l’ and b= \b,) €l5 by identifying it with the
right-hand side of (2.3). It follows that the dual (12)* of I, 1 < p < o0, is 17,
with the duality given by the pairing {, »,, and that I, 1 <p <0, is a
refllexive Banach space. In particular, [} is a separable Hilbert space with
inner-product { , >, and norm ||},

The following theorem shows that .#! may be identified with /5 for
1 <p< o

THeoreM 2.1. Let 1 < p < oo. For f e #? with a, = {*f(0)}/al, x€l,,
let Tf = \a,}. Then T is a one-to-one linear transformation of #% onto I? with
ITfNlpo = fNlpe for every fe#y.

Proof. That T is a one-to-one linear transformation of 7 into I is
clear. It is also clear that || ]|, , = || /|l,,, for f € #7%. It remains to be shown



Functional Banach spaces of holomorphic functions 185

that T is also surjective. For this purpose, we let a = |q,| €/} and z €Q(p).
By Holder’s inequality for 1 < p < ,

2la 2% <llally, 10 (z1"))" < (ael,).

a

Similarly, since Q(o0) = A", we have for p =1

Yo,z <llally < (x€l,).

It follows that the function
fley=Y a,z* (x€l,)
is in H(Q(p)) with
Af(0)=0, xed,.
Since also || f1l,, = llall,, < o, we deduce that f €. #% and that @ = Tf. This

concludes the proof.

CoroLLARY 2.2, Let 1 < p<oc. Then #?P is a Banach space of holo-
morphic functions f on Q(p’) with &f(0) =0 for x €A, and with norm || fl|,.,.
It is separable for 1 < p < o¢ and reflexive for 1 < p < oo, and is a Hilbert
space for p = 2 with inner-product { , >, and norm ||-||,,,. Moreover, the dual
(AD)* of #P, 1< p<co,is #2 with the duality given by the pairing { , »,.

The next theorem shows that the function k, defined in (1.4) plays a
central role in the space #75.
THEOREM 2.3. Let 1 < p < cc. Then:
(i) For any fixed {€Q(p'), the function k,(-, () is in AT with
(KT, 1< p <o,
”l\(p( "y C)“p’,;p = sup Ic’l, p' = 20,
ael'(p

and thus |lk,(*, Olle, < 1.
(i) For any fixed {€Q(p) and any fe #],

f(C) = <fa k(p(" C)>¢

and so
LSO < S Mo Mk o Dl
(1) For any (z, {)eQ(p) xQ(p),
@(C-2) = ky(L, 2) = <ky (75 2), ko (05 0) D,
(wv) For any z{,...,z,€Q(p) nQ(p’) and any a,, ..., ayeC,

N
Z a; ajk{p(z", ZJ) ; 0
Q=1
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Proof. To prove (i), we assume first that 1 < p < o and that  is in
Q(p). In this case it is clear that k,(-. J)eH(Q(p): A,) and that

Ik (OB o =S 721, 31" = @(8")  (x€l,).

ft follows that k,(.)e#! with norm as given in (i) When p=1 and
JeQ(x)=A4" we have k, (. J)eH(Q(1): 4,) with

ko (L N, =suples He Zl) = supl? <1 (ael,).
This norm is exactly 1 if Oefl . and (i) follows. The identity in (ii) follows
from (i) and the delimtion of #). The inequality follows from Holder's
inequality. and (i) i1s proved. To prove (ii1) we use (i) to deduce that
ko(-.2)e #0 for zeQ and then apply (1). Finally, to prove (iv) we note
that the power series for k,(z;, z;) = @(z;*Z;) 1s absolutely convergent when
o, 5 EQ(p)nQ(p). Tt follows that

N

N N
Y oaak,(zz) =Y aaezI) =Y 6|y azf

ij=1 iJj=1 Z i=1

2>0 (xel,),

and the proof i1s complete.

Theorem 2.3 shows, in particular, that #} (1 < p < o) is a funcrional
Banach space over Q(p'). ie. that for any {eQ(p’). the evaluation f— f({)
from #) into C is continuous. The norm of this evaluation is ||k, (-, Il s
and in view of (it). the function k, may be called the reproducing kernel for
in #" and ,7/,’,’,'. Moreover, property (iv) of the theorem shows that this kernel
is positive-definite on Q(p) N Q(p’). The case p = 2 1s of particular interest for
this case #; is a functional Hilbert space over Q with the reproducing

kernel k,. We refer to [2]-[5], {10], [11] and the references therein for
additional details.

We now proceed to establish some further properties of the spaces #7.

Throrem 24, Let ¢ >0 and 1 < p <q < . Then the following state-
ments dare equivalent:

(1) ¢, = ¢ for every el ,:

(i) AL #% and ||fll,, < VP f|l,., for every fe#T.

Prool. To prove the implication (i)=>(i1), we [irst assume that
feH{P: A,), where P is a sufficiently small polydisk about the origin of C".
Then

f(2) =Y a,=* (x€l,)

with normal convergence in P. We first assume that ¢ < . Then, since
0 < piq <1,

15 = 12 €a la®}? < 3 k47" a,|"
a

x
=2 A g T al" < "SR, (€T,
x
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and thus ||fll,, <Y fll,, for ¢ <oc. When g = x, we have

Il = (€2 Plad”}'? = ca’P ey agt = c''Peg 'yl

a

for every xel",. Hence ||fll,, = ¢'/?|If|l ... It follows that for f e H (P: A,)

(24) 1/ lige < Y20 fll, (0 <p<g< )

We now assume that fe.#7 with 1 <p <g <o to prove (ii). Then
1fll,, <= and f€H(R(p): 4,). It follows from Theorem 2.1 and (2.4) that
fexd with || fll,, < c7 VP[], and (i) is proved.

To prove the implication (ii) = (i), we observe that for any a el
monomial f,(z) =z 1s in #) n #1 with

the

@

Ufillpg = €277 [ fillge = e

Thus, it follows from (1) that ¢, > ¢ for any x€l",. This concludes the proof.
By #(£2) we denote the class of functions ¢ on Q as described in (1.1}~

(1.2). Thus, associated with ¢ €2(2) we have ¢, = c,(¢) =20, a€Z", A,

= el ¢lo)=0], I',=2""A,, k, and the spaces #] for 1 <p < x.
The prool of the next proposition is straightforward.

