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Abstract. If R iz a fixed frame in an n-dimensional homogeneous space (Vy, @)
and if £ Ry is a frame field along an m-dimensional surface §: ¥V, — ¥y, then
there exists exactly one element a, €@ of the Lie group such that B, = a,R,. The
mapping a: V- @, a: & — ay, is called the representation of S in &, This paper con-
tains a method of specialization of a frame on § (locally) by the means of a (local)
representation of § in @&.

A method of specialization of a frame in a homogeneous space was
created by G. Darboux and extremely developed by E. Cartan about
half century ago. Up to the present this method has been the subject
of different investigations. In particular, in the recent years many papers
devoted to this method have been published. It seems that the present
interest in this method is caused by its formal character, namely E. Cartan’s
method congists in creating a formal sequence of operations on linear
forms. Using formally this method, we have sometimes difficulties in
order to give a geometrical interpretation for that sequence of operations
and the obtained result. In spite of these inconveniences, it is necessary
to say that Cartan’s method is one of the greatest and most fruitful disco-
veries in the geometry. Recently some authors have published papers
on a geometrical interpretation of special aspects of this method.

In this paper we present another method of specialization of a frame.
Using a representation of a surface (i.e., an immersion of a manifold V,,
in a homogeneous space V,) in the Lie group we construct a sequence
of operations which leads to a fixed frame field and which has a geome-
trical interpretation. Thus the sequence of consecutive operations may be
more cagily controled by its geometrical meaning. It seems that the method
proposed is easier for practical purposes than Cartan’s method, because
all considerations are presented in terms of a matural coordinate system
on a manifold and the isotropy subgroup is used in an explicit form.

We assume that all functions considered are of class C™.

1. The representation of a homogeneous space in the Lie group. Let
{V,, @ be a homogeneous space, where V, is an n-dimensional manifold
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and @ is an r-dimensional Lie group of transformations of V,, i.e., there
exists & mapping f: @xV,—~ V,, flg, ) = go, satisfying: '
a) the mapping z - go is a diffeomorphism of V,:

b) (9292)% = 91(9:29); 1,92 € G5
¢) f: (g, 5)—>ga is differentiable;

d) for cach @, 2, € V,, there exists g € @ such that gz, = x,;

e) @ acts effectively on V,, i.e., if g;# = g, for all , then ¢, = g,.

If p,eV,, then the set H, = {¢; 9P = Po, g €G} is a closed sub-
group of @, called the isotropy group at p,. The coset space G/H, is a dif-
ferentiable manifold diffeomorphic with V, and the diffeomorphism
p: G/Hy— V, is given by the formula ¢: g/H,— gbe, /H, € G[H,. The
projection =: @ — G [H,, n(g) = g/H,, is a differentiable mapping.

Let q, and h, be the Lie algebras of G and H,, respectively, at the
unity e e @. It m, a subspace of the vector space ¢, satisfying

q. = hy+m, (direct sum of vector spaces)

and 9, = eXPy, ¢ My G, P, (4) = exp4, is the exponential mapping,
then there exists a neighbourhood M, of 0 in m, such that y,, is a diffeo-
morphism of M, onto y,, (M, = expM, =Gy < G and the projection =
is a diffeomorphism of G on to 'a neighbourhood =(G'y) = G/H, of the
point ¢/H, = =(e) (sec [4]). Thus the mapping ¢ = ¢ n: G5 — V,, given
by the formula

ol g>gpy =2, gely, o(Gy)=W(p,),

is a diffeomorphism of @;; onto a neighbourhood W(p,) of p, in V,. Thus
for each x € W (p,) there exists exactly one g(w) € Gy such that

g(2)py-= @;

the mapping g: W(p,) - @ given by the above formula is called a (local)
representation of V, in @,

IL By = (poy D1y - -+, D) 18 & fixed frame (in the sense of B. Cartan, [3])
of @, p, € W(p,), and x> g(#) is a representation of W(p,) in @, then,

& > g(@) Bol= (9(a) D0, ., 9(@)ps) = (&, 12(3), ..., &,(®)) = R,

is a frame field on W (p,).

The representation of W(p,) defined in thig way is a special case of
& more general construction. Namely, let # -~ R, = (m, g (®), ..., 4, (m))
be a given frame field on W(p,), where W (p,) is a neighbourhood of p, € V,,.

If By = (po, Py, --., Ps) Is & fixed frame in W (p,), then there exists exactly
one a(x) e @ satisfying |
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the function a: W(p,) - @ is called also a representation of V, in G; if
Iy = R (Po’ 41(Po)y «-vy Qs(ipo)) then a(p,) =e.

If o} W(py) =& and o: W(p,) ~ @ are two representations with re-
spect to R,, then there exists & (z) e H, satistying

(1) a(z) = c(z)h(x), N(x)eH,.

For two different initial frames R,, B; = b, R,, the representations a(.cv) R,
=R, =o' () Ry = a'(2)by R, satisty

(1) a(z) = a’(z)by,

b1’113 thelismfsropy groups H, and H, at points p, and p; respectively,
Ry = (Pos D1y + -y D), satisfy

.(12) Ho = bu_l-Htlrbo-

Now, we consider the neighbourhood N, = @/H, consisting of the
points @ () = a(@)/H, = n(a(x)) and the sets a(z)H, = {a(®)h; h € Hy},
a(x)/H,eG|H,, a(z)H, = & Here a: W(p,) - G is a representation of 7,
in @; then the surface a(W(p,)) = {a(2); » € W(p,)} is diffeomorphic
with W(p,) and also with N,. Each set gH,, with =(g) € N,, contains
exactly one point a(z), n(a(m)) = n(g) = d(z). Thus the surfa.ce a: W(p,)—
—~ @ determines a cross section o in 7 (N,), o Ny—a " (Ny), ofd(2))
= a(x) eaz'l(d(w)). The set a(p,)H, contains the unity a e@; hence
‘3’.(.17“) =¢/H, e N,.