ProrosITION 2.5. Let @€.2(Q) and a>0. Then ape#(Q) with A,
=A, and #L =", for every 1<p< x. Moreover, for fe#] with

1/ Npae = a1 f 1l

THEOREM 2.6. Let @; € 2(Q) with ¢,()) = ¢, (@), a€Z’, kj=k,pj, A;
= A,f,j and T'; = F./,J_, j=1,2. Let a>0. Then the following conditions are
equitalent:

(ty The kernel K = ak;—k, is positive-definite on Q;

(1) ¢, (2) < ac, (1) for everv aeZ” .

(i) #2, = A5 with 1S, sa”"'llflll,,‘,‘,2 for any fe#?h. for every
l<p< x:

(iv) #5, < H5 with |[fllpe, < a'"fll,,, for any fe x5, for some

Proof. To prove the implication (i) =>(ii), we let ¢, = ac,(1)—c¢,(2) for
any x€Z" and note that

Kz, ) =) 62" (5 (€9,
a

with normal convergence in 2 x . Fix an arbitrary feZ’, with m = |f|. We
shall prove that ¢y > 0 from which (i) will [ollow. To this end we observe
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that the N = (n+m) monomials f,(z) = 2% a€Z", |a| < m, are linearly inde-
n
pendent on Q. Thus there are N points {,, ..., {y in  so that
det[f(C)]#0 (al<m, 1 <j<N).

It follows that there exist scalars a,, ..., ay €C such that
N

Y a ) =64 (o < m),
1

j=
where 6,, is the “delta of Kronecker” of « and f. Let 0 <& <1 and define
zi=¢(;(j=1,...,N). Then z,, ..., zy€Q and by assumption

N
0< ) aa;K(z,z) =Zc,|z aiz?lz
a j=1

ij=1

N
=Y., e | ) a,-ﬁ,(Cj)lz
a j=1

N
=cetm+ ) c¢£2|“'|z ajf,(Cj)|2.
=

la| Zm+1
Upon dividing by ¢*™ and then letting ¢ —0, we obtain that ¢, > 0 and (ii)
follows.

We now prove (ii) = (iij). To this end we observe that condition (ii)
implies in particular that A; = A,, and hence I', = TI',. Let fe.#%, with
a, = {*f(0)}/a!,a €Z" . Then f e H(Q2(p): A,)and a, = 0for a €A4,. It follows
that f e H(Q(p'): A,;). Moreover, for 1 < p < oo,

1150, = 2 [calD]' 7Plal” = 3 [eo(1)] " Plagl?

3 ael;
(P! _ -
=) [Z ESJ [e(D]' " Plal? < @ 'L fIE,,.
ael LL™a

Similarly, for p = o, ||fllxe, < allfll0e,, and thus (iii) follows.

The implication (iii) = (iv) is trivial. To prove (iv) = (i), we observe that
for any « €I, the monomial f,(z) = z® is in H,, It follows from (iv) that
Ja€A% and that ¢,(2) < ac,(1) for every a€l’,. Since for aeZ’ \I', = A,,
¢,(2) = 0 we deduce that ¢, = ac,(1)—c,(2) = 0 for every a€Z”. . It follows
that

Kz =Yl (2,(€Q)
with ¢, 2 0 for every a €Z" . Hence by Theorem 2.3 (iv) (with p =2 and k,
= K) we have that K is positive-definite on Q, and (i) follows. This concludes
the proof.
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THeoreM 2.7. Let @, € #(Q) with c,(j) =c.(¢), aeZl, A,-=A,,,j
and I"j=I’q,j,j= 1,2. Then yr = @1+ ¢, is in P(Q) with A, = A, n A, and
r,=Tyurl,. Moreover, for 1<p<oo let feH] and geH;, Then
f+ge# with

1+ 9llpy < Uy, +lglZe)™ (1< p < o0)

and

/4l oy < max((|fllw,p,> 19llc.0,) (P = 0).

Equality holds if there exists a sequence {x,) such that ¢*f(0) = a!x,c,(1)
and *g(0) = a'x,c,(2) for every a€Z”., and such that sup|x,| < oo when

a

p=oc0 and Y c,(j)Ix|® < oo (j=1, 2) when 1 < p < oo. This condition is also

necessary when 1 < p < oo but not when p = .

Proof. The first assertion is completely trivial, so we turn to the second
assertion. We let g, = &*f(0)/a! and b, = *g(0)/a!, x€Z",, and observe
that g, = 0 for x €A, and b, = 0 for a €4,. The last observation allows one
to let « range over all Z” when computing the norms of f and g as weighted
[P-norms. In fact these norms are unchanged if we employ a (temporary)

- convention of letting c,(j)=1 for aeAd; (j=1,2). We shall use this
convention freely in order to avoid lengthy discussions. Now, to prove the
above inequalities we assume first that p = co. In this case we have, for any
aeZ”

laz]  |ba| |a,] + 1b,| |a, + b,

y 19l 0.0,) = Max , = = ;
X[/l il (ca(l) «0)” ah+a® ab+a®
and the inequality for p = oc follows. Equality holds if a, = x, ¢, (1) and b,
= x%,¢,(2) for every a€Z", for some sequence {x,! with sup{x,| < oc. That

this condition is not necessary can be easily seen by letting c,(j) =1 (j =1, 2)
for every « in Z%, a, = b, =1 for every « in Z".\ !0}, a, =1 and b, = 1/2.

We now assume that 1< p <oo. By the convexity of the function
x+—>xP, x >0, we deduce that for any aeZ"

[ca (1) +¢2(2)]

atb P ad+1bd T
o)+ e S[c“‘”““(m[c,m+ca,<2>]

) () [l @@ (b \T
= lail+ad2] [ca(1>+ca<2> (ca(1)>+ca(1)+ca(2> (mm)]

a() [l V¥ @ [V
slal+a(] [cm(1)+c,(2) (c,,(l)) ta+a (ca(z)) ]

= [ ()] " P1a )P+ [c (D] 77 {b,l7.
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This gives the desired inequality for 1 < p < x. The above argument also
shows that equality holds if and only if a, b, > 0 and |a,|/c, (1) = |b,l/c,(2) for
every a€Z". This is equivalent to the existence of a sequence x,] of
complex numbers such that a, = x,¢,(1) and b, = %, ¢,(2) for every xe€Z", .

Moreover, the fact that || f|l,, < % and |lgll,.,, < % Is now equivalent (o

Y e (N al” < ¢ (j=1,2), and the proof is complete.

TueoReEM 2.8. Let ¢ and ¢ be in 2(Q). Then oy e #(Q) with Iy,
=\y€Z: y=a+p,ael,, pel,|. Moreover, for 1 < p< x let fe ] and
ge#l. Then fye #5, with

1l pow < 1T Mg gl g -

Equality holds if either fy =0 or f and g are of the form f = Cyk,(-. <), ¢
= C,ky (", <) for some nonzero constants C,, C,€C and for some {€C" such
that { €A" when p=oc and ([C|”) < o, Y(¢P) < = when | < p <. This
condition is also necessary when 1 < p < > but not when p = =.

Proof. As in the previous theorem, the first assertion in this theorem is
trivial and hence we turn to the second assertion. We denote by ¢, and d,
(x€Z") the coefficients of ¢ and , respectively. Similarly, we let a,
=, f(0))/2! and b, = [ g(0)) /2!, xeZ . It follows that a, =0 for x €A,
and b, =0 for xeA,, and, again, to avoid lengthy discussions in the
proof we assume that ¢, and d, are positive for every x€Z%. The proof
given below will clearly show that only minor and trivial modifications are
required to render it applicable to the fuller assertions of the theorem.

Under the above circumstances the coefficients M, of @y are positive for
every x€Z", and they are given by

My=Y ¢ydy y (x€Z").

f<a

Similarly, the coefficients A4, of fy are given by

A:x - Z tl/‘ ba_’} (1 EZ'.',.).

fi<ax

We consider first the case p = oc. In this case, for any 2 €Z",

ag b,
A, =]y -

’ .Cli da—ﬂ < ”f“'x;.m ”g”m,w Ma'
ﬂSzC/I (1—11

Thus
”fg”m,:pw = sup Ma‘ ! lAal < ”/”x.‘p”qﬂr.m
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and the inequality for p = »x follows. If f = C,k,(-,{) and g = C,k, (", {)
for some {eA". then '

I/l = ICsuplcl®, gl ey = 1Cof sup [JJF
2ecl, Bely
and  {[fgll 5.y =1Cy C4f sup [

reloy

Since I',, = \yeZ%: y=xa+f, xel,, fel,], the sufficient condition for
equality for p= » follows. To show that this condition is not necessary,
we let ¢, =d, =a,=1 for every x=(x,,...,2,)€Z%, b, =1 for every
x€Z"\\0] and hy =2. Then M, =(x,+1)...(x,+1) and 4, = 1 +(x,+1)...
~Aa,+ 1) for xeZ%, and thus ||f]l,, =1, llglley =2 and [|fgll,.p =2
with @ = 4" It follows that () =y (2)= f(z)=[(1—z,)...(1—2,)]" " and
g2 =y(z)+1 for z=(zy,...,2,)€d", and (| fgll .oy = I fll 2.6 ligllxy. It is
then clear that ¢ is not of the form C,k, (-, () for any Je(C".

We now assumethat 1 < p < « . Forr =(r,, ..., r,)€[0, 1] we introduce

Cry=3 ¢ lal'r', D) =3 dy "b"r*.  M(r) =Y My 7|4’ r".

By Hdalder’s inequality

A" =X apbap]” = 3 aybi-plegdiy)™ V7 (eydy )]

p<a f<a
, 1- . ’
< ( Z (|“/;| |b1-/f|)"((u d:-ﬂ) p)( Z Cpy dz-ﬂ)lw ,
B<a f<a
and so
g1~ = d -
(2.5) MITPIANT < Y eb P laylPdiZf b, 0.
#<x

This shows that
M) < Cwr)D(r), re[0,1]",

as formal power series. Letting r = [ in this inequality we obtain the desired
inequality for 1 < p < »x. Moreover, by defining

Gir)=C(r)D(r)y=M(r). re[0.17"

we find that G is nondecreasing on [0, 1]" with G(0) = 0. In particular. G ()
=0 for ref0, 1]" with G(I) >0 as the above mentioned inequality. The
equality G(I) =0, therefore, holds if and only if G(r) =0 for every r in
[0, 17" which means that equality in (2.5) holds for every x€Z" . This is
equivalent to an existence of A, €C for every x€Z" such that

(2.6) agb,_y =rlycydy_y  (f<a, 2a€Z).
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Putting =0 and f =a in (2.6) results in

(2.7) agb, = A cody,  agby =i cudy  (€ZM).

On the other hand, summing up (2.6) from g =0 through f =« gives
(2.8) A, =M, (xeZm).

If agbhy =0, then by (2.7) 4, = 0 for every a €Z", . It [ollows from (2.8)
that A, =0 for all x€Z” which means that a, =0 or b, =0 for every
aeZ" . This covers the first part of the necessary and sufficient condition for
equality when 1< p < oc. We now assume that ayb, # 0 and define

(2.9) C,=uagcyt, C,=bydy’
and
(2.10) o= ol (e @)™', 1<k
It follows from (2.7) that also
(2.11) G =dobg (e Bo) ™, 1<k<n.
Clearly C,, C, # 0. From (2.7), (2.8) and (2.9) we have
(2.12) b, =C,CiHajc)d, (aeZl)
and
(2.13)
a,ho(c,dg+cody)+cpdy 0<Zﬂ:<IaB by—p = a, by ﬂzs:acﬁ de-g  (x€Z%\\0)).

We use induction on the weight |¢| to show that with { =({,, ..., {,)eC",
(2.14) a,=C,¢,* b,=Cyd,* (xeZ").

That this 1s true for |2} =0 and || =1 i1s immediate from (2.9)H2.11).
Assuming (2.14) is true for a with 0 <o) <m—1, m> 2, we find by (2.13)
that for x| = m,

a,bo(cdo+cod,)+cydy Cy CZZI Z cﬂda—ﬂ =a,bg Z cﬂdz—[]a

0<f <a p<a
and so, by (2.9),
agbo Y ydp=Cic, by Y cpdy-y  (lal =m=2).
0<p<a 0<f <a
This shows that a, = C, ¢, {% and, by (2.12), also b, = C,d,{* and (2.14) is
proved. Finally, in this case we have ||f|l,, =|C,| {¢(¢I")}"" and ||gl|,,

= |C, W (I¢I")117. 1t follows that ¢(|{|”) < oc and ¥(|{]”) < oc. The proof is
now complete.
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~ CoroLLARY 29. Let @€ 2(Q) and meZ, with m = 2. Then ¢™ € £(Q)
with I“v,,, =\yeZi: y=o,+ ...+, a,€l, (1 <j < m)). Moreover, if fis in
HP for 1 < p< o, then f'"e.x":,,, with

1™, o < NS

Equality for 1 < p < oc holds if and only if either f =0 or f is of the form
f =Ck,(+, ) for some nonzero constant C € C and for some point ¢ in C" with
¢ (") < oc. For p= o, equality holds if either f =0 or f is of the form
[ =Ck,(-, <) for some nonzero constant C and some Ced", but the converse is,
in general, not true.