" Conversely, each cross section ¢: N,— a~'(Ny), o(¢9) =g ex"'(§)
= gH,,n o = identity, where N, is a neighbourhood of ¢/H, = z(e),
determines a frame field @ = gp, = gBy = (gPoy §P1y -+ §Ps) = (2, @1 (),

++y 4s()) on a neighbourhood W(p,) = V,, of p,. Hence we get a surface
a: W(p) > &, (#,q.(2),...,¢(x) =a(@)R,, which is also a represen-
tation of W(p,) in G.

We consider the direct sum q, = hy,+m,, where ¢, is the Lie algebra
of the group G and h, is a subalgebra of ¢,. For each vector ¥, eq, we
have Y, = Pl Yo+ 01y, Yoy DIyny Yo € My, DIy Y, € Ry DIy Y, is called
the projection of the vecior X, onto m, and pr, ¥ is the projection onto h,.
Analogously, if o is a linear form on a vector space T with values in q,,
then pry, w: T — Ry is the form given by the formula (pr,, w)(v)= pr,,o( o (v))
and pr,, w: T —+m, is given by (pry, w)(v) = DT, (@ (0)).

Let a: # — a (%) = a, be a representation of W(p,) = ¥V, in G and
da, the differential of a at z e W(p,). If #, is a vector tangent to V, at
z € W(p,), then the value da,(t,) = d;, a, of da, on t, is a vector tangent
to a at a(z).
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We introduce the following notation:
Hy'alda,H, = {h~ az'dah; b € Hy},
Hi'a; d, o, Hy = (W a; d ash; he Hy},

2)

where H, is the isotropy group at p, € W(p,).
Now, we take another representation ¢: W(p,) -G, ¢, = a.k,,
k. € H,, with respect to the same initial frame E,. Then

de, = dayk,+ a,.dk,
and
¢ de, = h;laz tdayky k7 dky,
H;légldcmﬂo = {7k ezt da i h R e Ak by hoe Hy),

Dlon, (B 057 A6, Hy) = {pTy (W7 E5" a7 daykyh), b€ Hy}

| = D, (Hb a5 da, Hy),
since k h = b’ € Hy. Thus we get

THEOREM 1. The projection of the set Hy'az'da,H, onlo myg, where
q, = hy+my, does not depend on the representation a: W(p,) - @&, i.e.,

if ¢: W(p,) > @ is another representation with respect to the same initial
Jrame By = (pg, ..., D,), then

(3) ].)rono (-H(TI c:;l dczHO) = prano(Ho—l a’;1 da::HO) .

Now, let a': W(p,) > @& be a representation of W(p,) with respect
to an initial frame B, = (pg,...,2,) and a: W(p,) > G a representation
with respeet to R, = (pg,...,2); By = bRy, a(2)By = &' (0)Ry = R,,
Ry = byR,. We have

a(x) = a' (w)by, Hy= bu_lﬂéboy

where H, and H, are the isotropy groups at p, and p,, respectively. Thus
we get

Hyle;'da,Hy = by ' Hy "y  da, Hob, .
For my = bymghy 'y by = bolyby* and X = pr,, X+, X € ¢,y X' = bXb;*
we have

X' = by (Dl X) b5 ' + B (Prs, X) b5 "y Plys X' = by (DI, X) 05

sinee by (pry,, X) by € my, by(pr), X)by* € by, Hence
(4) Dlyng(Hy ™ 4 dag Hy) = bo [Py, (Hi a5 da, Hy) by

Let us consider a curve 7: R— W(p,) in ¥, and a vector i, =1,
tangent to = at 2, = 7(0). If a: W(p,) = @ is a (local) representation of V,,
satistying a(p,) = ¢, then a™: s —(z(8)) = a, is a representation of 7
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in G and d,n zy = dazo(to) is the vector tangent to a at a,. Now, take
the curve 7: § —> 8z, r(s) and it8 representation ar: s—>a,(-c (s)). Since
a(0) =ee@, a'(s) ea(W (o)), it follows that the vector fy = ag't, is

tangent to 7 at p, and the vector s a,e tangent to a* at 6 is contained in
the vector space T tangent to a: W(po) — @ at e, We have

a*($)py = 7(s), @ (8)py = () = aZ'5(s) = @z} A" (5) .
Thus there exists k(s) € H, such that a(s)h(s ) = a,, a (s) and

da +dh, = a,, daz,
Dbecause 2(0) = e.

Consider the representation b: W(p,) > @G given by b(x) ey,
2~ b(w)Ry = Ry = a(@)k(x) Ry, a(po) = b(po) = k(po) =6, where @y
= expM,, M, =« m,, k(x) e H,. We get

b(z) = a(@)k(z), db, = da,+ dk,,
and since dj b, e my, dik, €hy, we have
prnlod% a’e ;é O ’

Therefore each vector dj, a:; e T® is not contained in h, and q, = h,+T%,
i.e., T% can be taken as m,. Thus we get

TBRoREM 2. The Lie algebra q, of G 8 the direct sum q, = my+ hy,
where m, is the wector space tangent to a representation a: W (py) -G of
the homogeneous space (V,, @), W(p,) < V,, a(x)RBy = R;, a(p,) = ¢,
and h, is the Lie algebra of the isotropy group Hy, = @ at the point p,.