Proof. The only thing, il any, that is now required to be shown is that
the sufficient condition for equality when p = ax¢ is not necessary. To this
end, we take n=1, Q=4 and ¢(4) =(1—4)"9 L€d, where g is a fixed
number with g > 1. Let f(4) =(1—4)"!, Ae4. Then ||f2||“p2 =flZ,=1
but f is not of the form f = Ck,(", () for any {eC.

A function ¢ € .2(Q) is said to belong to .2, (Q) if ¢(|]*) = x [or every {
in 0Q. This means that Q is the domain of convergence of the power series
©(|z]?) (z€Q). Since Q is a complete Reinhardt domain, we deduce that any
pe.?,(Q), as a power series, satisfies ¢(|z|*) < oo if and only if zeQ. An
immediate consequence of this observation is the following proposition:

ProrosiTioN 2.10. Let o€ #,(Q) and 0 < p <oc. Then Q(p) = zeC™.
o(z]7) < x .

3. Decompositions and operators. Let ¢ be a fixed function in .2(Q) with
r,=12%,ie, ¢, = c,(¢) is positive for every a € Z", . For any subset I of Z",
we define ¢, by

orz) =Y 6,2 (zeQ(1).

ael
Then ¢@;e.2(Q) with I, =T, and for any 1 <p<oc, 4§, 1s a closed
subspace of .#[ with
Hh = \fenl #f(0)=0, xed],
where
A=2Z7\10).

We then have the obvious decompositions ¢ = ¢+ ¢, and k, = k,, +k,
where k, . and k, are the reproducing kernels of #; and ¥ , respect-

@
ively. In this way we may express ¢ as the direct sum

¢ =) ¢
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where ¢,(z) = ¢, 2% xe€Z" . It follows that ko (2, ) = @,(z 0) = ¢, 2% [* gives
the reproducing kernel for the one-dimensional span of ¢, in #.. In
particular, ¢, = ¢, reproduces the constant functions which, obviously. be-
long to #].

The proofs of the following simple propositions are straightforward.

ProrosiTiON 3.1. Let o€ 2(Q) with I'y, =2Z", and 1 < p < oc. Then:

(i) For any subset ' of Z", with A =2Z"\T, we have #} = #, @ X
and .#g,:(.r/{;")'— with respect 1o the pairing { , >,;

(i) 1¢y/? ="\, a€Z’, is an orthonormal sequence in #E with respect to
o >, and is a basis when 1 < p < .

ProrosiTion 3.2, Let pe 2(Q) with I', = Z", and ¢, = ¢,(¢), a €Z", . Let
peZ, ¢ >0 and 1 < p< x. For a function f eH(Q(p))), define M, [} (2)
= z'f(z). The following conditions are equivalent:

(1) My is u continuous linear transformation from %% into #'b with norm
Myl < 7

(i) ¢ /Covpy S for every aeZ’ .

ProrosiTion 3.3. Let oe2(Q), | < p < % and E < Q(p). Then the fol-
lowing conditions are equivalent:

(1) The set (k,(-,{): (€E} spans #7]:

(i) E is a set of uniqueness for #7 = AP (Q(p)), i.e. the restriction map
fvsflg is injective on #!

Let ¢ and ¥ be in .2(Q) with ¢, = c,(¢) and d, = ¢, (), x€Z",, and let
A,y be a sequence (matrix) of complex numbers with (x, f)el’, xI'y,. Let
P be a sufficiently small polydisk about the origin in C", and let f e H(P: A,).
geH(P: A,) with a, = f(0)}/BY b, = Fg(O))/x!, x, feZ". We then
define formally

(3]) ::4[}(:) = Z ( Z d/,—lAa,,a,,)Z’
ael, ﬂelw

and

(3.2) A*g1 ) = Y (X ot Agby)t
ﬂ&'w 1El¢

With this notation we shall prove the following theorem. Its proof is based on
a slight variation of a technique which is due essentially to Schur [12].

Tueorem 34. Let ¢ and ¢ be in 2(Q) with ¢, = c,(¢) and d, = ¢ (),
aeZ, and let (A, be « sequence (matrix) of complex numbers with
(x, pyel,xTI,. Let 1 <p< > bhe fixed and assume that there exist con-

stants ¢, d = 0 such that

Y Ayl <cdy  (Bely, p=1),

acly,
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when p =1, and

Z | Aupl €z < cdf (Berly)

ac "w

Y |Agyldy < dc?  (xel,)
ﬂel‘w

(1 <p <o)

when 1 <p < o, and

Z IAatiI S dca (aefw, p= %)

ﬂelw
when p = o.. Then the operator A defined in (3.1) is a continuous linear
transformation of #7% into A2 with norm ||A|| < c''PdYP. Moreover. the
operator A* defined in (3.2) is the adjoint of A and is a continuous linear
transformation of # into #5 with ||A*|| = ||Al.

Proof. Let fe#? with a, = &f(0)}/B!, peZ". Thus a, =0 for

peA,. For p=1, we have

1Al e < 2 X dy ' lAgllagl = Y dytlagl Y [Agl

ael, Bely Bely ael,l,
<c Y lagl=cllfllyy-
ﬂel',l,
Similarly, for p = x,

- - -1
NAfll ., < sup leg ! Z dy llAaﬂl |aﬂ|} <l oy sUP cq Z |4l
ael, Bely aely, Bely
and thus [JAf]],, < c'Pd'"|fl|,, for p=1,x. We now assume that
1 < p < x. By Holder’s inequality and Fubini’s theorem,

IAflIe, < Y €a {2 dy " |Agyllay))

ael, pely

S Z Cal_p( Z lAaﬂldﬂ)p/p,( Z, dﬂl—zplAa[!I laﬂ|p)
xel, ﬂel'w ﬂel'w

sdp/p' Z C1 Z dlll-zplAaBI |aﬂ|p
ael‘w /ief,l,

= dPIP Z laﬂ|pd1}_2p Z lAaﬂlca

Bely ael,
<cd”” Y dyPlagl” = cd”P || f 15,

pely
It follows that ||Af|l,, < c"?d""||fll,, for every fe#), | <p< x, and
hence, by Theorem 2.1, 4 is a continuous linear operator from .#/ into
#P with norm |[|4|| < c'/Pd?. It also follows that A* is indeed the
adjoint of A4 and is a continuous linear operator from #I into #}
with norm ||4*|| = ||4|| < ¢'?d"?. This concludes the proof.

6 - Ann. Polon. Math, 49.2
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4. Composition functions. For a function ¢ €.2(Q) we let ¢,(j) = ¢,(¢’),
jeZ., xeZ”. Thus ¢, (0) =68,0 and c,(1) = ¢,. Moreover, o= r,=10
and

r,;= ez y =4 . oy, yel, (1 <k <))

For a subset J of Z,, whose elements m, are ordered as 0 < m; <m, <.

we let card(J) stand for the number of its elements.
We now [ix a function F of one complex variable 4, given by

.oy

F(A) =Y a;iJ (Aedy),
Jjed

where a; > 0 for every jeJ c Z, and 4z = {A€C: [i| <R}, R>0, is the
disk of convergence of the above power series. We also assume that the
elements m, of J are ordered as 0 < m; <m, <..., and note that J may
be finite, in which case F is a polynomial and R = ooc. Under these circum-
stances, the next proposition is an immediate consequence of Theorem 2.7
and Corollary 29.

ProprosiTiON 4.1. Let @€ 2(Q) with ¢(|z]*>) <R for every z€Q. Then
Fope2(Q) with

rpo,p:Ur(pj.

Jjed
We also prove:

TueoREM 4.2. Let @ e#(Q) with ¢(z|?) <R, and let feHT with
sup || flle, < oo. Then Fofe# g, with
jed
”Fo./”:o,i‘mp S supllfll-{(),(p‘
jeJ

Equality holds if either m, > 0 and f = 0 or one of the following five cases is
valid:

(i) When J = 0] and f # 0 is arbitrary;,
(ii) When J = |1} and fe#) is arbitrary;
(iii) When J = {0, 1} and f is of the form f(z) =) %,¢, 2% z€Q(1), where

X,, € €2, are complex numbers with xq =1 and sup|x,| < oo;
ael,
@

(iv) When J = \m}, m > 2, and f is of the form f = Ck, (-, {), where { € A
and C is a nonzero constant;
(v) When card(J) = 2 and J contains an integer m > 2, and [ is of the

form f = Ck, (-, ), where { €4" and C is a nonzero constant such that sup|C)’
JjeJ

< oo, and there exists a sequence \x,, «€Z", of complex numbers with

%o =1if0eJ and », = CI{* for every « el j, where jeJ\ \0). In particular, if
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{=0then 0erl, and f = Cc,, where C is a root of unity whose order divides
(j—k) for every j, kelJ.

Proof. Since supllfll’;o,«, < oo, we deduce that if J is infinite then

jeJ
lfllwe < 1. If J is finite then it is clear that Fo f e H(Q(1): Af,,), where
Apep = 2" \T'po, = ﬂ A . This is also true when J is infinite. Indeed, if

{eQ(1) then w(ICI) <R and, by Theorem 23, |f(O)I <IISfllx.e (<D
<R|Ifllo, < R which shows that Feo feH(Q(1): Ag,,) when J is infinite.
We now use Theorem 2.7, Proposition 2.5 and Corollary 2.9 to obtain

”F f”ao Fop = ”Z aj; f}” . ‘<\ SUP”ajfj”
ieJ J%Jﬂjfﬂ" jed

x,a _,w-'

= 50D &1, s = SUPILF,, oy < SUP

jed jeJ

and the inequality statement follows. As for the quality statement, we assume
that f # 0 and consider the above-mentioned five cases. Cases (i) and (i1) are
trivial, case (iii) follows from Theorem 2.7 and case (iv) is a reformulation of

the equality statement for p = oo in Corollary 2.9. We now verify case (v).
We first observe that .

GFog)=Y ac,(j)  (@eZ),
jed
and that the coeflicients b,(f) of f = Ck,(-, {) are given by
b (f) =Y ajc(NC T (aeZ).
JjeJ

It follows that

b,(f)
”FOfHOU,FDcp = SUP { (f }: SuP |Kal = Sup Sup lxal

aepo, (Ca(F o @) acTFoy jeJ ael

= sup|C}’ sup |{%| = sup (sup [C) = sup||fll.,
jed ae rwj JjedJ aer‘,, jed

Since also {e€A", we find that sup||f|,, <sup|Cl’ < oc, and the theorem
ied JjeJ
follows.

TueoREM 4.3. Let ¢ € 2(Q) with ¢(|z|*) <R, and let fe#2 with 1 <p
< oo and F(|fI2,) < 0. Then Fof € #f,, with

IF o fll.pee < F LS50
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Equality holds if and only if either m; >0 and f =0 or one of the following
five cases is valid:
(1) When J = 10} and [ # O is arbitrary:
(i) When J = {1} and fe #] is arbitrary;
(i) When J = |0, 1} and ['is of the form [ (z) =) x,¢,2% z€Q(p), where

x
X,, A €Z",, are complex numbers with x, =1 and Zc I, < o0,

(iv) When J = (mj, m>=2, and f is of the form = Ck o, {) for some
nonzero constant C and some point { € C" with @(|{|7) < =«

(v) When card(J) = 2 and J contains an integer m = 2, and f is of the
form [ =Ck,(-,() where {€C" and C is a nonzero constant such that
F(ICI” @ (|7 )< x, and there exists a sequence %), a€Z", of complex
numbers with %o =1 if 0eJ and », = CI* for every ael“wj, where jeJ\ |0].

In particular, if { =0 then O0el’, and f = Ccy, where C is a root of unity
whose order divides (j—k) for every j, keJ.

Proof. For -€Q(p) we have, by Theorem 23, [f(z) <I|fll,,R""
with equality only when fis a constant and R < » (when 1 <p <oc). It
follows, since F(|[fll5,) < x, that FeofeH(Q(p)) and hence also
FofeH(Q(p): Ap.,). We now, as before, use Theorem 2.7, Proposition 2.5
and Corollary 29 to obtain

IF o fll5roe = |2 a; /] < Y llag e, 5= arlife

poajol

_ poajol
jed p- "‘J _]‘4’ JjeJ jeJ
Je

=Y. a4l < X allfE, = FUfIIL,),
Jjed jeJ

and the inequality statement follows. To prove the equality statement we
assume that f # 0 and consider the above mentioned five cases. Once again,
cases (i) and (ii) are trivial, case (iii) follows from Theorem 2.7, and case (iv) is
a reformulation of the equality statement for 1 < p < ¢ in Corollary 2.9. We
now establish case (v). From Theorem 2.7 and Corollary 2.9 we deduce that
the above inequality becomes an equality if and only if (1) there exists a
sequence x,, of complex numbers so that, for any jeJ, &f(0) = a'x,c,(j)
for every a €Z", and such that

Y a; () ca() Ial?) < 20
jeJ a

and (2) f 1s of the form f = Ck,(-. ), where C is a nonzero constant and
{eC" with F(|CI”¢(|¢|?)) < co. These two conditions are completely equiv-
alent to the main assertion in case (v). This concludes the proof.