It a*: s— a(z(s)) is the representation of a curve 7: R W(p,) and
av: s a(t(s)) the representation of the curve 7: s— agg7(s), then

da; = prono(ar_((}) da’:(ﬂ)) ’

where m, is tangent to a: W(p,) - G at e.

Exampre 1. Let G(«,) be the affine group of transformations of
the n-dimensional affine space 7, given in affine coordinates #* by means
of the equations

for ¥ =diw+at, i,§=1,...,n, dei(af) #0.

The coordinates agya, f =1,...,n+1, of f, e G(,) form the matrix
(a§) = a, a},, = o, a;“ = 93, where 937! is the Kronecker symbol.
Such matrices form a group @, isomorphic with G(s,), when the rule
of multiplication in @ is given by the formula (a5)(bs) = (a3b}). A frame
in «, consists of a point # and » linearly independent vectors v; = vjéq,
where ¢; is a base of the vector space of free vectors (i.e., equivalence
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classes with respect to parallel translations of the vectors tangent to 7).
Bach frame R, = (x,v,,...,9;) i§ the image of Ey = (0,¢,,...,¢,) by
fa? IG, R _fa(-RO) = (fa(o fa(el)’ Jfa n)) where f‘& (O) a"i = ai1
fi(e;) = = aj, and that is why we may write B, = alt,.

We see that the isotropy subgroup H, at the origin 0 is formed by
the matrices

Hy = {{o)} = {k}, V=03 =0, F=1,..,0+1,
ho= (v ...,0,,0),

(i.e., such matrices A that 2(0, ¢, ...,¢,) = AR, = (0, 2,, ..., v,)), and the
surf"uce G, < @ is formed by the matmces

G = {(2p)} = {an}, 19; =,T9§> pptt = 15‘}3“,_ pfa+1 =,
. ay = (Iyy ooy Ipy @)

(i.e., such matrices a, that a,R, = (%, €1, ..., 6,) = R)). G, is a subgroup
of @; therefore G4, = expmy,, where m, is the vector space tangent to @,,
at e.
The gurfa;ce' @, is the representation of the frame field R) = (w by -

,e,,) = ay(x) Ry, ay(z) € @,,;. For another frame field E, (ac ¢t () e

.y Cim)e ) = ay(z)c(®) Ry, c¢(x) e H,, we obtain another surface a.ﬂ
-a:—>a,o(a;)c( z) a8 a representation of 4,, where ¢ = ¢;(¢) are functions
of points z € 4,,. The vector spaces T, o(@) and Teo'(x) tangent to ¢ and o,
respectively, hzwe the 1epresenta.t10ns in ¢,

Gog Aoy = A5’ By, ay,' dag, = () da? B 46} () del, BY,  &of = o,
where B;, Il are the vectors of the natural base in @.
The vector space n, is spanned by the vectors B, and hy, by Bi. Since
H;'ay'dayHy = {i,da" B;, (15) € Hy},
Hi oy dag H, = {b, 6} do’ B+ Rig} delhs TP, (hg) € H},
Wb = 0, (cihf) € Ho,
we have
Pr1n0(HO_1ao_1da’0H0) = pl'mo(Ho—la':)_lda;).Ho) = HJI dmiE'tHO
= {hidx*B,, (k) € H,)
at the pointx € 4,,. '
Ifwe take another initial frame B, = (q, w1, ..., w,) = bRy, by = (1),
w; = wie;, ’wn+1 = ¢, wpt' = o+, then Ry = (€, €1, ..., 8,) = ay(2) Ry
= do(fr) do () by Ry, Go(2) = (@ ." )] = ao(2)by" = (@}, — wiq"+ ). Thus
Hq‘du'ldd H, = H;' widr' B,H, = {wihlde* B;, (h%) € Hy)

= bD]In 1“0_ dan[IObn 1»
because H, = b, H,b; .
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In this case we have m, = bymyb;' =m,, H;'e;'i: k, < m,,
H;'d; ddH, = m,.

2. A specialization of a frame. Let a: W (p,) - @ be a local represen-
tation of a homogeneous space (V,,, @), W(p,) < V,,and let §: V;>V,,
l < m, be an immersion (surface) of a manifold V; (I-dimensional) into V,,.
We take a local chart (U, @) on V; such that S(U) < W(p,), where

(W (po), ‘) is a loca,l ehart on V, containing p,. Then a,: U — G given
by the formula a,(w) = a(S (%)) is a representation of the surface S. If
9o € @, then g,a, is a 1’ep1'esentat1on of the surface g, 8 in G. For each point
Uy € V, there exist a neighbourhood U < V,;, a point 4, eV, and g, @
such that g,8(T) = W(p,). Since the process of specialization of a frame
is constructed in a way invariant with respect to left translations, it
follows that using local representations we can specialize a frame on the
whole surface 8, i.e., on a neighbourhood of each point of V,.

If », i8 a vector tangent to V; at u, then 4, S, = dS,(v,) is a vector
tangent to S at S(uv) and 4, ay, = dag,(v,) i8 tangent to the represen-
tation ay: U — @ at ay(v). In this way we get the mapping

G0t Uy 03 dyy: 4> 05" () Bou, G () = agy,
and the set
Ha-lao(u)uldvua'wﬂo ={'a ld@u%uho; hy € Hy},

where H, is the isotropy subgroup of G at p, € V,, and » is a vector field
on U < V,. In Section 1 we proved that prmo(ha‘ Ia.;}d,,uaouhu) # 0 for
d"’ua'“u # 0. .