As a specialization of the last two theorems we obtain the following
corollary:
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CoroLLARY 44. Let o A(Q) with T, = \a€Z%: jal 2m),m=0,1, ...,
and let F be an entire function on C with F9(0) >0 for j=0,1, ... Then
Fope#(Q) with T'g,, = 0] UT,. Moreover, for f e # with |[f||,., <1 we
have Fo f € #F5., with

IF o fllxpop < 1.

Equality holds if [ is of the form f =k,(-, () for some {€A". Similarly, for
fe#t with | <p<x we have Fo fe #f,, with

IF e f117.poe < FUISI.0)-

Equality holds if and only if f is of the form [ =k,(-, ¢) for some { €C" with
@[S < ». In particular, if also @ €.7,(Q) then {€Q(p).

Proof. The first part of the corollary follows from Proposition 4.1. The
inequality in the second part follows from the inequality statement of
Theorem 4.2. Here the convention of 0° = 1 has been employed. The equality
statement follows from case (v) of the same theorem. In this case if f # 0
then C =1, and hence f is of the form f =k,(-, {) where {ed". We now
observe that the possibility of f = 0 can only occur when m > 1, in which case
fis also of the above form with { = 0.

We now prove the assertions for | < p < oc. Again, the inequality
statement follows from Theorem 4.3 while the equality statement is equiv-
alent to its counterpart, with case (v). in the same theorem. Finally, if also
@€ #,(Q) then by Proposition 2.10, ¢(|¢|") < x is equivalent to (€Q(p).
This concludes the proof.

A special case of this corollary, namely when n =1, m=1 and 1 <p
< x was proved first by Milin (see [9], pp. 27-32) by using different
methods. This result has been extended in Kwak’s dissertation [7] to include
the case n > 1, with a proof which is essentially similar to that of Milin.
When p = 2 these results admit an extension to abstract functional Hilbert
spaces of functions which are not necessarily holomorphic (see Burbea [2],
[4], [5]). The simplest example for the function F in Corollary 4.4 is, of
course, when F is the exponential function F(i) =exp4, 4eC. We record
this special instance in the following corollary:

CoroLLARY 4.5. Let e 2(Q) with T, = x€Z’: [x|2m}, m=0, 1, ...
Then exp @€ 2(Q), I, = 0] UT,. Moreover, for fe #7 with ||f]l4, < 1
we have exp fe # %, with

exP £l 1 cupor < 1.

Equality holds if f is of the form [ =k,(-, ) for some {€A". Similarly, for

Jerl with 1 <p <o we have exp f e # [, with

llexp f115.cpe < €XPIflho-
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Equality holds if and only if f is of the form f =k, (-, {) for some [ €C" with
@ ([C]?) < oc. In particular, if also @€ 2, (Q) then { eQ(p).

5. Applications. We shall discuss briefly some applications that arise
from Examples 1.1, 1.2 and 1.3 by using the general theory. We also refer to
[21-[5] for additional details when p = 2.

We begin with ¢ = ¢,, (r, ¢ > 0) of Example 1.1. The corresponding
space .#§ and the norm |-||,, are denoted by .#[, and |||, ., respectively.
Similarly, we let (, ), stand for the pairing ¢, >,. For 1 <p<oc, #7,is
a Banach space of holomorphic functions f, on C" if 1 < p < o¢ and on 4" if
p =1, such that || f],,, < oc. When p =2, #7, is a Hilbert space with the
quadratic norm

I M3rg =7 fIF@P NI Ve =0 o) (fe#?,).

cr

One shows easily that for fe#[, and ge #?, with | <p <, we have

s @dng=n""lim [ f(2)g (@) Il e o= dv (),
R—=x J'I’i
where 4% = 1zeC™ ||z, <R}, R > 0. We also recall that r, =2, and
that the reproducing kernel k,, of ,7/,2_,, is as in (1.5), and thus k, ,(z, {)
= e1"9 (2, { €C"). In particular, ¢, €%, (C"). This, together with Theorem
2.8 and Proposition 2.10, gives the following sharp norm inequality:
THeOREM 5.1. Let 1 < p<x and let fjef}?"{"qj, where q; >0 for

j=1,...,m m>2 Then ] fje#%, « 4, with
j=1

m m
”l_[j;'”p:l,ql+...+qm < n ”fj”p:l,qj-
Jj=1 ji=1

Equality, when 1 < p < oo, holds if and only if either [] f; = 0 or each f; is of
i=1
the form f; = Cjkl.qj(-, () for some (€C" and some nonzero constants C;

(1 <j < m). When p= x, equality holds if either [] f; =0 or each f; is of the
_ j=1
form f;=C jkl_qj( ¢) for some (€A" and some nonzero constants C;

(r<j<m.
We now turn to ¢ = ¢, 9 =(q, ..., 4, €R% \ 10}, of Example 1.2. The

corresponding space and norm, for | < p < x, will be denoted by H? and
-1l respectively. In this case, the reproducing kernel k, is given by

ky(z ) =0,(z, 0 =TT (0=50)""  (z-Team,
j=1
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and Q(p) = A"(p) = A" for every 0 <p< ac. Thus, for I<p<x, Hl is a
Banach space of holomorphic functions f on 4" with ||f||M %. The
quadratic norm ||+ ||, , of the Hilbert space .# admits an integral representa-
tion provided g > 1=(1, ..., 1). In this case, for fe #2 we have

n

11, =="([T ta=0) 17 @R ([T 0 — 2" Ydvz)  (q> 1)

A =

and

I, =207 " [If@2I*da(z) (g=1D),

™

where in the last integral, f stands for the nontangential distinguished
boundary-values of the holomorphic function f in 4" Here, of course,
do(z) = |dz,|...|dz,| 1s the surface measure on the distinguished boundary
T" = §, 4™ 1t follows that #7 is the customary Hardy space H*(4"), # for
q > 1 is the weighted Bergman space A,f(z]") and #3%, 2=(2,...,2),is the
ordinary Bergman space A*(A". The natural pairing ¢ . ), is denoted by
{, >y 9q€R%\ 10}, and we note that for ¢ > 1 this pairing admits an
alternative representation which is induced by the integral representation
of the quadratic norm |-||,,. We also note that ¢,e#,(4") for any
4R\ 0.