Our method of specialization of a frame consists in the following
general idea. Let q, = hy +m1, be the direct sum of vector spaces hy and my,
where h, is the Lie algebra of a closed subgroup H, of the Lie group &
and q, is the Lie algebra of G. The subgroup H, acts on m, as the group
of transtormations hg: ¥, — DIy, (b Toho)y ¥, € my. IEb: U — G is a cross
section in G (i.e., mob; U—>G/H0 is an imbedding, where 7: G -G /H,
is the natural pI‘O]GCthIl) and ¥, i8 a vector tangent to b at b(u), then
the veetor b (u) ™! Xy, is contained in q,. We consider the orbit of & (u)™" ¥y
n my, ie.,

DLy (Ho 0 (1) Ty Ho) = {DTmmy (B0 (w)™ Ty ho); Tro € Ho}

In order to distinguish in H, a subgroup and an element ho(u), we put
on the set Pry, (Hq ' b(w) ™" Yy H,) an invariant condition, £.i, we choose
a fixed subspace P < mn, or a fixed vector Y, € m, and talke such ky(u) € H,
that

o ()~ 1b (1)} Yy ho(w) € P+hy  (L€y Damg (o) ™"5 ()™ Ty B () € P),
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or
ho ('“’)—1 b (’u')—l Yb(u) ho (’ll:). € Ye 'I' ho (Prnno (ho (u)—l b (u)_l Yb(u.) hﬂ ('M’) = Yc)) y

respectively, for all u € U.

Then the vector field g — g¥,, h(u), g €@, is contained in the left
invariant distribution g — g(P+h,) or in the left invariant set field
g—g(Y,+hy) defined by the left invariant vector field and the left in-
variant distribution for all # € U. We have got hy(u) € Hy by the restric-
tion of Hy'b(u)~! ¥y, H, to the set P+ h, or ¥,+h,, which is also a left
invariant condition.

A subgroup H, <= H, can be obtained from the condition (as maximal
set)

HY(P+hy)H, =P+hy, or H{'YH, < Y,+h,.
Thus the surface
by 10— by(u) = by(u)ho(u), bo(u) = b(u),

i3 determined by means of left invariant conditions and we may repeat
with respect to b,, H, the same which has been done with respect to a,, H,.
We get b,, H, and so on. When we need no constant subspace P, to deter-
mine H,,,, then we may take P, c g, a8 a function of » € U, i.e., we use
the restriction of Hj'b,(uw)Y{?(u)H, to P,(u) having possibly small
dimension as an invariant condition.

There exist many different variants of this idea, but we present two
of them in details.

(A) Let @yt U—G be a representation of a surface Sy: U—V,,
U = Vi, let T, be the vector space tangent to V; at 4, T, ,, the space tan-
gent to a, at a,(u), and let q, = h, +m, be the decomposition considered
above ,where R, is the Lie algebra of the isotropy subgroup H, at p, € W(po)
We put on H, the condition:

(5_0) pr. ™y (Ho la’Ou Tao(u)Ho) < Pnﬂ < my (i'e'5 .Ho—la(;}Tal(u)Ho < no"l"ho)

for all 4 € U. This condition may be written in a more explicit form.
Namely, if w, is a linear form on T, with values in q, and if v, € T, then
o, <= P, means w,(v,)€P, , for all v, € T,. Since

a'o'u T agy(u) = {%u d“Ou( )7 'vu € -T u}! Ty = ao('”’): da’ou('vu) = dvuaou!
the above condition may be written in the form
(5) Prmn (Ho_l “o_u] da’(mHo) < Pno) i'e') -H-()_1 aa:danuﬂo < P'no"_hl)’
P, = m,,

g

where P, + h, is the direct sum of the vector subspaces P, and l, of g,.
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It follows from (3) that (5) does not depend on the choice of the represen-
tation a, of S. ‘ _
If there exists an hy(u) € H, and a subgroup H, < H, such that

(51) Prnlo (ho (u)_lao—ul da'Ouho (’M))E Pno and Prono (Hl—lp'noHl) = Pno’

then we get the surface a,(u) = ay(u)h,(u) which is also a representation
of §. ‘

Agsume that there exists another %,(u) € H, satisfying (5,). We take
such k(u) e H, that hy(u) = ho(®)%(n). Then

DE g [ (1) Ty () ™" i i T (0) o (0)]
' = DTy [F6() ™ [DTy, (o () @i i ()| o ()]
& Pl yny [6(0) P ()] = P,

and %(u) e Hy, hy(u)H, = hy(u)H,. Thus the set a,(u)h(w)H, is inde-
pendent on the choice of ho(w) satisfying (5,) and for H; = {¢} we have
Tg(w) = Ry (u). |

Now, let @, be another representation of S with respect to the same
initial frame R,. If a, and kg (w) satisty (5,) and a,(v) = ao(w)b (%), b(u) € Hy,
then

I'm‘,[hﬁ( ) la’:)zldaSuh;( )] =prmu[h£i(u)_1b( ) a’Ou daOub W ho( )] < P
and b(w)hy(w) = ho(u) satisties (5,). Hence

b(w)ho(w)Hy = hy(u)H, and  a(u)b(u)hy(w)H, = a(u)hy(v)H,

(6) 'y
or @ (w)ho(u) Hy = ag () ho(w)H,.

Thus we get

THEOREM 3. The set ay(u)hy(u)H, satisfying (5,) is independent of
the choice of hy(u) = H, and of the choice of a representation ay of the surface
8y: U—-7V,, U c V,;, with respect to a fixed frame R, (the same for all
representations considered).

This is the important fact because now, as the second step in this

process, we repeat everything for the surface a,: u — aq(u)hy (%) and the
subgroup H, which we have constructed at the first step starting from the
Luﬁace a, and the subgroup H,. In this way we get the sequence:
__I. ay(u) = ag(u)hy(u), prml'[H‘ antda,, H,] < P, = my; My © My,
9. = h’l +m17 Prml [hl(u)—la-l-ulda‘mhl( )] < Pnl7 planl(Hz Pn Ha) = Pnzr
hy(u) € H,, where h, is the Lie algebra of H,, P, is a subsp&ce of m,
having possibly small dimertsion and H, is & subg*roup of H,;

II. aq(u) = ay(u) 7"1(’“) Prm.z [H; ' ag, day, Hy] = P, = Mgy, M,y = 'm'zr
4. = hz"'mz’ I)T,n2 [hz( ) a?.u dazu 2('”’ ] < Pn2? Prmz[Hs IPﬂgHa] = ’ﬂ-g"
ho(u) € Hy;
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IIL. ay(u) = as(u)hiy(u), ...

The specialization of a frame will be finished when we get such a se-
quence Hy, H,, ..., H, that K ; = {e}.

Here we take P; = const or P, = P;(u), i =1,...,k—1, in order
to get the maximal subgroup H,,, satisfying H;}) (Pi-f—h ) i1 = Py+hy.
Thus if Hy,, = {6}, we may take P, as a function of u, P, = P;(u).

Let B4, ..., E, be a fixed base of q, and let #,, ..., E,, be these vec-

ng
tors of this base on which the subspace m, is spanned. Smce
7n [-Hz—-:lh (’M ) lda'l,uh{(u) z+1:| < Pnii

it follows that
PTom, [hi—-|-11hz'(u)_1 a'f_ul Ay, by (1) By ] = fj(’“’ hi+1’) k;, j=1,... , g

The forms f’ (or a function of these forms) independent on , +1 are
invariant forms of the surface Sy with respect to the action of G.
If the subgroup H, is such that

P, (H'Q H;) = Q;  for every an I-dimensional subspace Q, = m;,
then this variant is stopped at this step and the specialization of a frame

cannot be realized by means of this method.
The same happens in the case where

Prmi(%_ld“i) = P; and Prﬂli(H‘l-;-lPlH’l:) =P,
for a fixed l-dimensional P, = m,..

The described method of specialization of a frame is also invariant
with respect to a change of an initial frame R, for R, = b, E,. Then a,(u)
= ao(uw)by? is another representation of SU and Ho = by Hyby ' is the
isotropy subgroup at jpu— bopo. If we take M, = bymb; * and P, = by P, by,
then Iy () = boho(w)b;* € H, satisfies

pr'ma [ho (u) Gy (’u’)—lda’Ou hO (’M)]

prma [boh.o( ) %u daUu (1.!;) bD 1] = b Pnobo—l = P;Lo
and

ay (w) = ay(u)ho(w) = ag(u)hig(u) by = @ (u) by
or

a; (1) Ry = ay(u) Ry.
Repeating these considerations we get
(7 a;(u) Ry = o;(w)Ry for 4 = 0,1, ..., k,
and

THEOREM 4. The frame field uw— a,(u)R, on .Sy, where a;: V —G
I8 @ cross section obtained from the representation a,: U — @ by the method
Dpresented above, is independent on the choice of an initial frame R,.
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It we apply successively Theorem 3 with respect t¢ the cross sections
oy Oyy vvy Oy O = Gphohy .. By_yy Hyyy = {6}, then aq(u) = ao(uw)he X
X (#)hy(%)... hy(u) depends only on the choice of the sequence Ppyeey Py
Theorems 3 and 4 say that the final frame field « — a,,,(u)R,, obtained
by means of this process, depends only on the sequence Pno, ooy Py,
of subspaces of q,.

ExAvrrE 2. In the Euchdemn space &,, let #° be the orthonormal
coordinates and R, = (0, ¢,, ¢,) be an orthonormal frame, where 0 is
‘the origin of the coordinate system and e, are the vectors of the base
in &,. The isometry group is given by the equations F,: y* = a.*m’—l—a:,
i.e., in these coordinates the isometry group is isomorphic with the group &
of matrices a = (ap), where ai = da', ay = 9, and (a}) i3 an orthonormal
matrix, a,f =1,2,3; 4,5 =1, 2.

We consider the field z = (2%, 2%) > R, = (w, €, 6;) = a(z)R, and
. the representation

a: o (a5(w)), ai(w) =4}, d'(8)=adi(x)=2a" @) =0,

of &, in the group @. Thus the representation of a curve §: o = 2'(u)
is given as a curve a,: u - (a§(s(u))) = ao() in &, u € R.

We denote by Ef, Bi = —E}, E; the vectors of the natural base
at e e G and by &y, = () € G, B, = 0 the elements of isotropy subgroup H,
at 0. Hence the Lie algebra hg, of Ho is spanned on F} and we take as my,
the vector space spanned on E,, H,. We have

ao(u) day, = Aot By, hytags daghy = hidel B e my, hLRF = 9.
Let us take the subspace of m, spanned on E, as P,. Then the con-
dition hida’B; < P, for H, has the form
hlde' =0, ie, Oyhida’=0.