As before, Theorem 2.8 and Proposition 2.10 imply the following sharp
norm inequality:

THEOREM 5.2. Let 1 < p< oo and let Le#”, where q;€R%\ 0] for
j=1,...,m, m>2 Then [] fje#?

j=1

et with

m m
"Ufj’lp.qﬁ.--*fqm < [_] ”fj”p.q,-'

Equality, when 1 < p < oo, holds if and only if either n f; =0 or each f; is of
i=1
the form f; = C; kqj( ) for some (ed" and some nonzero constants C;

(1 <j < m). When p = o0, equality holds if either [] f; =0 or each f; is of the
i=1
form f; = C; kq , {) for some { € A" and some nonzero constants C;(l<j<sm).
In order to apply Corollary 4.4 to the present setting of Example 1.2, we
introduce another function ¥, in :#, (4"). This function is defined as follows:
For ¢ =(q,...,q,)eR"\ 0} and z =(z,, ..., z,) €4", we let

Y, (2) = — z jlog(1—z)) Z Z 27
i=1 m= j=1
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n
and thus F,,,q = U im e,,,,, =1. For 1 <p<oc, welet &f and [f|-]||,, be the
i=1

associated Banach space .)m,q and norm “'Hp,w.,’ respectively. Let 4(4"% be
the subclass of H(4") consisting of all functions f of the form

(=23 fitz)); fieHWA),j=1,...,n z=(z,,...,2,)€d".
=1

It follows that P = {feA(4"): f;(0)=0, t <j<n, |ilfll,, <) and that
3 is a Hilbert space whose quadratic norm can be realized as

M, =n="" Z q; lf, (AN dA(2),

where dA = dv, 1s the Lebesgue measure on C. This quadratic norm induces
an alternative expression for the pairing { , >wq in a manner similar to that

discussed previously. The reproducing kernel is now
Koz, ) =y,z:0) (z-Lean,
and Corollary 4.4 gives:

THeoreM 5.3. Let fe¥P with qeRY\ |0} and 1 <p<oc. For 1<
< %, we have exp fe€# ! and

llexp f1I5,4 < explllf1117.,

Equality holds if and only if f is of the form f= K (-, {) for some {eA". If
also || flll ., <1, then for p = we have exp f € #F and

lexp fllx. <1
Equality holds if f is of the form f= K, (-, {) for some {e4".

Finally, we now turn to ¢ = ¢,, ¢ =0, of Example 1.3. The corre-
sponding space and norm, for 1 < p < ¢, will be denoted by %} and |||, ,.
respectively. Similarly, we let {, ), stand for the pairing { , ), and let k, be
the reproducing kernel k,. It follows that .#%7 = {feH(B(p)): IIfll,, < %},
g>0, and #§={feH(B@P): f(O=0, [Ifil,0 <x|. When g>n, the
quadratic norm ||*||,, admits an integral representation. To show this, we
introduce a family dv,, s > 0, of probability measures on B by letting dv,
= dog when s =0 and

dvs(z) = ﬂ—"(S)m(l _”2”2)5~ ! dU(Z)
when s> 0. It can be easily verified by a calculation based on polar

coordinates that as a measure on B, dv, = dv, as s 0. In particular, if f is
a continuous function on B, then

| fdv, = |fd0£,— lim | fdu,.

s—0t B
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On the other hand,
[fdv,={fdvg (s>0
B

if f i1s integrable with respect to dv,. With this notation we have
(5.1 1S3, =1/ Pdo,_w  (fEH], g=n),

where for ¢ = n, the integration is carried over the nontangential boundary
values of f € #2. Moreover, for g > n the quadratic norm |-||,, induces an
alternative expression for the pairing (, ), in the usual way. We also
observe that # is the Hardy space H*(B), that #7,,, q > 0, is the weighted
Bergman space A} and that #7,, is the ordinary Bergman space (see [1],
[4]). It is also clear that ¢,€ 2, (B) for every g > 0.

By Theorem 2.8 and Proposition 2.10 we obtain:

THEOREM S54. Let 1 <p< o and let fje.#;;’j, where q; >0 for j

=1,....,m m=2. Then I_[fje.%"',’,’1+___+qm and
ji=1

m m
T Ao < L1500y
j= i=

Equality, when 1 < p < oc, holds if and only if either [] f; = 0 or each f; is of
=1
the form f; = Cjkqj(-, {) for some [ €B(p) and some nonzero constants C;

(1 €j < m). When p = oo, equality holds if either || f; = 0 or each f; is of the
_ i=
form f; = C; kqj( , {) for some { € A" and some nonzero constants C; (1 <j < m).

Similarly, by Corollary 4.4 we have:

THEOREM 5.5. Let fe #f withl < p< oc,and let ¢ > 0. For 1 <p < x,
we have exp f € #? and

llexp f1I5.4 < expig' "l S50}
Equality holds if and only if [ is of the form f = gk, (-, {) for some { €B(p). If
also || fil, o < q, then for p = oc we have exp f€# [ and
llexp fll.,q < 1.

Equality holds if f is of the form [ = qko(-, {) for some {e€B(p).

There are other consequences that arise from the general theory. For
brevity we shall only discuss those that arise from the last theorem. For ¢
20 and 0 <p <, we let A% stand for the space of all /€ H(B) such that

ISl = 1§ 1117 do, 7 < .
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It follows that for 1 <p <o, Af is a functional Banach space of holo-
morphic functions on B with norm |||-{l[,,, while for 0 <p <0, A] is a
functional Fréchet space of holomorphic functions on B with the metric
o(f, 9 = lllf—4lll5, (f, g €Al). Moreover, A] is precisely #7,, with [|I-[ll2,
=||"ll;..+4 and thus we may extend the definition of A} to include every ¢
with g > —n. Evidently, 45 is the Hardy space H?, A} for ¢ >0 is a
weighted Bergman space and A} is the ordinary Bergman space.
We now introduce some weighted Sobolev spaces of holomorphic
functions on B. For this purpose we consider the radial derivative operator
A=) z;0; (z=(z,,...,2)€C)
i=1
and we set
with D = D,. Thus, for any f e H(B) with
f(Z) = Zaa z*

we have

Dif1(z) =2 (el +1ya, 22 (1eC)

for any seZ, . This shows that D] f may be defined for every s €R, provided
—1¢Z,. When = —m, m=0,1, ..., Djf is well-defined provided & f(0)
=0 for all x€Z", with |«| = m. We fix a number [/ > 0 and define, for g > 0,
0 <p <o and seR, the space Af; as the space of all fe€H(B) such that
MM pgs = D7 fll,.q < oc. This definition is independent of / > 0 in the sense
that the spaces resulting from different choices of | are equivalent to one
another, and hence it is sufficient to take I = 1. Moreover, if f € Af; satisfies
f(0) =0, then the norm |||Dj f|l|, , is equivalent to |||#°f|||,, for any [ > 0. We
should also observe that as far as the functional analytic properties of the
Sobolev space A ; are concerned, they are identical with those described before
for the space A2 = AP,. In particular, A2, may be defined for all g > —n.
Moreover, when also se€Z. then the norm [|Djf|ll,, (=0, seZ,, ¢ >0,
0 < p < o) is equivalent to the norm
! e
{||Z< Hllla’flll,’l,q} (feAld.
For this and related properties we refer to [1].
The proof of the next lemma appears in [1].