Thus the vector (column) (A (w)) is orthogonal to the column (dai). Since
(ki) is orthogonal to (Ai), hence we may take (hy(u), h3(u)) = (day,/\dxl,,
da? [ldzl,), - where |dz| = (9yda’da’)® = ds. Now g, ag, dag, g, = dsB,
and H, = {¢}, hence ds is an invariant form

The curve a;: - a;(u) = ay(u)ho(u) = (h5(u), h5(u), 2*(w)), »°(w)
=1, hi(w) = do*(u)/ds, is a replesenta,uon of the specla,lued frame field
% —+ R, = a;(u)R, because H, = {¢}. The components of the form

a7 'da;, = hLAnF B+ 1) da® B, = 2(h dh; —hyak3) B3 - ds E,
o [ dat Pt dx? @at
T \ds ds? ds  ds

)E;ds+dsE2 = 2kdsEl+ds B,

where k is the curvature of 8, are invariant forms of 8. If & = const,
then all vectors a; 'da,(v) are contained in the constant subspace spanned
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on the vectors 2% E, -+ E,. Thus the surface v — ay (%) @y (w) is & 1-dimen-
sional subgroup tangent to 2k H; 4+ E, at e because it is tangent to the
left invariant vector field generated by ZkEl—}—EZ That means that,
in the case &k = const, the frame field % — a, (1)~ a,() R, (and the curve
@y (1)1 S) 18 invzuriant with respect to this subgroup.

Examere 3. Let #,., be the (n+1)-dimensional Euclidean space.
We repeat the considerations of Examples 1 and 2. Thus we get the group @
of matrices & = (al), apt? =", al,, =d, dyaial = Iy, 4,5,k 1
=1,..4n+1; a,f=1,...,n+2.

A surface Sy: U~ &,.q, where U = V,, is a chart on a differentiable
manifold V,, and S is a restriction of S V> 8yy1, has a represonta,-
tion ay: u— a(S(u)), ay(u) = (ah(w), ai(u) = 9%, al.(u) = o' ().

Identically as in Example 2 we get

hitay tdaghy, = hida! By,
and if we take P, spanned on Fy, ..., F,, then
Ry =0,

i.e., the vector (column) (h,'L +1'(u)) of hy(w) must be orthogonal to dw.
We take such. functions X%: - Xj(u) that for X, (%) = ni,,(u) the
matrix (X} u))((X“ u)) = h,, u), Xb, o(u) = Xp*t(u) = :9"“) is * ortho-
gonal. Now we have

ay (u) = ay(u) k() = (X1(“): oy Xy (), w(u)’)’

where X,(u) = (X;f(u)) denotes a column.

The subgroup H, c H,, where H;'P,H; = P,, contains the ortho-
gonal matrices &, = (kj), where kKt = %I, = of, k3t =KD, = 95
Hence
htart dagh, = & X2 AXeN; B -Fz;;;xyamf, xr =9, B =9

»'
We puf
(a) ki XPasikl,, = 1kiXPde?, ie., kpXPAX,, = ki XP
' A,B=1,...,m, eR;

this is possible because &, is spanned on K3 and m, is spanned on F,, ..
vy Boyry By ooy By .y The above condition means that we take P,,l(u)
bp&nnod on ll(n)]"”“+L’1, cooy A4 (w) By B, Since pr,,, (b7t ag; dy oy, hy)
takes its values in the 2n- chmensmnal subspace &pa.nned on E,..., B,
B, ..,E ,then condition (a) gives the restriction upon H, that these
va,lum are contained in the n-dimensional space P, (u) at each u e U.
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We introduce the linear forms given by dX} = Xiowf, do' = Xlw’.
‘Then (a) takes the form
(b) ki ol = 2kf0®.

Using Cartan’s lemma (9,0}, A o’ =0), we get P, =fEo?,
where fZ are symmetric with respeet to A and B. Hence from (b) we get
(c) WifE =1tk or fERR = ARG, Ag =3

We see that the colwmn %, is an eigen-vector and 4, is a (eharacteristic)
eigen-value of the maitrix (fa). If the matrix (f5(w)) has n different eigen-
values for each u, then there exist m orthonormal different eigen-vectors
Iy (u) and the specialization of a frame is finigshed. Then a, (%) = a,(u) 1, (1),
By (1) = (kj(u)) and Reyy = a(u) By, #(u) = S(u), is an invariant frame
field on a surface Sy: U — &,,;.

The components of the vector form

7.4 D A 1 7.. B
hl’u a’lu daluhlu =k (’l«l) wC'uk.DuE 4 + kBu un Zu Q‘Ei-li-l- + kJJu Oy EA. tE
) Ejl = —-E,{,

are second rank invariant forms of a surface §: V,, » &,,,. The functions
4 are the coefficients of proportionality for the pairs of invariant
forms; hence they are invariant scalar functions.

Let vy, eT,(V,) be vectors such that da’ (4) e = ,YAe = _1_1
Then w(vy) = 94 and it is easy to verify that for v, = v5k5 we have

. AX} 11 (0,) = Adaf (D). ’

i.e., the vector da’ (0 4)e; has the principal direction on the surface S: V,,
> &,4, and A is the principal curvature of this surface. |
The case when the matrix (f#(u)) has p, p < n, different eigen-values
will not be considered here.
The form h'ay day,h, = kiw® B, gives

Yokt kS0l = 94p 08 0P = ds?

a8 the first rank invariant quadratic form.
The caleulation of the third rvanlk inva,riants is left to the reader.

‘ExAmPLE 4. We repeat the considerations of Example 1 for the sub-
group of the affine group given by the matrices a = (ap), ai = 9,
a,f=1,...,n+1;14 j =1,...,% Now for each 1-dimensional subspace
P, < m, we have Hy'P H = P, ; thus the specialization of a frame

g
is not possible by means of our method.

(B) We now present a second variant of the given idea of the speciali-
zation of u frame on a surface §: ¥, — V,, in a homogeneous space (V,, &).
All notation is the same as in variant (A).
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The main difference between this variant and that given in (A) is

that here we specialize a frame with respect to certain vector fields, i.e.,
for given vector fields 8, ..., 8p; 8; = d8(v;), v, € L'(Vy), on 8y: U~ 7V,
U<V, 8yu) = 8(u), we find a certain frame field determined invar-
iantly by S and G. ' '
_ Let ay: % — a(z(u)) = ay(u), @(u) = 8(u), be a representation of
a surface S8 in G. The differential da,, maps a vector », = v(u) € T,(V})
onto a vector d,a,, = day,(?,) tangent to a, at a,(u). Thus we get a vector
a5 Ay, 10 g, and a geb

prmn (Hp—lao—ul dv a’OuHO) = {Prmo(hl;la;ul dvauuho); ho € Hﬂ}’
where q, = my-+ hy.
I E,...,E,form a fixed base of m,, then

prmno (ho a’(lu daﬂ-u( u) ho) = fi(hm r’vui' ’M)E,;, 1= 1" RPN

We find hy = ho (%, v,) 50 as to obtain possibly great number of com-
ponents f* equal to constant numbers for all u e U, i.e., we take such
vectors d,ag, ko (%, v,) that their components f, ¢ =1, ..., p, with respect
to the left invariant base field g - ¢H,, § =1, ..., 7, By € q,, are constant
along 1 — &y (w)he(u, v,). This condition is invariant with respect to the
action of the group @G on 8. If there exists exactly one such hy(u, v,),
then the specialization of a frame is finished and the frame field v — a, (%) F,
= ao(u) hy(%, v,) R, is invariant for the fixed vector field ». In this case
the components of the vector a;'d,a, with respect to the base E, are
inv&ri'a,nt functions depending on some vector fields » and w; the compo-
nents f** (ho(u, v,), %)y ..., f* (ho(u, v,), u) are also invariant functions.

Ifforj=1,...,p all the veetors f* (ko (u, v,), u) By ..., 2o (u,0,), u) B,
arc constant and there exists a maximal subgroup H,, of H, sa,tlsfymg
plmo(H(,1 Ay Hyy) = Ay, where A,(u) = fi(ho(u,v,),u)B; ¢ =1,...,m,
then we take a vector field », on ¥, and we repeat with respect to Vg
and Hy, m, all the same what we have done for »= v,, H,, m,. That
means, we fmd such gy (u) = Roy (%, D1y, Vay) € Hyy that DLy, (e (w)7'),
DLy, (g3 (%) 85 Oy, Gy by (w)) easy possibly great number of components
equal to comtant numbers (i.e., independing of ). In such a way we got
vector fields v, , ..., v, and vectors 4;, ..., 4,k <1,1 = dim V;. Naturally,
the vectors vl, ..., ¥, must be chosen so that this process can be real-
ized, i.e.,the vectors P, (G5 Dy ; Tou)s j=1,..., %, must form a part of
a frame of the group of transformations ad hyt: W—>prmo(h0‘1Who),
W emy,, hye Hy, at cach we U.

It is easy to see that we can get the same when for »,,...,%, and
Ay, ..y Ay we find an hy(u) € H, such that

PTon, (ho(u)—laﬁl dag o (w)) = 4;,  §=1,...,Fk.
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Assume that there esists such fg(u) = Ry (% ) Roo(w) ... Ay (#) and
H, = -HDZ = Ho that Prmo(ho('“)-law Ao, R )) = -Aj anG ."t\’l'-pno(-Hi-lAjHl)‘
= A, respectively, for j =1,...,1, where 4, are linearly independent
vectors. Then we take the cross section a, (%) = ao(u)he(u) and some
vector fields w,,...,w;, on V; and we repeat with respect to a; and w;
all‘the same what we have done for g, and v;. In such a way we get some
sequences Ho, H,,...,H,, Hy, = {6}; ho(u,v,(u),...), hy(u, vi(%), ...
veey Wy (%), .00, --',hj('“y%(“ oy Wi (), ny 21 (), ) ao “)"11(""' v1(%), . ')7‘
..,1l.e., we repeat the conaide_rations of varlant (A). The invariant
frame field v - R, = @,.,(u) R, depends on the vector fields v;, wy, ...
The obtained invariants will be invariants of the wvector fields on S;.
Identically as in variant (A), the vectors 4; may be taken as functions of
% if they determine a subgroup Hy;, DI, (He 4;Hy) =A;. Usually
we take v, = w; = 2; = ...
Another variant of this type results when we take a field v, on V;
and find hy, (w) € H, and Hy, < H, as above and, next, for a vector field v,
we find %y, (#) € Hy, such that the vector '

pr my, (hoz ) “omdvzaomhoz ’"’))’

where ag () = () by (%), q, = Mg+ hy;, has possibly great number of
components equal to constant numbers for all v € U. In this way we get
another sequence of invariants and an invariant frame field depending
.on some vector fields v,, v,, ..

From above considerations we see that the theoretical founda,tlons‘
of variant (B) are the same as thege of variant (A).

Variants (A) and (B) may be applied simultaneously.

ExAMPLE 5. Let Sy: o =a*(u) be a surface in the Euclidean
space &,. Identically as in Example 3, we get a representation

ay(u) = (“p 'u')); aj('u') = "9;: “4(“’) =2 F (@), .
a,f=1,...,4; 4,j =1,2,3.
We take two vector fields v,,v, on U < V,, v, = v, 4 =1,2.
Then we have
Ot By Gy = (v 4) By = vl (w) B; € my.
If (h;) € Hy, we can put the conditions
o' (u) =0, hli(w) =1, ki) =1,
ie., hylagd, Mouhe = B, . Hence
Bi(u) =vi(w), Bi(u) = vi(u)
and. v,, v, must satisfy
ﬁi]”it”%:@;w’ 4,B=1,2.
Aggime that such vector fields v 4 are given.
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(For an arbitrary vector field » we have h;* a.w Ld,ap by = hiv' (u) B;.
Thus the function F(u) = o, ko (u) kit (n) = 9yv' (u)v'(u) of compo-
nents is independent on h, and therefore it is an invariant of a vector
field on §.)