LemMMmA 5.6. Let gq>0 and seR such that s <(n+gq)/2. Then
Al  c AJnr@tnta= 29 gnd the inclusion is continuous.
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LemMAa 5.7. Let q and s be real numbers with n+q > max{(2s, 0). Then
A}, = A]_,,, and the norms are equivalent. In particular, the space #3 = A%,

is equivalent to |f €A] ,41,2: f(0) =0}. Moreover, for any f € #}% we have
IfliZ0 < (DA 113 < (i DHIS130.

Proof. The first part of the lemma follows from Theorem 2.6 and
Stirling’s formula. The last inequalities are easily verified by a straightfor-
ward calculation, and the proof is complete.

We turn now to the above mentioned consequences of Theorem 5.5.

CoROLLARY 5.8. Let f€#3. Then, for any q = 0 and 0 < p < o, we have
exp f € AL, and
2

j lexp /17 dv, < exp{ 0 _'_q)“f“zo}

Equality holds if and only if f is of the form f = 2(n+q)p~ ' ko(-, {) for some
{ € B. Moreover, for n = 1 the above sharp inequality is equivalent to the sharp
inequality

2
ﬁew'pd""\ Xp{4(1+ 9 f'flzd }

and, in general.

2
p?> n+1 [
e pd < plnt 1)/2 Zd, .
[! xp f1Pdv, CXP{—A‘ P A 1 vl}
Proof. The first part of the corollary follows from Theorem 5.5 (with p
= 2 there) by considering (p/2) f instead of f and observing that A7 = #2, .

The second part follows from Lemma 5.7, and the proof is complete.

CoroLLARY 5.9. The mapping f[rexpf is continuous from the space
A3 (n+1y2 into the spaces Al and AJ"T91"9723) for any q > 0 and any seR
such that s <(n+q)/2. In parncular thts mapping is continuous from the space
A} (n+1y2 into the space A%,y for any t > 0.

Proof. This follows from Theorem 5.5 and Lemmas 5.6 and 5.7.

We should remark that A? ,.,,, in the last corollary can be replaced
by any equivalent space A+, (r =0). We also remark that, as in the
previous corollary, the last corollary also shows that the mapping f +—exp f
is continuous from A7 .4y, into AL for any ¢ >0 and any 0 <p < .

Finally, we shall prove the following result:

THeorREM 5.10. Ler F be an entire function in C such that F™(0) > 0
for m=0,1,..., and such that lim F™*Y(Q)/F"™ ) = L with Le[0, x),

m—ax

and let ¢ >0. Let 0 <M < . /(n+q)/eL. Then there exists a constant C

=C(M, n, q), 0 <C < o, such that
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[F(f1)dv, < C
for every fe#% with || fll;.0 < M.

Proof. Let g, =F™(0)/m! (m=0,1,..). By assumption 4, >0,
lim (n+1)a,,,,/a, = L and

m-—a

F()= i a,t™  (te().
m=0

It follows from (5.1) and Theorem 5.4 that

T

[F(fP)dv, = 3 an[If1"ds, = ag+ ¥ anllf"3neq

m= 0 m=1

X X
= a0+ z am“fm“%,m-(n+q|/m < a0+ Z am”f”%."(1n+q)/m-

m=1 m=1

Since fe.#3, fis of the form
f(a)= Y b,2* (z€B)

a>0
with
2 _ —h,? < .
i1f112,0 ,gnl'ﬂ |)I I
Moreover,
113, |b,l?
e 1§0 (Q ||

for any Q > 0. It follows, since for xeZ” \ |0)
l‘ 1
= le'l(l—x)""“dx <

0 0

I (o) _ @ ()
@ [(Q+a)

x@ ldx =Q7 1,

that
IMe<Q Iflzo (@>0).

We deduce [rom the last inequality that

m €X ’n m
3 ) <ag+ Y a,,,( M2>
patt n+q

m

F(]fl”)dv a0+ Z (f

for every f e #§ with || f]l,.0 < M. Since, by assumption,

Am+ 1 (1 1)'"' M?  eLM? -

im (m+1) m n+q— n+gq

m-=x am

m
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we conclude from the ratio-test that the last series converges to, say, C
= C(M. n, q), and the proof is complete.

CoRroLLARY 5.11. Let g =0 and 0 <M <  (n+q)/e. Then there exists a
constant C =C(M, n, q), 0 < C < oc, such that

. 2
fedv, < €

for every fe #% with ||fl|l,.0 < M.

Proof. This follows from the theorem by letting F(r) =¢' and ob-
serving that lim F™*Y(0)/F™ (0) = 1.

m-=x

When n =1 and g = 0 this corollary admits a stronger version in that
the restriction 0 < M < e /2 may be replaced by 0 < M < 1. The proof of
this one dimensional stronger version is rather involved and is due to Chang
and Marshall [6] who use methods of potential theory associated with
Dirichlet integrals. In any case, the mere fact that f €.# } does not guarantee
that ¢/ will have hounded mean oscillution (BMO) on ¢B, and this is in
spite of Corollary 5.8 which asserts, in particular, that e/ €A = H” for
every 0 <p<x. To see this we let f=h-u, where u,(z)=:z, lor
z=(z4.....2,)€C" and

1 1)
h (4) = {: log*—} (€4, t >0).
A

1—2
Then for a,(t) = K™ (0)/m!, we have a,(r) =1 and
c ' <m+1)dogim+ 1) a0 < (m=1,2,..)

for some positive constant ¢ = c¢(t) (see [8], p. 93). It follows that h, is in
#%(A4) if and only if t < 1/2. Moreover,

"7y = ey (B s (11_ 5 =Dk @)
and thus, for 0 <t < 1/2, (1—]4) feh’m!’ i1s not bounded on 4. This means
that for 0 <t < 1/2, the function f = h,cu, is in .#§ while ¢/ is not in the
Bloch space, ie., (1—]z||?) \De’!(z) is not bounded on B. Since, as is well-
known, holomorphic functions on B with bounded mean oscillation on ¢B
are contained in the Bloch space, we deduce that ¢/ (for 0 <t < 1/2) has no
bounded mean oscillation on ¢B.
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