The column hf(w), &,k (u)v%,(u) = 0 is denoted by }(u). The matrix
group H, satisfying H'F, H, = B, i8 frivial, and so the specialization
of a frame is finished

Now we have hy(s) = (05(%)), @y (%, Vi, Vay) = o (%) hg (%) = (D1, Voyyy
Vayy D (U )7

ant da,, = v, dvi, E"+fv,mdw ‘B, = 29 ,vmd'vwE‘+20jvaud'v{“E1+
+ 2'¢9'ij”31odv2uE§ + ﬁijvm dmuEl + ﬂz‘jq)zudmu-m2 .

Thus we get second rank invariant forms as the components of the above
vector form. For instance, #;vid, v] is the geodesic eurvature of the vector
field 8; = d8(v,) on -8y, 1j'v,,a'l fvj ig the norma,l curvature of 8; (i.e., of
an integral eurve given by this held) Pyvid,a’ = g(v,,v) is the Va.lue of
the metric tensor g.

ExAvPLE 6. Consider once more Example 4. For a vector field v on.
UcV,y 8S:V,.,—>A4,, we have

byt ag) @, Gy by = v (u) By[A

and the conditon »"(u) = A(#) finishes the specialization of a fmme.
The functions ' /o™ are first rank invariants.

ExAMPLE 7. We take a subgroup G’ of the isometry group acting
on &;. Namely, let ¢’ be isomorphic to a group of matrices a = (ap),
where (a3) is orthogonal, aj =af =493, a} =6}, a; =a', 4,B =1,2
1=1,2,3; f =1,2,3,4. It is easy to verify that variant (B) does not
specialize a frame in the case of a curve given by the equations: #' = 0,.
2 =0, 2® = u, ue R,

.~

3. A formal theory. Let @ be a linear form on a differentiable mani-
fold ¥, with values in the Lie algebra q, of a Lie group G and let w; be
the restriction of w to a chart U < V,. We assume that H, i a closed subgroup
of @, h, is its Lie algebra and m, is a subspace of q, satisfying q,= h,+m,,
dimm, > I. We assume also that

PTyny [ (v,)] # 0  for each we U,

where »: % -9, = v(u) i§ a vector field on U < V,.

If there exists a surface a,: U+ G such that ap'da, = wy, i.c.,
da, = ay,w, then it is easy to verify that the integrability condition of
this Pfaff system bhas the form

doy = —}[oy, vy],
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where [ , ] denotes the product in q,. Thus we get the structure equation
for such w.

If such a form wy; is given, then we can repeat the process given in (A)
with respect to a;'da, as follows. We choose a subspace P < m, having
a possibly small dimension and we put on H, the cond1t1on

PI'mO(HB_ wUHD) < P

n ’
which determines hy(#) € H, and a maximal subgroup H, c H, satisfying
pr'mu (ho(u)ulwuho(u)) < Pnl and Pr'mo (H-I_IPRIHI) = Pnl

for all ue U.
We get a decomposition q,='h, +m,, where h, is the Lie algebra of H,
and m; o m,. Next, we congider the form

b = To (W)™ o, Tig (1) + ho (1) " by,
and choose a subspace P, = m, such that the condition
'pr'ml(Hl—l wlU'Hl) P

e
determines &, (%) € H; and H, < H, satisfying '
Dlpn, (hy(u)~  @lhy(u)) = P,, and. pr, (H'P,H,) =P,,
i.e., we repcat the considerations we have done for wy,. We get a form
wy, = hy ()™ w0y Ty (1) Ty (0) 7 Ay,

In this way we construct the sequences: hy(u), ..., h,(u);

ot = hy(u) 7 @l by (w) + Py () T @Ry, By(w) € Hy,

Hy> H, > ...> Hy, > Hyyy = {e}, |
Pry, (H P, Hy) =P, = my, « My, q, = m,+h,

and after s +1 steps we get a form o™, which gives a cross section u — b (%)
by the integration of the equation b~ 1db = of .
If a = cb is another solution of this equation, then

b~lo~1(decb +0db) = b~'db, i.e., de =0 and ¢ = const.
This means that two solutions of the equation b~'db = wf* differ by a con-
stant left-hand side factor.

Let ay: % — ay(%) be a maximal solution of the equation a; ' da, = wy
and o} = hylwghy+hytdh,, hy: U— H,. Then the equation

a7l da, = wy
can be written as
o7 day = hytag daghy+hyldhy,  ie., ay'day = (aphy) "t d(aghy)

and a, = a,h, is & maximal solution of the equation a;'de, = w};.
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»

Thus if the equation a; \da, = wy is integrable, then each equation
a7 de, = o’ is also integrable.

In such a way we get a formal theory of variant (A). Now we may
consider directly a form wgy sa,tlsfymg the above conditions instead of
a surface in @/H,. Two forms w; and w; are equivalent (i.e., corresponding
t0 the same surface S 17, — G/H,) if there exists a function u— h(u) e H,
such that w, = h(w) o, h(u)+h(w)"'dh,.

Variant (B) may be analogously repeated if we determine the func-
tions % - h(u) with the aid of the values wy(v;) of wy on vectors tangent
to V,
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